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We study the melting transition of the low�temperature vortex solid in strongly anisotropic layered
superconductors with a concentration of random columnar pinning centers small enough so that the
areal density of the pins is much less than that of the vortex lines	 Both the external magnetic 
eld
and the columnar pins are assumed to be oriented perpendicular to the layers Our method� involving
numerical minimization of a model free energy functional� yields not only the free energy values at
the local minima of the functional but also the detailed density distribution of the system at each
minimum� this allows us to study in detail the structure of the di�erent phases	 We 
nd that at
these pin concentrations and low temperatures� the thermodynamically stable state is a topologically
ordered Bragg glass	 This nearly crystalline state melts into an interstitial liquid �a liquid in which a
small fraction of vortex lines remain localized at the pinning centers� in two steps� so that the Bragg
glass and the liquid are separated by a narrow phase that we identify from analysis of its density
structure as a polycrystalline Bose glass	 Both the Bragg glass to Bose glass and the Bose glass to
interstitial liquid transitions are 
rst�order	 We also 
nd that a local melting temperature de
ned
using a criterion based on the degree of localization of the vortex lines exhibits spatial variations
similar to those observed in recent experiments	

PACS numbers� ������Qt� ������Hs� ������Ha� ������Bz

I� INTRODUCTION

The mixed phase of type�II superconductors with ran�
dom pinning is generally regarded to be an archetypal
test system for the study of the e�ects of quenched disor�
der on the structure and melting of solids� In this phase�
magnetic �ux penetrates the sample as quantized vortex
lines which form a special physical system known as �vor�
tex matter�� The fascinating equilibrium and dynamical
properties of vortex matter in the mixed phase of high�
temperature superconductors �HTSCs� have prompted
considerable experimental and theoretical attention for
more than a decade �see Ref� 	 for an early review�� The
mixed phase of HTSCs is strongly a�ected by the pres�
ence of pinning centers� either intrinsic or arti
cially gen�
erated� Understanding the e�ects of pinning in these sys�
tems is basic for practical applications because pinning
strongly in�uences the value of the critical current��

The vortex lines in a pure type�II superconductor form
a triangular lattice �the Abrikosov lattice� at low tem�
peratures� Because of enhanced thermal �uctuations in
highly anisotropic� layered HTSCs� the Abrikosov lattice
in very pure samples� in a magnetic 
eld perpendicular
to the layers �the 
eld will be assumed to be in this direc�
tion throughout our discussion�� undergoes a 
rst�order
melting transition� into a resistive vortex liquid �VL� as
the temperature T increases� Random pinning destroys
the long�range translational order of the Abrikosov lattice
and leads to the occurrence of a variety of glassy phases
at low T � It is now generally accepted that in systems

with random point pinning� a topologically ordered low�
temperature phase with quasi�long�range translational
order �denoted as the �Bragg glass� �BrG� phase� occurs
at low 
elds if the pinning disorder is su�ciently weak�
This has been established theoretically��� as well as ex�
perimentally �see e�g� Ref� ��� The possibility of an amor�
phous vortex glass �VG� phase� with nonlinear voltage�
current characteristics and vanishing resistance in the
zero�current limit� in systems with strong pinning �or at
high magnetic 
elds where the e�ects of pinning disorder
are enhanced� was suggested by Fisher� �see also Ref� 
��
However� in spite of extensive investigations� the exis�
tence of a true VG phase �i�e�� an amorphous glassy phase
thermodynamically distinct from the high�temperature
VL� in systems with uncorrelated point pinning remains
very controversial� di�erent calculations���� lead to dif�
ferent conclusions and the experimental situation����� is
similarly contradictory� A variety of �glassy� behavior
has been reported in di�erent experiments �see Ref� 	�
and references therein� near the 
rst�order melting tran�
sition of the BrG phase of both conventional supercon�
ductors and HTSCs with point pinning� It has been
suggested����	 that these observations may be understood
if it is assumed that the melting of the BrG phase occurs
in two steps� the BrG 
rst transforms into a �multido�
main� glassy phase that melts into the usual VL at a
slightly higher T �

Columnar pinning defects can be produced for example
as damage tracks arising from heavy�ion bombardment�
The technological importance of these extended defects
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oriented parallel to the direction of the external magnetic

eld has been long recognized����
� they are highly e�ec�
tive in increasing the critical current by localizing vor�
tex lines along their length� Heavy�ion irradiation pro�
duces a random array of parallel columnar defects each
of which can trap one or more vortices at low temper�
atures� The e�ects of such random arrays of extended
defects� oriented perpendicular to the superconducting
layers� on the properties of the mixed phase of HTSCs
have been extensively studied experimentally������ The
same question has also been examined theoretically�����

and numerically�	���� When the columnar pinning is
strong� and their concentration exceeds that of the vor�
tex lines� a so�called �strong� Bose Glass �BoG� phase
with nearly all the vortex lines localized at the pinning
centers occurs����	 at low T � This phase is strongly dis�
ordered with very short�range translational and bond�
orientational correlations� The behavior in this regime
is fairly well�understood in terms of a mapping�� of the
thermodynamics of the system to the quantum mechani�
cal properties of a two�dimensional system of interacting
bosons in a random potential�

Much less is known about the behavior in the dilute
pin limit where the concentration of pins is much smaller
than that of vortex lines� In such systems� one expects��

a �weak� BoG phase at low temperatures� with a small
fraction of vortex lines localized strongly at the pinning
centers and the remaining ones localized relatively weakly
in the interstitial region between pinning centers� As the
temperature is increased� this phase should����� melt into
an interstitial liquid �IL�� In the IL phase� some of the
vortices remain trapped at the pinning centers� while the
other� interstitial ones� form a liquid� The pinned vor�
tices are expected����� to delocalize� thereby forming the
usual VL� at a crossover occuring at a higher tempera�
ture� The melting transition of the �weak� BoG phase
into the IL is predicted����� to be 
rst�order for small pin
concentrations� whereas the �strong� BoG to VL transi�
tion occurring for large pin concentrations is known�����

to be a continuous one�

A 
rst�order melting transition of the �weak� BoG
phase has been observed�� in recent experiments on sam�
ples of Bi�Sr�CaCu�O��x �BSCCO� with a small con�
centration of columnar pins� The BoG phase in these
systems is found����� to have a polycrystalline struc�
ture with ordered vortex crystallites of di�erent orien�
tations embedded in the interstitial region between vor�
tices pinned at the columnar defects� If the pin con�
centration is su�ciently small� the melting of this BoG
phase upon increasing the temperature occurs into an IL
phase with a fraction of vortex lines remaining pinned at
the defects� These pinned vortices delocalize at a higher
temperature��� The temperature at which the 
rst�order
BoG to IL transition occurs is����� very close to the melt�
ing temperature of the same system without the colum�
nar pins� if the pin concentration is small� As the pin
concentration is increased� the melting temperature in�
creases and the transition eventually becomes continu�

ous� The di�erence between the melting temperature
and the temperature at which the pinned vortices in
the IL phase delocalizes decreases and eventually goes
to zero as the pin concentration increases� Another in�
teresting feature� found experimentally for both point��

and columnar�� pinning� is that the melting of the low
T �solid� phase is �inhomogeneous� in that it occurs
locally over a range of temperatures� the local transi�
tion temperature� which can be measured from the lo�
cal magnetization� is di�erent in di�erent regions of the
sample� This inhomogeneity of the local melting tem�
perature is believed�� to be closely related to the local
arrangement of the speci
c pinning centers �the so�called
�pinning landscape�� in each sample studied�

The polycrystalline nature of the BoG phase for
small pin concentrations has also been observed in
simulations��� Recent numerical work�� indicates that
a BrG phase� with topological order� may also exist in
such systems provided that the pin concentration is suf�

ciently small� In these simulations� the BrG phase is
found to melt into the IL phase via a 
rst�order tran�
sition as the temperature is increased� As the pin con�
centration is increased beyond a critical value� the BrG
phase disappears�� and a low�temperature BoG phase
with a continuous BoG to IL transition upon increasing
the temperature is found�
����

