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Abstract. We report the application of a support vector machine
(SVM) for the development of diagnostic algorithms for optical diag-
nosis of cancer. Both linear and nonlinear SVMs have been investi-
gated for this purpose. We develop a methodology that makes use of
SVM for both feature extraction and classification jointly by integrat-
ing the newly developed recursive feature elimination (RFE) in the
framework of SVM. This leads to significantly improved classification
results compared to those obtained when an independent feature ex-
tractor such as principal component analysis (PCA) is used. The inte-
grated SVM-RFE approach is also found to outperform the classifica-
tion results yielded by traditional Fisher’s linear discriminant (FLD)-
based algorithms. All the algorithms are developed using spectral data
acquired in a clinical in vivo laser-induced fluorescence (LIF) spectro-
scopic study conducted on patients being screened for cancer of the
oral cavity and normal volunteers. The best sensitivity and specificity
values provided by the nonlinear SVM-RFE algorithm over the data
sets investigated are 95 and 96% toward cancer for the training set
data based on leave-one-out cross validation and 93 and 97% toward
cancer for the independent validation set data. When tested on the
spectral data of the uninvolved oral cavity sites from the patients it
yielded a specificity of 85%. © 2005 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1897396]
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1 Introduction
Diagnosis of cancer at an early stage is important for effective
management of the disease. Recently optical spectroscopy h
received considerable attention for noninvasive,in situ, near-
real-time diagnosis of cancer.1–5 For diagnosis, it exploits
subtle changes in the spectra of tissue as tissue transform
from normal to malignant. Central to optical diagnosis is a
diagnostic algorithm that can best extract the diagnostic fea
tures from the tissue spectra and accurately correlate the
with the tissue histopathology. Most of the algorithms re-
ported for optical diagnosis of cancer6–18 use traditional mul-
tivariate statistical techniques such as Fisher’s linear discrimi
nant analysis,1,2,6–9 partial least-squares~PLS! analysis,10

singular value decomposition11 ~SVD!, principal component
analysis12–15 ~PCA!, etc. These classical linear techniques
have the advantage of providing closed-form expressions tha
lead to simplicity in their design. However, they extract infor-
mation from only the second-order correlation in the data and
ignore higher order correlations, which could also be usefu
for improved discrimination.16 Use of nonlinear techniques16

is receiving attention for the purpose of development of algo
rithms since these could exploit higher order correlation. Ar-
tificial neural networks~ANNs! provide an array of nonlinear
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algorithms for feature extraction and classification16,17 and
have also been used recently for laser-induced fluoresc
~LIF! diagnosis of oral leukoplakia,18 cervical precancer,19

and atherosclerotic plaques20 with excellent discrimination re-
sults. Van Staveren et al.18 demonstrated the use of multilaye
ANN-based algorithms for autofluorescence detection of o
leukoplakia. The diagnostic algorithms based on ensemble
radial basis function~RBF! neural networks developed b
Tumer et al.19 could identify cervical precancer more acc
rately when compared to their previous multivariate statisti
algorithms. Rovithakis et al.20 developed a higher order neu
ral ~HON!-network-based diagnostic algorithm and demo
strated its use for LIF detection of atherosclerotic plaqu
with excellent discrimination results. Apart from ANN-base
algorithms, use of other state-of-the-art statistical pattern
ognition techniques has also been reported recently.21,22 For
example, Agrawal et al.21 used wavelet transforms an
showed that features extracted from the polarized autofluo
cence spectra of breast tissues through this transforms c
serve as good discrimination indices. We recently showed
a nonlinear diagnostic algorithm based on the theory of ma
mum representation and discrimination feature~MRDF! can
provide much improved diagnostic performance as compa
to that based22 on linear PCA.

1083-3668/2005/$22.00 © 2005 SPIE
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Majumdar, Ghosh, and Gupta
Another powerful recent approach for statistical pattern
recognition based on machine learning is the theory of sup
port vector machine~SVM!, originally developed by Vapnik23

and Burges.24 SVMs have already received tremendous atten
tion in a wide variety of classification problems24–29 and are
being actively pursued for various theoretical extensions.30–32

The possibility of using SVMs for developing diagnostic al-
gorithms is also attracting attention.33,34 While Palmer et al.33

used a linear SVM classifier for classifying autofluorescence
and diffuse reflectance spectra of breast tissuesin vitro, Lin
et al.34 classified in vivo autofluorescence spectra from na-
sopharingeal tissues by using both the linear and the nonline
SVM classifier with RBF kernel. In the reports of both the
groups, the tissue spectra were dimensionally reduced by a
plying linear PCA algorithms prior to using the SVM ap-
proach for classification. Lin et al.34 showed that the classifi-
cation performance of an SVM classifier trained on the full
spectral data was comparable to that obtained with the class
fier trained on the diagnostically relevant principal compo-
nents only. Their combined PCA-SVM approach was reported
to have reduced computational complexity.

In this paper, we report, the use of an SVM for both feature
extraction and classification jointly by integrating the ap-
proach of recursive feature elimination35 ~RFE! in the frame-
work of an SVM ~Refs. 23 and 24!. RFE is a new technique
developed recently by Guyon et al.35 for extracting an optimal
subset of nested features relevant for classification from a s
of data with a vast number of features. Since RFE perform
feature extraction using a performance criterion set by the
classifier, the use of the integrated framework of SVM and
RFE is expected to lead to a better classification performanc
compared to that with the use of an independent feature ex
tractor such as PCA. We developed both linear and nonlinea
SVM-based diagnostic algorithms using spectral data ac
quired in a clinicalin vivo LIF study conducted on patients
being screened for cancer of the oral cavity and normal vol
unteers. Although, in this paper, we focus on binary classifi-
cation, i.e., cancerous versus normal, it can be easily extende
to a multiclass classification using various approaches,36

thereby enabling one to classify spectral data into more tha
two classes comprised of patients with various kinds of le-
sions of the oral cavity, for example, leukoplakia, eryth-
roplakia, etc. in addition to cancerous and noncancerous le
sions. In this paper, however, we focus on classifying spectra
data of cancerous and normal tissue. We also compare th
diagnostic efficacy of the SVM-based algorithms with that
based on PCA and Fisher’s linear discriminant~FLD! using
the same spectral data set. The algorithms based on SVM
RFE as well as SVM alone provide significantly improved
diagnostic performance as compared to that based on bo
PCA and FLD in discriminating the cancerous tissue sites o
the oral cancer patients from the healthy squamous tissue sit
of normal volunteers as well as the uninvolved tissue sites o
the patients with cancer of the oral cavity.