In this paper� we approach these problems through
a di�erent numerical method� We consider a layered�
strongly anisotropic superconductor �such as BSCCO�
with a dilute random array of columnar defects oriented
perpendicular to the layers� and with a magnetic 
eld
applied parallel to the columnar pins� We describe the
equilibrium properties of this system in terms of vor�
tex density variables� using a free energy functional of
the Ramakrishnan�Yussou��� �RY� form� We numeri�
call minimize a spatially discretized version of this free
energy functional and obtain the vortex density con
gu�
ration at each local minimum� Analysis of these density
con
gurations� both in terms of a variety of correlation
functions and by direct visualization of the arrangement
of the vortices �vortex positions are identi
ed with those
of local peaks of the vortex density�� allows us to identify
the nature of the phases corresponding to di�erent local
minima of the free energy� Comparison of the values of
the free energy at the minima as the temperature varies
yields the transition temperatures� A similar procedure
has been successfully employed for the case of a regular
array����� of columnar pinning centers�

We 
nd in our study that that a Bragg glass phase
exists at low temperatures for samples with a small con�
centration of columnar pins� We will present evidence for
this phase from our analysis of the vortex density and as�
sociated correlation functions� Upon warming� this phase
melts into what we show to be an insterstitial liquid �IL�
phase� but the melting is shown�� to occur in two steps�
the BrG and IL phases are separated� over a narrow tem�
perature range� by an intermediate phase which exhibits
a multi�domain polycrystalline structure� We show that
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this intermediate phase should be identi
ed as a Bose
glass �BoG�� The temperature of the upper �BoG to IL�
transition is approximately independent of the columnar
pin concentration c� at the low c values studied� Both the
BrG to BoG and the BoG to IL transitions are found to
be 
rst�order� We also 
nd that a local melting temper�
ature can be suitably de
ned using a criterion based on
the degree of localization of the vortices� and that its be�
havior �in particular� its spatial variation� is quite consis�
tent with what is seen in experiments������ The value of
the local melting temperature is strongly correlated with
the presence of topological defects �dislocations� in the
vortex solid which� in turn� is correlated with the local ar�
rangement of the pinning centers� We also show that the
transition to the IL phase corresponds to a percolation of
regions containing liquid�like �delocalized� vortices across
the sample�
After this Introduction� we discuss our de
nitions�

model and numerical methods in the next Section� Then
in Section III we present our results� We discuss 
rst
the free energy minima and their study through the use
of tools such as correlation functions� local peak�density
plots� and Voronoi construction for the lattice formed by
local density peaks� These tools allow the identi
cation
of the phases at each free energy minimum� as we shall
show� Then we derive the phase diagram and show that
indeed the BrG and IL phases are separated by a thin
sliver of BoG� Finally� our results for the nature of the
local melting are displayed and discussed� A brief conclu�
sions Section recapitulates the main points of the paper
and discusses them in the context of existing results�

II� METHODS

The general procedures that we use are quite similar
to those employed in previous work on a regular array
of columnar pins������ We will therefore give here only a
brief summary� emphasizing the details that are di�erent
in the random case considered here�
The system we study is a layered superconductor in the

extreme anisotropic limit� that is� with vanishing Joseph�
son coupling between layers� which are then coupled via
the electromagnetic interaction only� This limit is appro�
priate for the Bi� and Tl� based HTSC compounds in a
large region of the magnetic 
eld �H��T plane� In this
work� we will use material parameter values appropriate
to BSCCO� With these assumptions� one can write the
energy of a system of �pancake� vortices residing in the
layers as a sum of anisotropic two�body interactions� For
straight columnar pins normal to the layers� the pinning
potential is the same in every layer� It is then possible to
write the free energy as a functional of the time averaged

areal vortex density ��r��

F ���� F� � FRY ��� � Fp���� ���	�

where F� is the free energy corresponding to a uniform
vortex liquid of density �� � B��� �B is the magnetic in�

duction and �� the superconducting �ux quantum�� The

rst term in the right�hand side of Eq� ���	� is the free en�
ergy functional in the absence of pinning� As explained
above we use for this free energy the RY�� functional�
which is known����������	 to give a quantitatively accu�
rate description of the vortex�lattice melting transition
in the absence of pinning� It is of the form�

�FRY ��� �

Z
d�r ���r�fln���r�� � ln����g � ���r��

� 	

�

Z
d�r

Z
d�r� �C�jr� r�j����r����r��������

Here � is the inverse temperature� ���r� � ��r����� and
�C�r� is the usual direct pair correlation function�� which

may be written as a sum over layers� �C�r� �Pn C�n� r��
with C�n� r� �where n is the layer separation and r the
in�layer distance� being the corresponding direct pair cor�
relation function of a layered liquid of pancake vortices�
The direct correlation function� which is needed as in�
put in our free energy� can be accurately calculated in
a number of ways� We will use here the results of the
hypernetted chain calculation of Ref� ��� In general� the
results in the limit considered depend on the values of
the in�plane London penetration length ��T �� the inter�
layer spacing d and a dimensionless coupling parameter
� given by�

� � �d��
��
�

����T �� �����

For BSCCO we will take d � 	��A� and we will assume
a standard two��uid temperature dependence for ��T �
with ���� � 	����A and Tc � 
�K �at zero 
eld��
The second term in the right�hand side of Eq� ���	�

represents the pinning and is of the form�

Fp��� �

Z
d�rVp�r����r�� �����

where Vp is the pinning potential which can be written
as

Vp�r� �
X
j

V��jr�Rj j�� �����

with the sum extending over the planar positions of the
random pinning centers� We take the potential V� cor�
responding to a single pinning center to be of the usual
truncated parabolic form��


�V��r� � ����	� �r�r��
����r� � r� �����

where r� is the range� The basic length in the prob�
lem� which we will use as our unit of length unless other�
wise indicated� is a�� de
ned by the relation �a���� � 	�
We choose r� to be r� � ��	a� and take the dimension�
less constant � � ����� for which value� as previously
shown��� each pinning center traps approximately one
vortex in BSCCO� in the temperature range of interest�
This range is determined by the following considerations�
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We will keep the 
eld 
xed at B � ���T� and vary the
temperature� The melting temperature of the unpinned
lattice is then T �

m � 	
��K��� and we� therefore� consider
the neighborhood of this temperature� Then one has� to
a very good approximation � � �����T �with the tem�
perature in Kelvin�� while � � �����

To carry out our numerical calculations� we discretize
the density variables on a computational triangular grid
of lattice spacing h� containing N� sites� We take the
spacing h to be h � a�	� in our calculations� where
a � 	���
a� is the equilibrium lattice constant of the
vortex lattice in the temperature range considered at the
indicated 
eld� This value� as pointed out in Ref� �	�
is slightly higher than that of a triangular vortex lat�
tice of density ��� which is ����

p
�����a�� We de
ne at

each site j on this computational lattice a variable �j �
with �j � ��rj�v� where v is the area of each computa�
tional unit cell� Results reported here are for N � 	����
which� for the chosen value of h� corresponds to includ�
ing Nv � ���� vortices in the calculation� Preliminary
and con
rmatory results at N � �	� �	��� vortices� were
also obtained� A number of pinning sites �Np� are put�
at random� on some of the computational lattice sites�
The results presented here� which correspond to the di�
lute limit� will be primarily for a pin concentration c of
c � 	���� that is� a number of pins Np � �� at N � 	���
�or Np � 	� at N � �	��� Some preliminary results
for c � 	��� �Np � 	�
 at N � 	���� or Np � ��
at N � �	�� will also be discussed brie�y� With ran�
dom pins� the results depend on the particular random
pin con
guration and averaging over di�erent such con�

gurations is required� The dependence is however not
strong� as we shall see� averaging over 
ve to ten con
g�
urations is enough to make statistical errors su�ciently
small for our purposes�

To perform our studies� we numerically minimize the
discretized free energy with respect to the N� discretized
density variables f�ig� To do so� the interaction term
in the right side of Eq� ����� must be repeatedly evalu�
ated� and since this term is of a convolution form� this
is most e�ciently done in momentum space� through the
use of e�cient Fast Fourier Transform �FFT� routines�
This avoids having to evaluate this term as a double
sum which would be computationally much more cum�
bersome than performing the direct and inverse FFT�s�
In performing the minimization� one must keep in mind
that the variables f�ig must be nonnegative� This pre�
cludes the use of many e�cient minimization algorithms�
We use a procedure�� that ensures that this constraint
is satis
ed� Numerical minimization is performed start�
ing with an appropriate initial condition for the density
variables� As explained in Sec� III below� di�erent local
minima may be found� at the same 
eld and tempera�
ture� depending on the initial conditions� These minima
correspond to di�erent phases� The minimization pro�
cedure yields not only the value of the free energy at
each minimum but also the detailed vortex density con�

guration at the minimum found� i�e� the values of the

set f�ig at the minimum� It is then straightforward to
analyze the actual density con
guration in several ways�
It is also possible to evaluate any desired density corre�
lations� The nature of the phase corresponding to each
local minimum of the free energy can be inferred from
such analysis� The �mean�
eld� phase diagram is then
obtained from a comparison of the free energies of the
di�erent minima as the temperature T is varied� The
results of carrying out this program are discussed below�

III� RESULTS

A� Free energy minima

As explained above� minima of the free energy are
found by starting the minimization process with appro�
priate initial conditions� We use three di�erent kinds of
initial conditions� The 
rst kind is a uniform density
��i � ��v for all i�� corresponding to a completely disor�
dered liquid state� This is typically used to obtain� as we
shall see� liquid�like states at temperatures near the equi�
librium melting temperature of the pure vortex lattice�
which is����� T �

m � 	
��K for the value of B considered
here� The second kind corresponds to a crystalline ini�
tial state� with values of f�ig as obtained in Ref� �	 for
the pure vortex lattice� In our system with a spatially
varying random pinning potential� the pinning energy of
such a crystalline density con
guration depends on the
choice of the computational lattice sites at which the pe�
riodic local peaks of the density are located� We take�
among all possible choices equivalent by symmetry op�
erations in the computational lattice� the one for which
the pinning energy is lowest for the speci
c pinning con�

guration under consideration� These initial conditions
are used to obtain ordered states at lower temperatures�
Finally� states originally obtained by either of these two
procedures can be slowly warmed up� or cooled down� in
this case the initial conditions are simply the 
nal state
obtained at the previous temperature� As one warms
up or cools down a state� its nature in general changes�
liquid con
gurations may become unstable upon cooling
and ordered con
gurations upon warming�
Whichever initial conditions one uses� a local minimum

of the free energy is eventually found� At a given tem�
perature� in general several local minima with di�erent
density con
gurations� characterized by the values of the
set of f�ig variables� are obtained� The minimum with
the lowest free energy represents� at a given T � the true
equilibrium state� It is obviously necessary to develop
systematic procedures to identify the structure of each of
these diverse minima� Since we have access to the full set
of density variables at the computational lattice sites� we
have at our disposal a variety of methods to achieve that
goal� The 
rst is to calculate the density correlations�
e�g� the structure factor S�k��

S�k� � j��k�j��Nv ���	�
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where ��k� is the discrete Fourier transform of the set
f�ig� Equivalently� one can consider the Fourier trans�
form of S�k�� which is the two�point spatial correlation
function g�r� of the time�averaged local density� We will
present here results for S�k�� considered as a function
of the vector k� and for the angularly averaged spatial
density correlation function� g�r��
It is also very useful to consider the spatial structure

formed by the vortices at low temperatures� For this
purpose we have extracted from f�ig the local peak den�
sities� We say that the density locally peaks at site i if
the value of �j at j � i is higher than that at any other
computational lattice site within a distance a�� from i�
where� as de
ned above� a is the equilibrium spacing of
the unpinned vortex lattice� As expected� we 
nd that
at low�temperature solid�like minima where the vortices
are strongly localized� the number of local density peaks
matches the number of vortices Nv� The positions of
these peaks determine what we will call the �vortex lat�
tice��
Much useful information about the spatial structure of

this vortex lattice may be obtained by plotting directly
the local density values at the vortex lattice points� An
excellent� and complementary� alternative to help eluci�
date the degree of vortex lattice order is to carry out a
Voronoi construction� we recall that in the Voronoi con�
struction one determines cells around each lattice point
by a Wigner�Seitz procedure� In a perfect crystal� all
the resulting Wigner�Seitz cells are identical� while in
the general case the cells can have di�erent sizes and
shapes� The number of sides of the Wigner�Seitz cell
surrounding a lattice point is identi
ed with the number
of �nearest neighbors� of that lattice point� and the dif�
ference between this number and the average �six in our
case� marks the position of defects �disclinations�� We
will make use of such plots below�
Since we will be concerned not only about transla�

tional� but also with orientational order� we will also ex�
amine the bond�orientational correlation function g
�r�
in the vortex lattice de
ned as�

g
�r� � h	�r�	���i ����a�

where the angular brackets denote overall average over
the vortex lattice and the 
eld 	�r� is given by�

	�r� �
	

nn

nnX
j
�

exp��i
j�r�� ����b�

with 
j�r� being the angle that the bond connecting a
vortex at r to its j�th neighbor makes with a 
xed axis�
and nn is the number of neighbors of the vortex at r�
It is also possible� and as we shall see� useful� to de
ne

what we will call a �translational correlation function�
in the vortex lattice in a way that is quite analogous to
the de
nition of g
�r�� This function� which we denote
as gG�r�� is de
ned by an equation identical to the right�
hand side of Eq� ����a�� but with the 
eld 	 being de
ned
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FIG	 �� �Color online� The static structure factor S�k� �see
Eq	 �
	��� for three local minima obtained at T � ����K for
the same pin con
guration	 The �red� circles are for a state
identi
ed� from the overall evidence �see text�� as a Bragg
glass �BrG�� the �blue� triangles are for a Bose Glass �BoG�
state� and the �green� crosses are for an insterstitial liquid
�IL�	 The vertical lines are guides to the eye	

as

	G�r� � exp�iG � r� �����

where G is a reciprocal lattice vector of the triangular
vortex lattice in the absence of pinning� We will consider
here only the case where G is a shortest nonzero recip�
rocal lattice vector and average over the results obtained
for the six equivalent G�s�
Our identi
cation of the di�erent phases is based on

analysis of all this information� We show some of the
results in the next few Figures� These all correspond to
samples with �� pins and ���� vortices� First� in Fig� 	�
we show the structure factor� as de
ned in Eq� ���	��
The three sets of results shown there are for local free
energy minima at the same temperature� T � 	
��K� ob�
tained with di�erent initial conditions of the three kinds
described above� and the same pin con
guration� Other
pin con
gurations yield very similar results �a di�erent
example is shown in Fig� 	c of Ref� ���� The green sym�
bols correspond to the free energy minimum obtained
by starting with uniform initial conditions� Clearly� the
structure factor is completely featureless and liquid�like
in this case � the absolute value of S never exceeds 
ve�
The red circles are for a local minimum obtained with ini�
tial conditions corresponding to the best crystalline state�
as explained above� for this pin con
guration� The struc�
ture factor now exhibits typical ordered behavior� high�
lighted by six sharp Bragg�like peaks which are empha�
sized by the added vertical lines in the Figure� Finally�
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FIG	 �� �Color online�	 The angularly averaged density cor�
relation function g�r� plotted at the same temperature as in
Fig	 � as a function of dimensionless distance	 The results are
this time averaged over 
ve di�erent pin con
gurations	 The
results for the BoG and IL minima are shown in the top panel	
The �blue� dotted line plot with higher peaks corresponds to
BoG minima and the �green� light grey plot with fewer and
lower peaks to IL minima	 The bottom panel displays the re�
sults for the BrG minima	 The vertical and horizontal scales
are the same in the two panels and the color scheme is the
same as that in Fig	 �	

the blue triangles correspond to a minimum obtained
by 
rst �quenching� with uniform initial conditions to a
relatively low temperature �	��
K� where the liquid�like
state is found not to be stable� and then slowly warming�
at ���K temperature intervals� back up to 	
��K� As one
can see� the S�k� for this minimum has an intermediate
structure� with several relatively well�de
ned peaks� more
than six in number� whose heights are considerably lower
than those of the peaks found for the ordered minimum�

In Fig� �� results for the angularly averaged density cor�
relation function g�r� are displayed� These results are for
minima obtained at the same temperature� and using the
same initial condition procedures� as those for the data
shown in Fig� 	� However� the results shown here are av�

erages over 
ve di�erent pin con
gurations� The nearly
�at �green� curve in the top panel corresponds to minima
obtained from quenches with uniform initial conditions�
the �red� curve with the well�de
ned peaks shown in the
bottom panel corresponds to minima obtained with crys�
talline initial conditions� and the �blue� curve with the
intermediate peaks shown in the top panel is for min�
ima obtained by quenching with uniform initial condi�
tions to a low temperature and subsequent slow warm�
ing �very similar results can alternatively be obtained by
slowly cooling a high�temperature liquid�like minimum
to a temperature where it is unstable�� One can see then
that the results for g�r� are fully consistent with those
found in Fig� 	� the minimum obtained from uniform
initial conditions is fully disordered� while that obtained
from crystalline initial conditions exhibits a large degree
of crystalline order� For the the third kind of minima� we

nd some degree of intermediate range order�

We next examine the structure of the minima in terms
of the �vortex lattice� found by the procedure explained
above� Sample results are shown in Fig� �� all for the
same pin con
guration� at the temperature T � 	
��K�
Results for three minima� obtained from the same proce�
dures and initial conditions as the three minima in the
previous two 
gures� are shown� The positions of the lo�
cal density peaks and the values of the density at these
peaks are displayed through a symbol and color coding
scheme described in the caption of the Figure� Blank
regions denote areas where no local peak was found us�
ing the algorithm described above� such areas are mostly
found only in the most disordered case �uniform initial
conditions�� We see that the results are quite consistent
with those obtained from the previous correlation func�
tions� quenching with the appropriate crystalline initial
conditions leads to a fairly well�ordered �but not per�
fectly ordered� lattice� while from uniform initial condi�
tions� one obtains a rather disordered� liquid�like struc�
ture where the density is nearly uniform and close to
��� except near the pinning centers at each of which one
vortex is trapped� An intermediate result� on the whole
more solid than liquid�like� but de
nitely disordered� is
obtained through the slow warming or cooling scheme�

To better gauge the degree of disorder present in each
case� we construct� in Fig� �� the corresponding Voronoi
plots� To display the behavior in a more obvious way�
the temperature in these plots is lower by ���K than
that of the plots in Fig� �� As mentioned above� sites
with number of nearest neighbors �nn� di�erent from six
represent the locations of disclinations� In the solid�like
minima �top two panels of Fig� ��� nearly all the sites with
nn �� � have nn � � or nn �  �the disclinations have unit
�charge��� Also� six� and seven�coordinates sites� indi�
cated respectively by �red� triangles and �green� solid cir�
cles in the plots� always occur in nearest�neighbor pairs�
Such pairs correspond to dislocations� In the 
rst panel�
which displays the results for the most ordered state ob�
tained from crystalline initial con
gurations� we see that
the number of dislocations� while nonzero� is quite small
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FIG	 
� �Color online�	 Local peak densities at three dif�
ferent local minima of the free energy	 The positions of
the local density peaks and the values of the density at
these peaks are displayed according to the following scheme�
�cyan� solid circles� peaks with �peak��� � ���� �red� circles�

��� � �peak��� � 
��� �blue� squares� 
�� � �peak��� � ����

�green� plus signs� ��� � �peak��� � ���� and �purple� tri�

angles� ��� � �peak��� � ���	 Blank areas� found mainly in

the bottom panel� correspond to regions where no local peaks
are found	 The temperature is ��	�K in all panels� which all
correspond to the same pin con
guration as that for the re�
sults in Fig	�	 Pin locations are indicated by �black� asterisks	
From top to bottom� the results displayed correspond respec�
tively to ordered �identi
ed as BrG�� intermediate �BoG� and
disordered �IL� minima	
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FIG	 �� �Color online�	 Voronoi plots for the three cases for
which density plots are shown in Fig	 
� except that the tem�
perature is now T � ����K	 The �black� dots denote lattice
sites with six neighbors� the �red� triangles denote 
ve�fold
coordinated sites� and the �green� solid circles� seven�fold co�
ordinated sites	 Rarely occurring four�fold and eight�fold co�
ordinated sites are indicated by �blue� squares and �purple�
inverted triangles� respectively	 Sites surrounded by black
circles denote locations of pinning centers	 See text for expla�
nations	






and that they form fairly isolated small clusters� each of
which has zero net Burgers vector� These defect clusters
occur near the pinning centers and they represent the lo�
cal disruption of crystalline order due to the pinning� In
the second panel� which shows the results for the mini�
mum with intermediate order� the dislocations are orga�
nized to form well�de
ned grain boundaries that separate
crystallites with di�erent orientations� As a result of this
polycrystalline structure� both translational and bond�
orientational correlations are short�range� Performing
the same construction for other pin con
gurations �re�
sults for a di�erent pin con
guration are shown in Fig�	b
of Ref� ���� one 
nds that the crystallite arrangement de�
pends on the pin con
guration� as one would expect� The
grain boundaries tend to lie away from pinning centers�
which makes sense physically� Finally� in the last panel�
which shows the results for the minimum obtained from
uniform initial conditions� the high degree of disorder is
evident� The Voronoi construction shown in this panel
is not very meaningful because our method of obtaining
the vortex positions is not reliable for liquid�like minima�
The identi
cation of the position of a vortex with that of
a local peak of the density 
eld is justi
ed only when the
peak is sharp� This is the case in the solid�like minima�
but not so in the liquid�like minima with low peak den�
sities� We have shown here the results for the liquid�like
minimum only for the purpose of illustrating the di�er�
ence between the structure of this minimum and those of
the more ordered ones� For this minimum� we 
nd a very
large number of defects� and it is di�cult to determine
whether disclinations of opposite �charge� always pair up
to form dislocations� Inspection of the defect distribution
suggests the presence of free disclinations� but not con�
clusively� The total number of local peaks of the density

eld in liquid�like minima turns out to be substantially
smaller than the expected number of vortices� This prob�
lem is not present at the solid�like minima where nearly
all the vortices are strongly localized�

Next� we show in Fig� � examples of the bond�
orientational and �translational� correlation functions�
g
�r� and gG�r� as de
ned in Eqs� ����� and ����� respec�
tively� All results shown in this 
gure are averages over

ve pin con
gurations at temperature T � 	 ��K� At this
temperature the liquid is unstable� and in any case all liq�
uid correlation functions are featureless� so that case is
not shown� The �purple� triangles correspond to ordered
minima obtained from quenching with crystalline initial
conditions to T � 	��
K and subsequent slow warming�
and represent the bond�orientational correlation� g
�r��
This function appears to saturate at a fairly large value
as r increases� indicating the presence of long�range bond�
orientational order� The �red� open circles display g
�r�
for the polycrystalline state with intermediate order� ob�
tained through the procedures described above� This
function decays exponentially with distance� as shown
by the exponential 
t �dashed line�� over a distance of
few tens in units of a�� Finally� the �black� open squares
show the results for the �translational� correlation func�
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FIG	 �� �Color online�	 Bond�orientational correlation func�
tion g��r� as de
ned in Eq	 �
	��� and �translational� correla�
tion function� gG�r�� see Eq	 �
	
�	 These are results averaged
over 
ve pin con
gurations� at T � ����K	 The �purple� tri�
angles and �red� circles denote g��r� for ordered �BrG� and
polycrystalline �BoG� minima �liquid�like minima are not sta�
ble at this lower T � respectively	 The black squares are gG�r�
for the BrG minima	 The dashed line is an exponential 
t to
g��r� for the BoG minima	 The dotted line is a similar ex�
ponential 
t to gG�r� for the BrG minima at small distances�
showing that the decay is slower than exponential for large
values of r	 The solid lines connecting symbols are guides to
the eye	

tion gG�r� for the ordered minima� The dotted line is an
exponential 
t to this translational correlation function
for r�a� � 	�� showing that the decay at longer distances
is clearly slower than exponential �possibly a power�law��

!From the overall examination of data such as those
shown in these 
gures� we can reach the following con�
clusions� quenching with uniform initial conditions to
temperatures above or slightly below T �

m leads to very
disordered states� with very short range correlations and
no structure� except for vortices at and near the pin�
ning centers� These minima become unstable upon slow
cooling� one then obtains minima of the third kind� dis�
cussed below� They clearly must be identi
ed with the
liquid phase� speci
cally the interstitial liquid �IL� phase
discussed in the Introduction� The second kind of min�
ima are obtained by quenching with crystalline initial
conditions to any temperature below� or slightly above�
T �
m� These minima can then be cooled� without losing

their character� but they melt into the IL upon su��
cient warming� The states thus obtained are obviously
nearly crystalline� with the reservation that the order is
not truly long range� but has a slow decay� This is most
evident in the results for gG�r� seen in Fig� �� The bond�
orientational order is nearly perfect� Defects are limited
to isolated clusters� This state must therefore be identi�

ed as a Bragg glass �BrG�� Finally� we have the states
obtained as described above� by slow cooling of the IL