2 Materials and Methods
In vivo autofluorescence spectra were recorded using
N2-laser-~337-nm!-based portable fluorimeter reported
earlier.15,22 It comprises a sealed-off pulsedN2 laser, a spec-
trograph~Acton Research Corporation, Acton, MA, USA!, an
024034Journal of Biomedical Optics
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optical fiber probe, and a gateable intensified CCD~ICCD!
detector~4 Quik 05A, Stanford Computer Optics, Inc., Be
kely, CA, USA!. The spectral data acquisition was compu
controlled. The autofluorescence spectra were recorded
the tip of the fiber optic probe placed in contact with the tiss
surface. From each site, spectra were recorded in the 375
700-nm spectral range. During each measurement of tis
fluorescence, a reference spectrum was also acquired sim
neously from the phosphor-coated tip of an additional fib
illuminated withN2 laser radiation leaking from the other en
of the N2 laser cavity. The peak of this reference spectru
was used to normalize the acquired tissue spectra and
account for the observed pulse-to-pulse variation of theN2
laser power. The intensity of fluorescence from each tis
site is reported in this calibrated unit.

The study involved 13 normal volunteers with no histo
of the disease of the oral cavity and 16 patients selected f
those enrolled for medical examination of the oral cavity
the outpatient department~OPD! of the Government Cance
Hospital, Indore. Informed consent was obtained from ea
patient as well as the normal volunteers who participated
this study. The patients included in this study had no hist
of malignancy and were suspected on visual examination
the concerned physician of having early cancer of the o
cavity. For these patients, biopsies were taken from the s
pected areas subsequent to acquisition of spectra. Only t
patients for whom histopathological diagnosis was squam
cell carcinoma~SCC!, grade I, were included in this study.In
vivo autofluorescence spectra were acquired from a tota
171 tissue sites from patients, of which 83 were SCC and
rest were uninvolved squamous tissue. Spectra were also
corded from 154 sites from healthy squamous tissue of n
mal volunteers. In each patient, the normal tissue sites in
rogated were from the contralateral apparently uninvolv
region of the oral cavity. On an average, five spectra from
cancerous tissue sites and four spectra from the uninvo
tissue sites were recorded. In normal volunteers, on an a
age, 10 spectra were recorded from the healthy squam
tissues. Each site was treated separately and classified vi
diagnostic algorithm developed.

2.1 Spectral Data
Each tissue fluorescence spectrum consisted of 717 inten
values~corresponding to 717 pixels of the ICCD! spanning
the wavelength range of 375 to 700 nm. The autofluoresce
spectra recorded from different cancerous and contralat
normal sites of the oral cavity of a patient are shown in Fi
1~a! and 1~b!, respectively. The considerable site-to-site var
tion in the spectra is apparent. The differences in the spe
from some of the normal and cancerous tissue sites are
that apparent, because they are masked by the large intr
tient and interpatient variability in the intensity and lin
shapes. While some of this variation may represent intrin
variation in tissue fluorescence, the variable nature of the c
tact of the probe with the tissue surface in a clinical situat
will also add to the variation. It is pertinent to note that in t
in vitro studies on oral cavity tissues,37 where the variability
due to the nature of contact of probe with tissue surface
expected to be minimal, a percentage variation(s/ x̄ ) of
;30% was observed in the spectrally integrated intensi
-2 March/April 2005 d Vol. 10(2)
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Support vector machine . . .
Fig. 1 N2-laser-excited autofluorescence spectra recorded from (a)
squamous cell carcinoma tissue sites (solid line) and (b) uninvolved
tissue sites (dashed line) of the same patient.
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(( I ) from different sites of normal or cancerous tissues ove
the total sample size investigated. Here,x̄ is the mean of( I
values from different sites of one category ands is the stan-
dard deviation. In comparison, in thisin vivo study, the per-
centage variation(s/ x̄) in (( I ) was;60%. To ensure good
discrimination, it is necessary to minimize these variations
that may obscure the intercategory differences. To minimize
the inter- and intrapatient variability, a two-step procedure for
preprocessing of the raw spectral data was adopted. In the fir
step, the mean spectrum over all the healthy squamous tiss
sites of the normal volunteers was calculated and subtracte
from the spectrum of each tissue site of the oral cavity of
patients as well as of normal volunteers. Since mean subtra
tion displays the differences in the spectra of the disease
with respect to the mean spectra of the healthy squamou
tissue, it is expected to lead to enhancement of spectral di
ferences between the two diagnostic categories. Next, the r
sultant spectrum of each category was normalized with re
spect to the standard deviation of the spectra of that categor
This normalization is expected to remove from the spectra th
influence of scatter in the spectral intensity by making the
standard deviation of the spectra of each diagnostic catego
equal to unity. Indeed, mean subtraction followed by normal-
ization of the spectra with respect to their respective standar
deviations made the spectral differences between the two d
agnostic categories much more apparent. Figure 2 shows th
spectra for cancerous and uninvolved sites of the oral cavit
of the same patient after preprocessing. Note here that th
differences in the preprocessed spectra from cancerous a
contralateral uninvolved tissue sites of the same patient ar
generally more distinct12,37 as compared to the differences
when preprocessed spectra from similar tissue sites of all th
024034Journal of Biomedical Optics
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patients are considered as a whole. Various earlier report
measurements of tissue fluorophores38 as well as tissue
parameters39 also demonstrate this effect. Figure 3 shows
preprocessed spectra from cancerous and contralateral no
tissue sites of four patients chosen at random. It is evid
from the figure that the interpatient differences in the prep
cessed spectra do not appear to be that prominent in com
son with the intrapatient differences shown in Fig. 2.

2.2 Algorithm Development
For the development of the diagnostic algorithm, the entire
of preprocessed spectral data from the SCC tissue sites o
patients and the healthy squamous tissue sites of the no
volunteers was randomly split into two groups: the traini
data set and the validation data set, ensuring that both
contain roughly equal number of spectral data from each
topathologic category. The purpose of the training data
was to develop and optimize the diagnostic method, and
purpose of validation set was to prospectively test its accur
in an unbiased manner. The random assignment was ca
out to ensure that not all the spectral data from a single in
vidual were contained in the same data set. Next, the pre
cessed spectral data of the training set were used as input
the development of the diagnostic algorithms.