�

state� which can also be obtained by quenching with uni�
form initial conditions to a temperature below the IL
state stability limit� Either procedure yields� for any pin
con
guration� states that at a given T di�er only slightly
in free energy or density con
guration� The states do dif�
fer somewhat more� however� for di�erent pin con
gura�
tions� The Voronoi construction conclusively shows �see
Fig� �� that these states are polycrystalline� The grain
boundaries are formed by dislocation chains� For any
pin con
guration� these grain boundaries survive thermal
cycling across T �

m� but if su�ciently warmed up� these
minima melt� the melting beginning locally at the grain
boundaries �see Sec III B below�� The bond�orientational
correlation function for these minima has an intermediate
range� This� and also the observation that these states
are not unique �as mentioned above� slightly di�erent
states are reached depending on the cooling or quench�
ing protocol�� clearly indicate a glassy state� We there�
fore identify it with the Bose glass �BoG� which has been
experimentally����� and numerically�� shown to be poly�
crystalline�

B� Properties of the condensed phases

In this section� we describe in detail how the proper�
ties of the low�temperature �solid�like� condensed phases
represented by the BrG and BoG types of minima de�

ned in the preceding section vary as the temperature is
changed� The high�temperature liquid phase represented
by the IL�type minima is not very interesting from the
point of view of its temperature dependence� in the tem�
perature range we have considered� this phase exhibits
a liquid�like �nearly uniform� density distribution except
in the immediate vicinity of the columnar pins� at each of
which a vortex is trapped� These trapped vortices would
eventually get delocalized at higher temperatures� This
happens beyond the upper limit of the temperature range
�	��
K � T � 	
�
K� we have considered here�
To study how the properties of a local minimum of

the free energy change as the temperature is varied� we
have �followed� minima as the temperature changes� for
example� starting with a minimum obtained by quench�
ing to the lowest temperature of 	��
K� we �follow� that
minimum to higher temperatures by increasing the tem�
perature in small steps �usually taken to be ���K� and

nding a new minimum at the higher temperature by
running the minimization routine with the con
guration
at the minimum obtained at the previous temperature as
the initial state� This procedure leads to a new minimum
of the same type as long as the minimum remains locally
stable � if the temperature is increased to values substan�
tially higher than T �

m� where the BrG and BoG minima
become unstable� this procedure leads then to the IL min�
ima� We have also carried out �cooling� runs where the
temperature was decreased in small steps� starting from
a minimum obtained at a relatively high temperature�
When the IL minima become unstable� BoG states are
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FIG	 �� �Color online�	 Temperature dependence of the order
parameterm as de
ned in Eq	 �
	�� for three kinds of minima�
averaged over 
ve samples� with Nv � ���� and Np � ��	
Results for the BrG� BoG and IL minima are shown by �red�
plus signs� �green� crosses and �blue� asterisks� respectively	

obtained� As long as the minimum under consideration
did not become unstable in the range of temperatures
considered in the runs� we did not 
nd any substantial
di�erence between the results obtained in the �heating�
and �cooling� runs
To characterize the density distribution at a minimum�

we looked at �global� quantities such as the structure fac�
tor S�k�� an example of which is shown above in Fig� 	�
The T �dependent information contained in S�k� is� how�
ever� di�cult to display in plots� We therefore introduce
a closely related �order parameter� m de
ned as

m �
p
�Smax�Nv� �����

where Smax is the largest value of the structure factor
S�k� averaged over the six k�vectors related by lattice
symmetry to each k� By de
nition� the order parameter
m is equal to unity in a state with perfect crystalline or�
der �triangular lattice with ��function peaks�� Since no
long�range crystalline order is expected or found in either
one of the BrG and BoG phases� the value ofm should go
to zero at all temperatures in the thermodynamic limit�
However� the in
nite size limit is reached very slowly in
the glassy phases� and for the 
nite�size systems consid�
ered here� this quantity provides a convenient measure of
the degree of local order present at the minima�
We show in Fig� � the results for the order parame�

ter m� averaged over 
ve di�erent pin con
gurations� for
samples with ���� vortices and �� pins� The results for
the BrG� BoG and IL minima are shown by �red� plus
signs� �green� crosses and �blue� asterisks� respectively�
Only two data points are shown for the IL minimum be�
cause it becomes unstable at lower temperatures� For
all three kinds of minima� the value of m decreases with
increasing T � as expected� The rate of change is largest
for the BrG minima� and smallest for the IL minima�
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FIG	 �� �Color online�	 Peak density plots for the BoG min�
imum of a sample with Nv � ���� and Np � �� �the sample
is the same as the one for which results are shown in Figs	 

and �� at two temperatures� T � ��	�K �top panel� and T �
��	�K �bottom panel�	 The symbols and color scheme used
here are the same as those in Fig	 
	

However� the di�erences among the three kinds of min�
ima in the degree of local order remain quite clear at
all the temperatures considered� We have also obtained
BrG�type minima for several �� 	�� samples with 	���
vortices and 	� pins� The values of m obtained from an
average over these smaller samples are found to be only
about �" larger than those obtained for the �����vortex
samples at the corresponding temperature� This result
implies that the translational correlation function at the
BrG minima falls o� very slowly with distance� This
is consistent with our interpretation of these minima as
representing the BrG phase�
We also examined the temperature dependence of the

detailed density distribution at the minima �obtained
from �peak density� plots similar to those shown in
Fig� �� and their defect structure obtained from Voronoi
plots such as those in Fig� �� Examination of the peak�
density plots reveals more information about how the

density distribution at the minima changes with temper�
ature� In Fig�  � we have shown peak�density plots at
two temperatures �	 ��K in the top panel and 	 �
K in
the bottom panel� for the BoG minimum of the same
sample for which a similar plot at 	
��K is shown in the
middle panel of Fig� �� The symbols and color scheme
used in these plots are the same as those in Fig� �� It is
clear from these plots that the typical values of the local
peak densities decrease �the vortices become less local�
ized� as the temperature increases� The largest values
of the local peak density occur near the pinning centers
and the smallest values appear near the grain bound�
aries that separate di�erent crystalline regions� This is
physically reasonable � the disruption of local crystalline
order near the grain boundaries should make the vor�
tices in such regions more delocalized� At the relatively
low temperature of 	 ��K� there are very few local den�
sity peaks where the peak density is lower than �����
�such peaks are indicated by �red� circles in the plot��
As the temperature is increased to 	 �
K� the number
of such peaks increases� and this trend continues as T is
increased further� as can be seen in the middle panel of
Fig� � where the results for T � 	
��K are shown� It is
also clear from these plots that the spatial regions where
the low peak densities occur remain roughly unchanged
as the temperature increases � as noted above� these re�
gions are strongly correlated with the locations of the
grain boundaries� These observations indicate that the
vortices in the interior of the crystalline grains remain
in a �solid� state as the temperature is increased to a
value close to T �

m� while those in the neighborhood of the
grain boundaries begin to �melt� �get delocalized� at a
lower temperature� This �inhomogeneity� of the melting
process will be discussed in more detain in section III D�

We also studied the temperature dependence of the
number of topological defects present at the minima�
This number increases slowly with increasing T � and then
exhibits a sudden jump as liquid�like regions �character�
ized by low values of the local peak densities� appear
near the grain boundaries at temperatures close to T �

m�
As noted in Sec� III A above� our method of obtaining the
defect structure using the Voronoi construction becomes
somewhat less reliable when liquid�like regions begin to
appear� Due to this di�culty in obtaining reliable re�
sults for the defect structure and statistics at relatively
high temperatures� we have not carried out a quantita�
tive analysis of the dependence of these quantities on the
temperature�

The gradual decrease in the values of the local peak
densities with increasing temperature is also found in
the BrG minima� but on the average the vortices remain
more strongly localized at the BrG minima than at the
corresponding BoG ones� The strong correlation between
low values of the local peak density and the location of
topological defects is found at the BrG minima too� The
main di�erence between BrG and BoG minima is that
the defects are more randomly distributed at the BrG
minima� they do not line up along grain boundaries as