The performance of a diagnostic algorithm depends on
prototype spectral data included in the training set. The m
exactly the prototype data represent the different disease
egories to be discriminated, the better will be the accur
expected in the performance of the algorithm. The gene

Fig. 2 Preprocessed autofluorescence spectra from squamous cell car-
cinoma tissue sites (solid line) and from uninvolved squamous tissue
sites (dashed line) of the oral cavity of the same patient.

Fig. 3 Preprocessed autofluorescence spectra from squamous cell car-
cinoma tissue sites (solid line) and from uninvolved squamous tissue
sites (dashed line) of the oral cavity of four patients chosen at random.
-3 March/April 2005 d Vol. 10(2)
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Majumdar, Ghosh, and Gupta
practice is to use spectral data of uninvolved tissue sites su
rounding the cancerous tumor of patients as the normal data
base for development of diagnostic algorithms.12,15 However,
the normal appearing region surrounding a cancerous tumo
of a patient might have some biochemical changes due to th
field effect of malignancy,40 particularly at the advanced stage
of the disease. This was believed to be the reason for obtain
ing reduced classification performance in our earlierin vivo
studies.15 In this study, although the patients included were
reported to have earlier stages~grade I! of squamous cell car-
cinoma, we investigated the use of two separate normal data
bases for the development of diagnostic algorithms. In one
we took as normal database, the spectral data of contralater
uninvolved tissue sites of patients, while in the second, we
took the spectral data of healthy squamous tissue sites of no
mal volunteers who had no history of any disease of ora
cavity. Our initial results showed that use of spectral data o
normal volunteers gave slightly improved~by ;5 to 7%! clas-
sification performance. Therefore, for subsequent develop
ment of diagnostic algorithms we considered, as the norma
database, the spectral data from the healthy squamous tiss
sites of the normal volunteers and avoided use of spectral da
from tissue sites of normal-appearing mucosa in the contrala
eral uninvolved region of the oral cavity of patients.

2.3 SVM
SVMs are powerful tools for data classification. The central
idea of an SVM is to separate classes with a surface tha
maximizes the margin between them.24 The formulation of the
technique relies on the theory of uniform convergence in
probability and associated structural risk minimization~SRM!
principle23 to minimize the structural risk, i.e., the probability
of misclassifying yet-to-be-seen patterns for a fixed but un
known probability distribution of the data. The mathematical
formulation and associated theoretical background of SVM
have been detailed in Vapnik’s book23 as well as in several
literature sources.24,25,31,32In the following, we briefly discuss
the basic ideas of SVM for the purpose of our description.

Given a set ofN-dimensional~N being the number of
wavelengths over which spectra were recorded! LIF spectral
data of cancerous and normal squamous tissue sites labeled
lP$21,11% with l511 referring to cancer andl521 refer-
ring to normal, the task of an SVM is to separate this set o
binary labeled input data into its constituent classes. A simple
way to build a binary classifier is to construct a hyperplane
~decision boundary! in the N-dimensional input space that
separates class members~positive examples! from nonmem-
bers~negative examples! considered as points in that space. A
look at the LIF spectral data~see Figs. 1 and 3! would show
that because of considerable intercategory overlap, there e
ists no separating hyperplane in the input space that succes
fully separates the positive from negative examples. One ap
proach to solve this inseparability problem is to map the data
from the input space into a higher dimensional feature spac
through ana priori chosen nonlinear mapping and construct a
separating hyperplane that is linear in that space, but is non
linear with respect to the input space.24 However, the techni-
cal difficulty involved in mapping the training set data to a
higher dimensional space for classification is the computa
tional burden.24 Furthermore, artificially separating the data in
this way exposes the learning system to the risk of finding
024034Journal of Biomedical Optics
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trivial solutions that may overfit the data.24 This means that
there may exist infinitely many hyperplanes that can succe
fully separate the training set data, but perform miserably
unseen~test! data points.

The SVM is developed to simultaneously sidestep b
these difficulties. It avoids overfitting by choosing an optim
separating hyperplane~OSH! in the feature space~from
among the many! that maximizes the width of the margi
between the classes, i.e., the empty area around the dec
boundary defined by the distance to the nearest training
points of either class.24 The OSH also minimizes the risk o
misclassifying not only the data points in the training set~i.e.,
empirical risk minimization! but also the yet-to-be-seen da
points of the test set for a fixed but unknown probability d
tribution of the data thereby following the SRM principle.23

The approach of SRM equips the SVM with a greater abil
to generalize, which in turn leads to significantly improv
classification performance as compared to the traditional te
niques that follow only the empirical risk minimization prin
ciple to minimize the mean-squared error over the train
data set.

The location of the OSH in the feature space is specifi
by real-valued weights on the training set data points.24 Those
training set data points that lie far away from the OSH do n
participate in its specification and therefore receive weights
zero. Only the training set data points that lie close to
decision boundary between the classes receive non
weights.23,24 These training set data points are called supp
vectors,24 since only these points define the classificati
boundary and removing them would change the location
the OSH. It has also been shown by Vapnik23,41 and Burges24

that if the training data points must be separated without
rors by an OSH, the expected error rate on an unseen
point is bounded by the ratio of the number of support vect
to the number of training data points. Since the ratio is in
pendent of the dimension of the problem, obtaining a sm
set of support vectors can guarantee a good generaliza
performance of an SVM classifier.

Another important advantage of the SVM approach is t
it avoids the computational burden of explicitly mapping t
input data to the higher dimensional feature space~via non-
linear mappingf:R0→F from input spaceR0 to the feature
spaceF! without ever explicitly performing the mapping
since neither the SVM learning algorithm nor the SVM de
sion function must represent explicitly the input data points
the feature spacef(x) and only use dot products betwee
such pointŝ f(x),f(y)& in the feature space.24 This is done
simply by defining a functionK(x,y)5^f(x),f(y)& that
plays the role of dot product in the feature space. The func
K(x,y) is called the kernel function24 and is termed legitimate
only if it obeys Mercer’s theorem.23,24 The use of this kernel
function enables the SVM to operate efficiently in a nonline
high-dimensional feature space without being adversely
fected by the dimensionality of that space.

Computationally, the algorithm proceeds by calculating
the final step the two-class decision function defined by
SVM classifier:

D~x!5signF ( a il iK~xi ,x!1a0G , ~1!

;xiPS

-4 March/April 2005 d Vol. 10(2)
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Support vector machine . . .
whereK(xi ,x) is the kernel function of a new data pointx ~to
be classified! and a set of training data pointsxi , S is the set
of support vectors~a subset of training set!, andl i561 is
the label of training data pointsxi anda i>0 are the Lagrange
multipliers for OSH.

For the LIF spectra data that contain considerable clas
overlap, the maximum-margin~or the hard-margin! SVM ap-
proach may not be able to find any separating hyperplane a
all.24 This problem is addressed by using a soft margin tha
allows some training data points to fall on the wrong side of
the separating hyperplane.24 Therefore, completely specifying
an SVM, in this case, also requires specifying additional pa
rameters that provide the magnitude of the penalty for violat
ing the soft margin. These parameters, along with others, ar
determined during the training phase of the SVM algorithm
by solving a quadratic optimization problem given by23

minaS aTLKLa1C(
j

e j D , ~2!

under the constraint:l jD(xj )>12e j , ;xj in the training set,
whereL is a diagonal matrix containing the labelsl j , and
the matrixK stores the values of the kernel functionk(xi ,x)
for all the training data points belonging to both the classes
The set of slack variablese j in Eq. ~2! allow for the class
overlap, controlled by the penalty weightC.0. This param-
eterC, called the regularization parameter, basically controls
the trade-off between the largest margin and lowest number o
errors. ForC5`, no class overlap is allowed. During opti-
mization, the values ofa i become 0 for the majority of train-
ing data points, except for the support vectors that compris
only a small subset of the total number of training data points
and are only finally needed for separating class members from
nonclass members. This property allows the SVM to classify
new data points efficiently, since the majority of the training
data points can be safely ignored.

2.4 Selection of Kernels
The selection of an appropriate kernel function is very impor-
tant, since it defines the feature space in which the training se
data points are classified. As long as the kernel function is
legitimate, i.e., it obeys the Mercer’s theorem,23,24 an SVM
will operate correctly even if the designer does not know ex-
actly what features of the training data are being used in th
kernel-induced feature space. This kernel function must b
chosena priori and it determines the type of the SVM clas-
sifier. Given a set of support vectors,xi and a data pointx ~to
be classified!, the simplest kernel that can be used is just the
dot product in the input space:K(xi ,x)5xi , x11, resulting
in a linear classifier. When this dot product kernel is used, the
feature space is essentially the same as theN-dimensional
input space, and the SVM will define a linear OSH in this
space. Raising the kernel to higher powers yields nonlinea
kernels that are polynomial separating surfaces of higher de
grees in the input space. In general, nonlinear kernels, such
K(xi ,x)5(xi ,x11)d result in ad’th-order polynomial SVM
classifier. Similarly, use of Gaussian RBF results in an RBF
kernel:K(xi ,x)5exp(2ixi2xi2)/2s2), wheres is the width
of the Gaussian.

We used linear as well as both the nonlinear~polynomial
and RBF! kernels for the development of SVM diagnostic
024034Journal of Biomedical Optics
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algorithms with thein vivo LIF spectral data. The selection o
optimal values of the orderd in the polynomial kernel and the
width s in the Gaussian RBF kernel is an optimization pro
lem, where the possible values that the parameters can ha
a finite set, and the cost function is defined by the applicati
We chose the cost function as the misclassification error in
training set data obtained with the leave-one-out cro
validation estimate. If the total number of misclassifi
samples was the same at more than oned or s values, then the
value at which the total number of cancerous samples m
classified was minimum was selected. For selecting optimd
value for the polynomial kernel, the polynomial SVM wa
trained on the full spectral data of the training set with t
polynomial kernel raised to different degreesd selected from
a set ofd values ranging from 1 to 4 with increments of 1. Th
optimal value ofd was chosen to be the one that gave t
highest leave-one-out cross-validation classification per
mance. We restricted the set ofd values up to 4, since ford
values larger than 4, the learning algorithm was found to h
convergence problems with the given data set. Since the
nel is learned from the data at hand during training of t
algorithm, it appears that the polynomial kernel at higher v
ues ofd became a ‘‘bad kernel’’ for the given data. In oth
words, it means that the kernel matrix perhaps no longer
mained positive-definite and became diagonal during learn
from the given spectral data probably due to the generatio
a large number of irrelevant features in the kernel-induc
feature space. Similarly, the optimal value ofs was selected
using an exhaustive search method. The RBF-SVM class
was trained on the full set of spectral data of the training
for the different s values selected from a set ofs values
ranging from 0.1 to 1000 with increments of 0.1 fors values
between 0 to 1, with increments of 1 fors values between 1
to 20, with increments of 5 fors values between 20 to 100
and with increments of 50 fors values between 100 to 1000
Optimal value ofs was the one that gave the least leave-on
out cross-validation error.

2.5 FLD
Given a set of input data comprising of LIF spectral data fro
cancerous and normal tissues with a given dimensionality,
FLD ~Ref. 42! aims to project this data onto a line and pe
forms classification in this 1-D space. The projection ma
mizes the distance between the means of the two classes w
minimizing the variance within each class. This defines
Fisher’s criterion, which is maximized over all linear proje
tions,w:

J~w!5
um12m2u2

S1
21S2

2
,

wherem represents the mean,S2 represents the variance, an
the subscripts denote the two classes. Maximizing this cr
rion yields a closed-form solution that involves the inverse
a covariance-like matrix.