		

they do at the BoG minima� For this reason� the regions
of low peak density appear at fairly random locations at
the BrG minima� The total number of topological de�
fects at the BrG minima remains smaller than that at
corresponding BoG minima at all temperatures� As the
temperature approaches T �

m� liquid�like regions appear
in parts of the sample where the defect density is large�
This is illustrated in the plots in the top panels of Figs� �
and ��
Thus� our investigation of the temperature dependence

of the structure of the BrG and BoG minima con
rms
that these minima retain their topological structure as T
is increased toward T �

m and even beyond �provided they
remain stable�� The degree of localization of the vortices
decreases with increasing T and liquid�like regions with
nearly delocalized vortices begin to appear at tempera�
tures close to T �

m� However� even at such temperatures�
the BrG and BoG type minima are clearly distinguish�
able from one another and from the IL�type minima� as
illustrated in Figs �� � and ��

C� Two�step melting transition

As discussed in the preceding subsections� we 
nd three
kinds of coexisting� locally stable minima of the free en�
ergy at temperatures close to T �

m� Two kinds �BrG and
BoG� of local minima are found at temperatures substan�
tially lower than T �

m� and only the IL minimum is stable
if T is much higher than T �

m� In our mean�
eld descrip�
tion� the thermodynamically stable phase at a particu�
lar temperature corresponds to the minimum with the
lowest free energy� Therefore� crossings of the free ener�
gies of di�erent kinds of minima correspond to 
rst�order
phase transitions in our description� The IL minima are
expected to have the lowest free energy at high tempera�
tures and the solid�like BrG or BoG minima should rep�
resent the globally stable phase at low temperatures� To
determine how this �freezing� transition takes place� it is
necessary to examine the dependence of the free energies
of these di�erent kinds of minima on the temperature T �
In Fig� 
� we have shown the results for the free energies

of di�erent minima of a sample with Nv � ���� and
Np � ��� This sample is the same as the one for which
results are shown in Figs� 	� �� �� and  � A similar plot�
showing the same general behavior for a di�erent sample�
may be found in Ref� ��� The BrG minimum clearly
has the lowest free energy at low temperatures �while
we have shown data for T � 	 �
K� we have checked
that this remains true at lower temperatures�� while the
IL minimum is the one with the lowest free energy at
high temperatures� The interesting feature that emerges
from data as that shown in this Figure is that the BoG
minimum has the lowest free energy in an intermediate
temperature range of small width �between 	
��K and
	
��K for this sample�� indicating that the melting of the
low�temperature solid phase to the high�temperature IL
phase occurs in two distinct steps� the BrG phase that is
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FIG	 �� �Color online�	 Temperature dependence of the di�
mensionless free energies of di�erent local minima of a sam�
ple with Nv � ���� and Np � �� �the sample is the same as
the one for which results are shown in Figs	 �� 
� � and ��	
The data for the BrG� BoG and IL minima are shown by the
�green� crosses and dashed line� �blue� asterisks and dotted
line and the �red� plus signs and solid line� respectively	 The
lines are guides to the eye	

the thermodynamically stable one at low temperatures
undergoes a 
rst�order transition into a BoG phase as
the temperature is increased� and then this BoG phase
melts into the IL phase via a second 
rst�order transition
at a slightly higher temperature� This two�step melting
behavior is one of our main results�

The same qualitative behavior� indicating the occur�
rence of two separate 
rst�order transitions� is found in
all the �����vortex samples we have studied at pin con�
centration c � 	��� �Np � ���� The average value of
the temperature interval in which the BoG phase has the
lowest free energy is about ����K� This width exhibits
fairly large sample�to�sample variations� ranging between
about ��	K in one sample to a maximum of 	��K� As the
system is cooled from the high�temperature liquid phase�
it undergoes a 
rst�order transition into a polycrystalline
BoG phase� Such a transition has been observed�� in ex�
periments on BSCCO samples with a small concentration
of columnar pins� The value of the upper �BoG to IL�
transition lies between 	
��K and 	
��K in all the �����
pin samples we have studied� These values are quite
close to the 
rst�order melting temperature T �

m of the
same system in the absence of pins��� Our results� thus�
are consistent with the experimental observation����� of a
weak dependence of the freezing temperature of the vor�
tex liquid on the pin concentration c for small values of c�
In addition� our work predicts a second 
rst�order tran�
sition to a more ordered BrG phase at a slightly lower
temperature�

For smaller samples at the same c � 	��� concentra�
tion �Nv � 	��� withNp � 	�� we did not always 
nd the
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FIG	 �� �Color online�	 Results for a sample with Nv � ����
and Np � ��	 Voronoi plots for the BrG and BoG minima at
��	�K are shown in the top and middle panels� respectively	
The symbols and color scheme used in these plots are the same
as those in Fig	 �	 The bottom panel shows the temperature
dependence of the free energies of the BrG �blue line and
squares�� BoG �red line and circles� and IL �black line and
triangles� minima� respectively	 The lines are guides to the
eye	
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FIG	 ��� �Color online�	 The pinning free energy �see text�
averaged over 
ve samples with Nv � ���� and Np � ��	
Results for the BrG and BoG minima are shown by �red�
triangles and �black� circles� respectively	 The solid lines are
straight lines joining the points	

BoG minima� the minimization procedure that led to the
BoG minima in the samples with Nv � ���� often con�
verged to minima of the BrG type in the smaller samples�
This is because the typical size of the crystalline grains at
the BoG minima at this pin concentration is of the order
of the sample size for 	����vortex samples� This can be
seen by comparing the middle panel of Fig� �� where we
have shown the Voronoi plot for the BoG minimum ob�
tained for a Nv � 	��� sample� with the Voronoi plot in
the middle panel of Fig� �� which is for the same T and c�
but a larger sample with ���� vortices� One can plainly
see that the domain size is comparable to the system
size of the smaller samples� However� for the 	����vortex
samples where we found BoG�type minima� the behav�
ior of the free energies was found to be very similar to
that shown in Fig� 
� An example of such behavior is
shown in the bottom panel of Fig� �� The two�step melt�
ing transition found in the larger systems is found here
also� indicating that this is the generic behavior� We
have also carried out preliminary studies of the phase
diagram for a slightly higher value of the pin concentra�
tion� c � 	���� We 
nd the same qualitative behavior�
namely the occurrence of two�step melting� with a larger
di�erence between the two transition temperatures� We
therefore conclude that the two�step melting transition
we have found is a characteristic feature of our model
of layered superconductors with a small concentration of
columnar pins�
Since a 
rst�order transition is not characterized by

power�law behaviors of thermodynamic quantities with
universal exponents� the usual 
nite�size scaling analysis
of numerical data for continuous transitions does not ap�
ply to our work� However� we have examined the depen�
dence of the magnitudes of various discontinuous changes
at the transitions on sample size� From the results for
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the free energy as a function of the temperature� we have
calculated the entropy jump per vortex at the 
rst�order
transitions� The entropy change at the BrG�BoG �lower
temperature� transition is found to be � ��	kB per vortex
�kB is the Boltzmann constant�� and the corresponding
change at the BoG�IL �higher temperature� transition
has a slightly higher value� � ��	�kB per vortex� The
sum of these two entropy jumps is slightly smaller than
the entropy change �� ����kB per vortex� at the single

rst�order melting transition found�� in the same system
in the absence of pinning� All these results are physi�
cally reasonable� The di�erence between the degrees of
order in the BrG and BoG minima is smaller than that
between the BoG and IL minima� suggesting that the
entropy jump at the lower transition should be smaller
than that at the upper one� Also� the low�temperature
BoG phase of the system in the presence of pinning is
less ordered than the crystalline phase of the pure sys�
tem� and the IL phase is slightly more ordered than the
vortex liquid in the system without pinning �this is due
to the local order of the vortices near the pinning cen�
ters which persists in the IL phase�� Therefore� the net
change of entropy in going from the BoG phase to the
IL phase should be smaller than the entropy jump at the
melting transition in the pure system� A comparison of
our results for two sample sizes �Nv � ���� and 	����
does not show any appreciable dependence of the entropy
changes on the sample size� We� therefore� conclude that
there is no indication of any signi
cant change in our
phase diagram as the sample size is increased�

Since our mean�
eld treatment ignores the e�ects of
�uctuations� it is important to address the question of
whether one or both of the transitions found would be�
come continuous if �uctuations were included� However�
there are very few examples of such �uctuation�driven
continuous transitions in three dimensions� In our cal�
culations� the e�ects of the electromagnetic interaction
among vortices on di�erent layers are included� So� we
expect our results regarding the nature of the transi�
tion to remain valid if �uctuations were included� This
conclusion is supported by the result that our density
functional theory provides a quantitatively a correct ac�
count�������	 of the 
rst�order melting of the vortex lattice
in the pure system� Also� the transition in the presence
of a small concentration of columnar defects is known to
be 
rst�order both experimentally����� and from simula�
tions���

The appearance of a sliver of the BoG phase in our
phase diagram may be qualitatively understood as aris�
ing from a competition between the elastic and pinning
parts of the free energy� The elastic �free� energy plays
a dominant role in the BrG minima� the e�ect of the
randomly located pinning centers is accommodated in
this structure by small displacements of the vortices from
their ideal lattice positions towards the nearest pinning
center� Where the occupation of a pinning center by a
vortex would require a large displacement of the vortex�
the pinning center is not fully occupied� For this reason�

the number of pinning centers occupied by vortices at
a BrG minimum is always slightly lower than the total
number of pinning centers� At the corresponding BoG
minima� on the other hand� the pinning centers are al�
ways occupied �except in very rare cases where two pin�
ning centers are located very close to each other�� Since
the BoG minima are obtained from liquid�like initial con�
ditions� the starting point has fully occupied pinning cen�
ters� and vortices localized in small crystalline patches in
their immediate vicinity �see� for example� the bottom
panel of Fig� � which shows such crystalline patches sur�
rounding the pinning centers�� The crystalline orienta�
tion of vortices around a vortex�binding pin site depends
on the local arrangement of the pins��
 This orientation
is� in general� di�erent in di�erent regions of the sample�
These crystalline patches grow as the temperature is re�
duced� and eventually meet one another at grain bound�
aries to form a polycrystalline BoG minimum� It is clear
that the pinning centers are better accommodated in this
structure than in the corresponding BrG structure� On
the other hand� the creation of grain boundaries costs
elastic energy� Thus� the BoG minima are expected to
have lower pinning energy but higher elastic energy than
the BrG ones for the same pin con
guration� The elastic
energy dominates over the pinning energy at low tem�
peratures in our low pin�concentration samples� This is
why the BrG phase is globally stable at low T � Both
these components of the free energy decrease in magni�
tude as the temperature is increased� The softening of
the lattice near the melting transition causes the elastic
energy to decrease faster than the pinning energy� This
makes the pinning component of the free energy more
important than the elastic part near T �

m� thereby mak�
ing the total free energy of the BoG minima �which� as
discussed above� have lower pinning energy� lower than
that of the BoG minima� The BoG to IL transition at
a slightly higher temperature is driven by the usual en�
tropic mechanism�

We can substantiate this qualitative explanation by
evaluating the pinning component of the free energy�
as de
ned in Eq� ������ for the BrG and BoG minima�
The results of our calculation� averaged over 
ve sam�
ples �each with ���� vortices and �� pins�� are shown in
Fig� 	�� The pinning energy is negative for both kinds of
minima� as expected� The absolute value of the pinning
energy of the BoG minima shows a smooth �nearly linear�
decrease as the temperature is increased� This is because
both the value of the parameter � �see Eq� ������ that de�
termines the depth of the pining potential� and the height
of the local density peak at a pinning center decrease with
increasing T � The plot for the BrG minima shows a sim�
ilar but much slower behavior� still monotonic or nearly
so� it is not clear whether the very shallow minimum
near T � 	 ��K is signi
cant� In some of the samples�
the total number of occupied pining centers increases by
a small amount near this temperature� thereby reducing
the value of the total pinning energy� This may re�ect a
better accommodation of the pinning centers by the lat�
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tice� which softens as the temperature is increased� This
plot clearly demonstrates that the pinning centers are
better accommodated at the BoG minima� The di�er�
ence in the pinning energies of the two kinds of minima
decreases with increasing T � but the di�erence in the elas�
tic component of the free energy decreases faster �this is
clear from our results for the total free energy� due to a
softening of the elastic constants with increasing temper�
ature� The overall e�ect is a crossing of the free energies
of the two kinds of minima near the melting transition�
Quantitatively� however� the values of the two parts of

the free energy and their dependence on T are determined
by the material parameters of the superconductor and the
properties of the pinning centers� Since several experi�
mental studies����� of the e�ects of irradiation�induced
columnar pinning on the mixed state of BSCCO exist in
the literature� we have used parameter values appropriate
for this system� For other layered superconductors� the
BoG phase might occur over a wider or narrower �even
vanishing� range�

D� Inhomogeneous melting of the vortex solid

As mentioned in section III B� the density distribution
in both BrG and BoG minima is very inhomogeneous�
at temperatures close to T �

m there are liquid�like regions�
characterized by low values of the local peak densities
in parts of the sample� In this subsection� we show that
this inhomogeneity leads to a spatial variation of a �local
melting temperature�� de
ned below� As mentioned in
the Introduction� such spatial variations of a local melt�
ing temperature have been deduced from measurements
of the local magnetization in BSCCO samples with ran�
dom point�� and columnar pinning���
Since we are dealing with time averaged densities� it is

clear that the value of �i at a local peak of the density

eld provides a measure of the degree of localization of
the vortex whose average position corresponds to the lo�
cation of the density peak� A high �low� value of the local
peak density implies strong �weak� localization� Smaller
values of the local peak density imply mobile� liquid�like
behavior� The value of the local density is� of course�
equal to �� everywhere in the liquid state in the absence
of pinning� The presence of pinning centers causes the
local density to vary in space� but in the liquid state this
variation does not lead to local peaks higher than about
��� �excluding the vortices localized at the pinning cen�
ters�� A similar result was also obtained in previous stud�
ies�� of vortices in the presence of pinning� where it was
found that values of the peak density lower than about
��� correspond to the liquid state� We� therefore� take
the value ��� of the local peak density as separating solid�
and liquid�like behaviors�
Using this criterion� we can determine whether a small

region of the sample at a given minimum is in a locally
�solid� or �liquid� state� To do this� we de
ne a quantity
�pav as the average of the local peak densities in a small
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FIG	 ��� �Color online�	 Determination of the local melting
temperatures in di�erent regions of a sample	 The top panel�
at T � ����K and for the BoG minimum� shows the three
di�erent regions �A� B and C� considered in the calculation	
The positions of local density peaks in these regions are in�
dicated by �red� plus signs �region A�� �blue� crosses �region
B� and �green� circles �region C�	 The black dots represent
the positions of the local density peaks in the other regions�
and the �black� circles show the locations of the pinning cen�
ters	 The bottom panel shows the dependence of the average
local peak density �pav �normalized by the liquid density ���
calculated for these regions on the temperature T 	 Data for
regions A� B and C are respectively shown by �red� triangles�
�blue� squares� and �green� circles	 The solid lines are guides
to the eye	

region containing � 	�� vortices �see Fig� 		�� The very
high local density peaks representing vortices trapped at
pinning centers are not included in this average� Values
of �pav substantially larger than ��� indicate solid�like be�
havior in the region under consideration� while substan�
tially lower values of �pav suggest a locally melted region�
To determine how the local melting temperature varies
from one part of the sample to another� we have studied
the temperature dependence of �pav for di�erent regions
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of the sample� Typical results are shown in Fig� 		 for
the pin con
guration for which we have earlier shown de�
tailed results in several Figures� In the top panel� where
the positions of the local density peaks in the BoG min�
imum at T � 	
��K and the locations of the pinning
centers are shown� we have indicated three regions for
which the average local peak density �pav was calculated�
The local density peaks in these regions are indicated by
�red� plus signs �region A�� �blue� crosses �region B� and
�green� circles �region C�� while the black dots represent
the positions of the local density peaks in the other re�
gions� The bottom panel of Fig� 		 shows the dependence
of the �pav�s calculated for these three regions on the tem�
perature T � At each value of T � the minimum with the
lowest free energy at that temperature was used in the
calculation of �pav �

It is clear from the plot and from similar ones for other
pin con
gurations �one of which was shown in Ref� ���
that the �local melting temperature�� operationally de�

ned as the temperature at which �pav drops from values
well above ��� to values clearly below� varies from region
to region� The range over which the local melting tem�
perature varies is comparable to that found in the exper�
iments������ The values of the local melting temperature
are strongly correlated with the local pin structure and
the resulting defect structure of the vortex solid� Region
B of the sample does not have any pinning center and is
located across a grain boundary of the BoG minimum�
As noted in section III B� regions near grain boundaries
appear to melt at temperatures that are slightly lower
than the global transition temperature determined by the
crossing of free energies� This is why the local melting
temperature for region B is the lowest� This tempera�
ture corresponds to the transition from the BrG to the
BoG state� In region A the vortices form a nearly perfect
crystalline arrangement with no topological defects� The
local melting temperature measured in this region is� as
a consequence� close to that of the pure system� Region
C contains a cluster of pinning centers� and the relatively
large value of �pav for this region at temperatures higher
than the BoG to IL transition temperature re�ects the
local solid�like structure of vortices situated near pinning
centers� Thus� the spatial variation of the local transi�
tion temperature is closely correlated with the �pinning
landscape� of the sample�

We have found a second way of correlating the melt�
ing transition with the local density structure of the free
energy minima� This second way is based on a previ�
ous study�� of the melting of the vortex lattice in the
presence of periodic pinning� where it was found that the
melting transition corresponds to the onset of percolation
of liquid�like regions de
ned using the peak�density crite�
rion mentioned above� We focus for this purpose on the
upper transition between the BoG and IL phases� We
classify vortices represented by local peaks of the den�
sity as solid�like or liquid�like� depending on whether the
density at the local peak is higher or lower than ����
We then check whether the regions containing liquid�like
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FIG	 ��� �Color online�	 Percolation and melting �see text�	
The �red� plus signs denote the locations of liquid�like local
density peaks �peak height smaller than 
���� and the �blue�
circles indicate the solid�like ones �peak height greater than

���	 The top panel is for the BoG minimum of a �����vortex
sample at ��	�K and the bottom panel is for the IL minimum
of the same sample at ��	�K	 The thermodynamic transition
between the BoG and IL phases takes place between these
two temperatures	

vortices percolate across the sample� We 
nd� as in the
earlier study� that the melting transition coincides with
the occurrence of percolation of the liquid�like regions�
Typical results are shown in Fig� 	� where the top panel
shown the locations of solid� and liquid�like local density
peaks at a BoG minimum obtained at 	
��K �this mini�
mum has the lowest free energy at this temperature�� and
the bottom panel shows a similar plot for the IL mini�
mum of the same sample at 	
��K �the IL minimum is
the one with the lowest free energy at this temperature�
so that the melting transition in this sample occurs be�
tween 	
��K and 	
��K�� The liquid�like regions do not
percolate at 	
��K� whereas they do at the higher tem�
perature of 	
��K� Thus� the melting transition in this
sample also corresponds to the occurrence of percolation
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for the liquid�like regions� Similar behavior was found
in the other samples we have studied� This observation
provides a convenient way of approximately locating the
transition point� This may be useful in other situations
where the method of locating the transition temperature
from a crossing of free energies may not be easily imple�
mentable �e�g� at higher pin concentrations where the
melting transition is expected to become continuous��

IV� CONCLUSIONS

We have presented here the results of a detailed inves�
tigation of the structural and thermodynamic properties
of a system of vortices in a highly anisotropic layered
superconductor with a small concentration of randomly
placed columnar pinning centers� Both the external mag�
netic 
eld and the columnar pins are assumed to be per�
pendicular to the superconducting layers� Our method�
based on numerical minimization of the appropriate free�
energy functional� allows us to obtain very detailed in�
formation about the density distribution in the di�erent
free energy minima �which allows us to reliably identify
the phases corresponding to these minima�� and to map
out the phase diagram of the system�
There are several salient results of our study� The


rst one is the occurrence of a topologically ordered BrG
phase at low temperatures� While the occurrence of
a low�temperature BrG phase in superconductors with
a low concentration of random point pinning centers is
well�established now� relatively little is known about the
existence of such a phase in superconductors with random
columnar pins� Our results are consistent with those of a
recent numerical study�� of a similar system� It is clear
from our work that the BrG minima represent a phase
distinct from the polycrystalline BoG phase also found in
our study� We can not conclusively rule out the possibil�
ity that free dislocations would appear at the nearly crys�
talline minima at length scales much longer than those
considered in our numerical study� If this should happen�
then the �hexatic glass� phase suggested in some earlier
theoretical studies�� would become a possible candidate
for describing the BrG minima found in our study� This
phase� however� would be distinct from the BoG�
Our second important result is the occurrence of a two�

step melting transition� we 
nd that the low�temperature
BrG phase transforms into a polycrystalline BoG phase
as the temperature is increased� and this BoG phase then
melts into the high�temperature IL at a slightly higher
temperature� This conclusion about the occurrence of
two distinct transitions would remain valid even if the
true nature of the low�temperature phase turns out to
be slightly di�erent from a Bragg glass� our work shows
that the BrG and BoG minima are quite distinct from
each other� The possibility of occurrence of a two�step
melting transition of the vortex lattice in systems with
random point pinning has been suggested earlier�	� Our
work provides support to this suggestion�

To our knowledge� the second �lower T � transition be�
tween the BoG and BrG phases has not been observed
in experiments on layered superconductors with a small
concentration of random columnar pins� This may be due
to strong metastability� the BoG minimum into which
the IL is expected to freeze as the temperature is de�
creased remains locally stable at temperatures lower than
that at which its free energy crosses that of the BrG mini�
mum� suggesting that it would be di�cult to see in exper�
iments the transition to the globally stable BrG phase�
The situation here may be similar to that found in a
recent experimental study�� of a low�Tc superconductor
with weak point pinning which is expected to exhibit a
BrG phase at low T � It is� however� found in the ex�
periment that the vortex solid obtained by cooling the
sample in the presence of the external magnetic 
eld has
a polycrystalline structure� indicating that the metasta�
bility of this disordered state prevents the system from
reaching the more ordered �BrG� equilibrium state at low
temperatures� In our numerical work� the BrG minima
were obtained by performing the free�energy minimiza�
tion from an initial con
guration with crystalline order�
It is not clear how a similar procedure can be adopted in
experimental studies�

A low�temperature BrG phase has been observed in
a recent simulation�� of a model of HTSC with a small
concentration of columnar pinning centers� However� this
simulation 
nds a single 
rst�order transition between the
BrG and IL phases at low pin concentrations� the small
intermediate region of BoG phase found in our study is
not observed� This is probably due to the smallness of the
system sizes �� 	�� vortex lines� used in the simulation�
As discussed in Sec� III C above� the polycrystalline BoG
minima are found only if the sample size is larger than
the typical size of the crystalline domains� only the BrG
minimum is found at low temperatures if this condition is
not satis
ed� Since the crystalline domains become large
at small pin concentrations� it is quite likely that a simu�
lation with small system sizes and low pin concentration
would not see the BoG phase� Another possibility is that
a narrow �two�phase� region found in Ref� � near the
BrG melting transition actually corresponds to the inter�
mediate BoG phase found in our study� A third possibil�
ity is that the intermediate BoG phase� which arises due
to a competition between the elastic and pinning compo�
nents of the free energy �see Sec� III C where it is shown
that the pinning energy favors the BoG phase�� does not
appear in the simulation of Ref� � because the pins are
assumed to be �weak� in that work�

Our study also illustrates the spatial inhomogeneity of
the melting process in the presence of disorder� we have
found that a �local� melting temperature de
ned using
a criterion based on the degree of localization of the vor�
tices shows considerable spatial variation� This spatial
variation is strongly correlated with the �pinning land�
scape� associated with the random spatial location of the
pinning centers� Our results about the spatial inhomo�
geneity of the local melting temperature are consistent



	 

with those of recent experiments����� on superconductors
with pinning disorder�
These results establish the usefulness of our numerical

method in dealing with the problem of vortex matter in
the presence of random pinning� It would be interesting
to examine the extent to which our results depend on
the values of the parameters appearing in the free en�
ergy functional� It would also be clearly useful to carry
out similar studies of other related problems� such as the
complete phase diagram of systems with random colum�

nar pins in the T � c plane� and the phase behavior of
systems with random point pinning� Some of these in�
vestigations are currently in progress�
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