2.6 Feature Selection: RFE
For each preprocessed LIF spectral data consisting of
intensity values we have in the input data space 717 feat
representing intensities at different wavelengths. It is of
-5 March/April 2005 d Vol. 10(2)
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Majumdar, Ghosh, and Gupta
necessary, while designing a classifier, to select a subset
diagnostically relevant features from the vast number avail
able. It is important because throwing away irrelevant feature
~i.e., the features that do not assist in classification! reduces
the risk of overfitting and decreases computationa
complexity.16 At the same time, limiting the number of fea-
tures has the associated risk of reducing the expected clas
fication performance by introducing a bias.43 The objective of
any feature selection exercise is to select optimal number o
features, using which the performance of the classifier is a
good as if not better than that using all the features. The
selection of an optimal subset of features from a set of fea
tures can be carried out by using an appropriately designe
performance measure to evaluate their ability to classify the
samples16 ~e.g., cancer versus normal!. A brute-force search of
the best combination of features~combination of 2, 3, or more
number of features of 717 features! that results in best classi-
fication performance is impractical, because the number o
possible feature combinations will be prohibitively large for
such large set of features. One approach43 is to train the clas-
sifier itself with the full set of features, compute some feature
ranking criteria~e.g., the weights of the classifier! to evaluate
how well an individual feature contribute to the classification,
rank the features based on the criteria, and then use a fixe
number of top-ranked features to finally classify the data. This
method has an important drawback in that if some of the
features~say, the least-ranked ones! are removed and the pro-
cess is repeated, the resulting ranking of the remaining fea
tures differs from their previous ranking obtained without re-
moving any of the features. Therefore, use of this approac
may not provide an optimal subset~for classification! from
the full set of features. This problem has been very effectively
addressed by the recursive feature elimination~RFE! method,
proposed recently by Guyon et al.35 In this approach, feature
ranking is carried out through a recursive procedure. Given
the preprocessed spectral data with a full set of features~i.e.,
717 intensity values at the different wavelengths!, the algo-
rithm starts by training the classifier using all the features a
input, assesses the relative importance of the features in th
classifier by computing the feature ranking criteria~e.g., the
weights of the classifier!, eliminates the least important fea-
ture corresponding to the smallest ranking criterion, and lists
the index corresponding to this feature in a feature-ranked lis
initialized for this purpose. The classifier is again trained with
the remaining set of surviving features as input, the least im
portant feature corresponding to the lowest ranking criterion
is again eliminated, and the index corresponding to this fea
ture is added to the previous feature-ranked list. This proce
dure of training the classifier, computing the feature ranking
criteria, and feature elimination is carried out recursively to
update the feature-ranked list at each iteration until all 717
features of the original spectral data have been assessed. Th
at the end of the iterative loop, one gets, as the output,
feature-ranked list. After having prepared the list, the nex
task of RFE algorithm is to decide on the subset of optima
number of features required for best classification. For that
the different numbers of top-ranked features are selected t
form a series of different feature subsets~starting with the full
set! and the performance of the classifier is assessed itera
tively with these selected subsets of features to determine th
optimal subset. The series of different feature subsets forme
024034Journal of Biomedical Optics
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are basically nestedF1,F2,¯,F, which means that the
selected subset ofl features is included in the subset ofl 11
features. Clearly, the previous method of feature ranking
computationally equivalent to the first iteration of RFE. Thu
RFE provides a ranked list of features indicative of featu
subset ranking, as opposed to feature ranking. This means
the features that are top ranked~i.e., eliminated last! are not
necessarily the ones that are individually most relevant. O
taken together, they are relevant for classification.

In our case, we used both SVM and FLD to select
optimal subset of features using RFE. While the featu
ranking criterion used for SVM-RFE was

wr5 (
;xiPS

a il iK~xi ,x!,

for FLD-RFE it is

wr5Sw
21~m12m2!,

whereSw is the within-class scatter matrix anda, l, K, andm
are as defined previously. For computational reasons, we
moved several features at a time. We started with all 7
features. At the end of the first iteration, all the features w
ranked and the bottom half closest to half of the total num
of features was eliminated. Similarly, at each subsequen
eration, we eliminated close to half of the remaining featur
We thus obtained a total of 11 nested subsets of feature
increasing informative density from the whole set of featur
The 11 subsets are composed of 717, 350, 175, 80, 45, 20
10, 5, and 1 feature, respectively. The quality of these sub
of features was assessed by training the four classifiers~one
FLD and the three SVMs! at each iteration stage.

2.7 Analysis of Algorithm Performance
The performance of a diagnostic algorithm depends on h
accurately the algorithm separates the set of data being te
into the different classes. The relative performance of the
ferent diagnostic algorithms was assessed by carrying o
receiver-operating characteristic44 ~ROC! analysis of the cor-
responding classification results. An ROC curve was gen
ated corresponding to each diagnostic algorithm for the v
dation data set by plotting the true positive rate~sensitivity! as
a function of the false positive rate~1-specificity! as the clas-
sification threshold was varied. An ROC curve provides
visual comparison of the trade-off between sensitivity a
specificity of a diagnostic test. The closer the curve follo
the left-hand border and the top border of the ROC space,
better is the performance of the diagnostic algorithm. Sim
larly, the closer the curve comes to the 45-deg diagonal of
ROC space, the less is its accuracy. To quantify the per
mance measure of the different algorithms, the areas unde
different ROC curves were estimated. An area of 1 repres
an ideal diagnostic algorithm, while an area of 0.5 represe
a worthless one. The closer the area is to 1, the more accu
is the corresponding diagnostic algorithm.

3 Results
Table 1 lists the diagnostic results obtained with a linear SV
classifier trained on the spectral data set corresponding to
spectra and preprocessed spectra with the full set of spe
-6 March/April 2005 d Vol. 10(2)
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Table 1 Classification results obtained with the linear SVM classifier and the conventional nearest mean classifier (NMC) using the data set
corresponding to the unprocessed raw spectra and the preprocessed spectra with full set of spectral features.

Spectral Data Classifiers

Training Data Set Validation Data Set

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Data Set I Specificity
(%)

Data Set II Specificity
(%)

Raw spectra SVM 81 94 78 96 74

NMC 74 58 83 58 66

Preprocessed
spectra

SVM 86 91 88 92 77

NMC 81 65 80 58 55
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Sensitivity and specificity values in the training set data represent leave-one-out cross-validation values.
features ~i.e., N5717 intensity values!. For comparison’s
sake, the classification results yielded by a conventional NMC
on the same data sets are also listed in the same table. A
NMC is based on least Euclidean distance of the test feature
from the means of the prototype features of the correspondin
tissue types in the training set. The sensitivity and specificity
values for the training set data were obtained on the basis o
leave-one-out cross-validation. It is evident from the table tha
the sensitivity and specificity values in the training and the
validation data sets are much improved with the preprocesse
spectral data as compared to the unprocessed raw spect
data. Therefore, we extended the subsequent exercise on
gorithm development only with the preprocessed spectral dat
sets.

Figures 4 and 5 demonstrate the leave-one-out cross
validation error as a function of the degrees~d! of the poly-
nomial kernel and the widths~s! of the Gaussian RBF kernel,
respectively. From Fig. 4 it is clear that the leave-one-ou
error is the minimum ford52, and therefore, we used poly-
nomial kernel of degree 2 for training the polynomial SVM
classifier for algorithm development. Figure 5 shows that
leave-one-out error is the minimum at more than ones value
~e.g., ats550, 75, and 100!. However, for thes value of 100
the total number of cancerous samples misclassified was th
minimum and therefore,s5100 was used as the width of
the RBF kernel for subsequent training of the RBF SVM
classifier.
ar
ed
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To train an SVM algorithm one must supplya priori the
value of the regularization parameterC to the learning algo-
rithm. Since no established guideline exists in the SV
methodology23,24as to what should be the optimal value ofC,
the linear and nonlinear SVM classifiers were trained w
different values ofC (C51, 10, and`!. It was found that the
classifier withC5` gave the best generalized classificati
performance, i.e., the total misclassification error over
training ~leave-one-out cross-validation! and the independen
validation data sets was the least. Therefore, for subseq
feature subset selection with the RFE algorithm we train
each of the SVM classifiers withC5` at each iteration stage
To evaluate the diagnostic contribution of each selected su
of features at each iteration stage of the RFE algorithm, we
the cost function as the total number of samples misclassi
by the classifier in the independent validation set as well a
the training set data with leave-one-out cross-validation. T
optimal subset of features was the one for which the to
number of misclassified samples was the minimum. If
total number of misclassified samples was the same for m
than one feature subsets, then the feature subset for whic
total number of cancerous samples misclassified was m
mum, was selected.

The total misclassification error for the 11 nested subs
of features was determined with the SVM RFE method. T
results for linear, polynomial, and RBF kernels are shown
Figs. 6 to 8, respectively. It is evident from the figures th
while the misclassification error is the minimum for the line
SVM classifier trained with the subset of 45 features rank
Fig. 4 Leave-one-out cross-validation error in the training set data as a
function of the degree of the polynomial kernel for the polynomial
SVM classifier.
Fig. 5 Leave-one-out cross validation error in the training set data as a
function of the width of the Gaussian radial basis function for the RBF
SVM classifier.
-7 March/April 2005 d Vol. 10(2)
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Fig. 6 Total misclassification error in the training and the validation
data set as a function of the 11 nested subsets of features obtained
using SVM RFE algorithm with a linear kernel.
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by the SVM RFE algorithm, for both the polynomial SVM
and the RBF SVM the respective misclassification errors ar
the minimum with the subset of 350 features ranked by the
respective SVM RFE algorithms. The diagnostic perfor-
mances of the SVM RFE algorithms with linear, polynomial,
and RBF kernels are listed in Tables 2 to 4. The sensitivity
and specificity values for the training set data represent th
leave-one-out cross-validation values.

Similarly, for the development of the RFE algorithm with
the FLD classifier, it was trained on the training set data and
tested on the training set~leave-one-out cross-validation! as
well as on both the independent validation data sets at eac
iteration stage. Figure 9 shows the total misclassification erro
as a function of the 11 nested subsets of features obtaine
with the FLD RFE method. The figure clearly shows that the
misclassification error is the minimum with the subset of 45
features ranked by the FLD RFE algorithm. Table 5 summa
rizes the diagnostic results obtained with the FLD RFE algo
rithm. Here also, the sensitivity and specificity values for the
training set data represent the leave-one-out cross-validatio
values.

Table 6 lists the sensitivity and specificity values for the
training and the validation data sets obtained using the FLD a
well as the three SVM algorithms with the full spectral fea-
tures as well as with the optimal subset of features selecte
using the respective RFE algorithms. For comparison’s sake
the sensitivity and specificity values obtained using the linea
PCA-based algorithm as well as the linear SVM algorithm
trained with the diagnostically relevant principal components
wo
For
ed

with

ca-
th
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M-
as-
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rk
e
ed
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~PCs! are listed in Table 7. PCA of preprocessed spectra
sulted in six PCs that collectively accounted for 99.5% of t
total variance of the spectral data. Of the six PCs, only fo
~PC 1, PC 3, PC 4, and PC 5! were found to have significantly
different (p,0.001) values for SCC and normal squamou
tissue. Therefore, these four PCs, which together accou
for 79% of the total variance~PC 1 accounting for 70%, PC 3
for 6%, and PC 4 for 2% of the total variance, and PC
accounting the remaining 1%! were used for subsequent cla
sification.

Figure 10 shows the ROC curves generated for the dif
ent diagnostic tests based on SVMs and FLD. To quantify
accuracy of the tests, the areas under the curves were
estimated. Table 8 lists the area under the curve values fo
ROC curves corresponding to linear, polynomial, and R
SVM diagnostic algorithms.

4 Discussion
In Table 1, we summarized the diagnostic performance of
SVM classifier and the nearest mean classifier. For both
classifiers, the diagnostic results were obtained using the
processed spectral data and the unprocessed raw spectra
The results clearly indicate that SVM outperforms the NM
for both data sets. The superior classification performanc
the SVM classifier originates from the built-in capability o
the SVM approach to separate classes that are not line
separable in the original parametric space.24 The advantage of
the two-step preprocessing of the raw spectral data, as
scribed in the previous sections, is also apparent from
table.

The diagnostic performances of the SVM-based and
linear-PCA-based algorithms over the training and the t
independent validation data sets are listed in Table 7.
SVM-based algorithms, classification results were obtain
for two cases. In one case, SVM was used as a classifier
PCA, providing the diagnostically relevant features~SVM
PCA!, and in the second case, SVM was used for classifi
tion with the full set of spectral features as well as for bo
feature extraction and classification jointly using the SVM
RFE approach. A perusal of the table shows that the SV
based algorithms have resulted in significantly improved cl
sification performance as compared to that obtained with
PCA-based algorithms. Further, in view of the previous wo
by Lin et al.34 using the SVM PCA, our results show that th
integrated SVM-RFE approach gives considerably improv
diagnostic performance as compared to the SVM-PCA al

Fig. 8 Total misclassification error in the training and the validation
data set as a function of the 11 nested subsets of features obtained
using the SVM RFE algorithm with an RBF kernel.
Fig. 7 Total misclassification error in the training and the validation
data set as a function of the 11 nested subsets of features obtained
using the SVM RFE algorithm with a polynomial kernel.
-8 March/April 2005 d Vol. 10(2)
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Table 2 Classification results of the linear SVM-based diagnostic algorithm for the training and the validation data sets with the 11 subsets of
features selected through the RFE method.

Diagnostic
Algorithm Number of Features

Training Data Set Validation Data Set

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

Linear SVM

(All)717 86 91 11 88 92 9

350 93 96 5 88 94 8

175 95 97 3 88 92 9

90 98 97 2 88 92 9

45 98 97 2 88 94 8

25 98 97 2 88 91 10

15 86 94 9 74 88 16

10 86 96 8 78 88 15

5 64 83 24 71 86 19

2 69 87 19 63 86 22

1 62 83 24 68 84 21
Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.
a-
al
i-
f a
rithm developed based on the same data set. This is not su
prising because PCA, which is basically an independent fea
ture extractor,16 extracts features by projecting the input data
into a new feature space of lower dimensionality through a
024034Journal of Biomedical Optics
r-
-
linear transformation matrix. PCA optimizes the transform
tion matrix by finding the largest variations in the origin
input space,16,42 thereby reducing the dimension of the orig
nal data by optimally representing the data in the form o
Table 3 Classification results of the polynomial SVM-based diagnostic algorithm for the training and the validation data sets with the 11 subsets
of features selected through the RFE method.

Diagnostic Algorithm Number of Features

Training Data Set Validation Data Set

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

Polynomial SVM

717 93 97 4 90 94 8

350 93 100 2 90 95 7

175 90 97 5 93 94 7

90 88 97 6 90 94 8

45 88 97 6 90 92 8

25 90 96 6 90 92 8

15 90 100 3 88 92 9

10 90 99 4 90 92 8

5 93 94 6 90 90 10

2 62 94 18 63 91 19

1 60 91 21 66 92 17
Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.
-9 March/April 2005 d Vol. 10(2)
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Table 4 Classification results of the RBF-SVM-based diagnostic algorithm for the training and the validation data sets with the 11 subsets of
features selected through the RFE method.

Diagnostic Algorithm Number of Features

Training Data Set Validation Data Set

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

RBF SVM

717 93 96 5 93 95 6

350 95 96 4 93 97 4

175 90 95 7 90 99 4

90 90 96 6 90 96 6

45 95 97 3 88 95 8

25 95 96 4 88 94 8

15 95 99 2 83 91 12

10 90 97 5 83 94 10

5 86 95 8 85 92 10

2 57 96 18 56 94 19

1 64 94 17 59 94 19
Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.
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few PCs~which are linear combinations of the original data!.
However, the PCs do not ensure any class-discriminatory in
formation. The drawback of an independent feature extractio
algorithm such as PCA is that its optimization criterion is
different from the classifier’s minimum classification error
criterion,16 which can cause inconsistency between feature ex
traction and classification stages of a diagnostic algorithm
and, consequently, may degrade the performance of classi
ers. This problem is overcome by pursuing the integrated ap
proach of SVM and RFE, since RFE performs feature extrac
tion by selecting the diagnostically relevant input variables
while using the performance criterion set by the classifier
itself.35 Further, note also that computational complexity is
also not reduced in the SVM-PCA approach, because th
SVM classification operation does not depend on the dimen
sionality of the feature space, which can be even infinite.24

Perhaps the SVM-PCA approach could be little faster, but a
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the cost of classification performance. However, the sp
aspect should not matter when developing an off-line diagn
tic algorithm where the main focus is the accuracy and s
plicity. Speed requirements can also be taken care of by
SVM-RFE approach, which practically performs dimensi
reduction through feature selection.

In Table 6, we list the diagnostic performance of the FL
and the three SVM algorithms with the full spectral featur
as well as with the optimal subset of features selected us
the respective RFE algorithms. A perusal of the table sho
that SVM-based algorithms provide significantly improved d
agnostic performance as compared to FLD. While the diff
ence in diagnostic performance is particularly large for full s
of spectral features, it is reduced for an optimal subset
features~selected by the respective RFE algorithms!. The
ROC analysis of the classification results provides a m
critical evaluation. Figure 10 shows that while all three RO
curves corresponding to the SVM-based algorithms are v
close to the point of ideal performance~i.e., the upper left-
hand corner!, the ROC curve corresponding to the FLD-bas
algorithm is quite far away from the ideal point. This is fu
ther supported by the observations of significantly higher v
ues of the area under the ROC curves~Table 8! corresponding
to the SVM-based algorithms as compared to that based
FLD with the performance of the RBF-SVM algorithm bein
the best.

The large improvement in diagnostic performance
SVM-based algorithms as compared to that based on clas
FLD, appears to be due to the fact that while FLD extra
information from only the second-order correlations in t
input spectral data42 ~covariance matrix! to enhance the class
discriminatory information, the SVMs use higher ord
Fig. 9 Total misclassification error in the training and the validation
data set as a function of the 11 nested subsets of features selected
through RFE for FLD classifier.
-10 March/April 2005 d Vol. 10(2)
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Table 5 Classification results of the FLD-based diagnostic algorithm for the training and the validation data sets with the 11 subsets of features
selected through the RFE method.

Diagnostic Algorithm Number of Features

Training Data Set Validation Data Set

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

Sensitivity
(%)

Specificity
(%)

Misclassification Error
(%)

FLD

717 60 44 96 37 48 115

350 45 44 111 61 60 79

175 45 53 102 46 52 102

90 79 94 27 71 70 59

45 83 99 18 73 92 35

25 76 96 28 76 92 32

15 76 92 32 80 90 30

10 81 96 23 68 91 41

5 69 83 48 66 83 51

2 67 82 51 71 82 47

1 71 74 55 76 73 61
Sensitivity, specificity, and the misclassification error in the training set data are reported based on leave-one-out cross-validation. The row with bold figures indicates
the optimal feature subset.
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correlations.24 Note also that FLD optimizes the transforma-
tion matrix by finding the largest ratio of between-class varia-
tion and within-class variation when projecting the original
input data to a feature space of lower dimension.42 Thus, it
considers the squared separation between the means of ea
class and, therefore, is not expected to perform well on non
symmetric data such as the LIF spectral data that may hav
multiple clusters per class.45 This follows because when input
Sensitivity and specificity values in the training set data represent leave-one-out cross
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data has multiple clusters per class it might so happen tha
mean for a class of two clusters can lie close to the mean
another class.

From the viewpoint of pattern recognition, the task of t
sue classification based on LIF spectral data is a pattern c
sification problem, and the feature vector for classificat
comprises the measured intensities corresponding to the
ferent pixels~of the detector! that specify the dimension of the
Table 6 Classification results of all the diagnostic algorithms for the training data set and the two independent validation data sets with the full and
optimal subsets of features selected through the RFE method.

Diagnostic
Algorithm

Number of
Features

Training Data Set Validation Data Set

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Data Set I Specificity
(%)

Data Set II Specificity
(%)

FLD
Full 60 44 37 48 67

Optimal subset 83 99 73 92 80

Linear
SVM

Full 86 91 88 92 77

Optimal subset 98 97 88 94 85

Polynomial
SVM

Full 93 97 90 94 85

Optimal subset 93 100 90 95 86

RBF
SVM

Full 93 96 93 97 82

Optimal subset 95 96 93 97 85

-validation values.
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Table 7 Classification results for the training data set and the two independent validation data sets obtained with PCA-based algorithms and
linear-SVM-based algorithms.

Diagnostic
Algorithm Number of Features

Training Data Set Validation Data Set

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Data Set I Specificity
(%)

Data Set II Specificity
(%)

PCA+NMC Four PCs 83 66 80 58 56

SVM-PCA Four PCs 69 90 76 91 71

SVM Full 86 91 88 92 73

SVM-RFE Optimal subset 98 97 88 94 85
For the PCA-based algorithm, the diagnostically relevant PCs were classified using the NMC. For the SVM-based algorithm, classification results were obtained for two
cases. In one case, SVM was used as a classifier with PCA providing the diagnostically relevant features (SVM-PCA), and in the second case, SVM was used for
classification with the full set of spectral features as well as for both feature extraction and classification jointly using the SVM-RFE approach. Sensitivity and specificity
values in the training set data represent leave-one-out cross-validation values.
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features. If working directly with all these spectral features
whose dimension is much higher(N5717 in this case! as
compared to the size~;119 in this case! of the training
samples, the classifier might suffer from the so-called ‘‘curse
of dimensionality,’’16 causing it to have poor generalization in
classification performance. The use of RFE not only helps in
choosing an optimal subset of features that are relevant fo
classification, but also reduces the feature dimension by solv
ing the ‘‘curse of dimensionality’’ problem. This is evident
from the observed large improvements in the classification
performance of the diagnostic algorithm based on FLD for the
optimal subset as compared to the full set of spectral feature
leading to an increase of 29.5 and 49.5%, respectively, in th
average sensitivity and specificity values. Note, however, tha
the diagnostic algorithms based on SVM are not too sensitiv
to the selection of optimal subset of features. For example
while for the linear SVM, the average sensitivity and speci-
ficity values improve by 6 and 4%, respectively, by going
from the full set to the optimal subset of spectral features, no
change in sensitivity and only a 2% increase in specificity
values was observed for the polynomial SVM. For the RBF
SVM, the resulting improvements in the average sensitivity
and specificity values were found to be by 1 and 3.5%, re
spectively. This highlights the built-in capability of the SVM
to sidestep overfitting to a large extent, despite the fact that
was trained on a set of training data where the number o
features is large compared to the size of training patterns24
rous

go-
pa-
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~e.g., the present set of LIF spectral data!. Further, an added
advantage of using RFE is that it directly becomes cl
which spectral regions dominate the classification problem
contrast to using PCA for dimension reduction, where o
must perform a component-loading operation to get back
spectral regions of interest. For example, the optimal subse
350 features selected by the SVM RFE with RBF kernel c
respond to wavelengths that span nearly the entire spe
region going from 355 to 700 nm.

Also note here that although the standard SVMs are
signed for binary classification,23,24 multiclass classification
problems could be solved either by directly constructing
multiclass SVM classifier36 or by using voting scheme meth
ods based on combining many basic binary SVM decis
functions.36 For example, one-against-all decomposition is t
most commonly used voting scheme method. In this case,
classification problem tok classes is decomposed tok binary
SVM decision functionsf m(x), mPK5$1,...,k%, where the
decision functionf m(x) separates training data of them’th
class from the training patterns of other classes. The clas
cation of a patternx is performed according to maximal valu
of the functionsf m(x), i.e., the label ofx is computed as
arg maxmPK fm(x). The development SVM algorithms for mul
ticlass classification is underway in our group. Here, the
tential of the SVM to simultaneously classify spectral da
into more than two classes comprising patients with vario
kinds of lesions of the oral cavity, for example, leukoplak
erythroplakia, etc., in addition to cancerous and noncance
tissues will be explored.

Note also here that the development of diagnostic al
rithms described here was based on spectral data from
tients who belonged to a high-risk population~were suspected
Fig. 10 ROC curves for different diagnostic algorithms based on SVMs
(linear, polynomial, and RBF) and FLD.
Table 8 Area under the ROC curve values corresponding to the four
diagnostic algorithms tested on the validation data set with optimal
subset of features.

FLD Linear SVM Polynomial SVM RBF SVM

Area under the
ROC curve

0.71 0.90 0.94 0.96
-12 March/April 2005 d Vol. 10(2)
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Support vector machine . . .
of having SCC on visual examination!. This patient selection
criteria might influence the sensitivity and specificity values
obtained in this study. However, the motivation for this work
was to compare the relative performance of the different type
of diagnostic algorithms using the same spectral data set from
the same population of patients. The patient selection criterio
is unlikely to influence this comparison.

5 Conclusions
The application of an integrated framework of the SVM and
RFE for discrimination of early squamous cell carcinoma
from the normal squamous tissue sites of the oral cavity wa
reported. The flexibility of the framework of the SVM-RFE
algorithm makes it convenient to conduct feature extraction
and classification jointly, leading to improved classification
results. Both linear- and nonlinear-SVM-based diagnostic al
gorithms were developed using spectral data acquired in
clinical in vivo LIF study conducted on patients being
screened for cancer of the oral cavity and normal volunteers
The relative diagnostic performances of the algorithms hav
been evaluated and also compared with that of the classic
FLD and PCA-based algorithms. The results show signifi-
cantly improved classification performance of the integrated
SVM-RFE algorithms as compared to both FLD and PCA-
based algorithms.
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