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Abstract. The free and forced responses of a non-linear travelling beam having an intermediate guide have been
analysed. The guide is modelled as a purely elastic constraint with no inertia. While a suitably located guide
increases the natural frequencies, the friction present in the guide-beam interface tends to destabilize the system.
The presence of the guide reduces the vibration level by avoiding resonance conditions. The effect of the non-
linear term is very sensitive to the location of the guide if the guide stiffness is small. It is suggested that the guide
is placed near the antinode of the predominantly excited mode.
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1. Introduction

The problem of vibration in many axially moving continuous systems, e.g., saw-bands, mov-
ing threadlines, has been considered over the last four decades [1]. For vibration analysis of
these systems, modelled as travelling strings or beams, the well-known technique of the separ-
ation of variable cannot be used due to the presence of the gyroscopic term in the equation of
motion. A complex normal-mode method has been developed for such gyroscopic systems [2,
3]. Both free and forced, linear responses of a travelling beam or a string have been reported.
But at a high axial speed, especially near the critical speed [4] when the divergence instability
occurs, the effects of non-linearities cannot be neglected [5]. Consequently, the non-linear-
free vibration of a travelling beam has also been studied [6]. The near-resonance responses of
a harmonically and/or parametrically excited travelling beam have also been obtained using
the non-linear complex normal modes [7, 8].

In several systems like a capstan, reading-writing devices in a magnetic tape, etc., the
travelling member is allowed to pass through intermediate guides. The friction present in the
interface of the guide and the travelling member significantly alters the dynamics [9]. It has
been shown [10] that guides with hydrodynamic action can reduce the vibration of a travelling
beam. Although there exist active-control strategies [11] to reduce the vibration level, the
inclusion of a guide as a passive controller can be very easily implemented.

In this paper, the non-linear vibration of a travelling beam passing through an intermediate
guide is presented. The non-linear complex normal modes for the beam have been derived and
are subsequently used to obtain the near-resonance response to a harmonic excitation. Both
the stiffness of and the friction in the guide have been taken into consideration. It has been
shown that the frictional force has a destabilizing effect. To reduce the frictional force between
the guide and the beam, rollers can be used to maintain contact between them. It has also been
shown that the position of the guide plays a crucial role in suppressing the vibration.
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Figure 1. Schematic diagram of a travelling beam with an intermediate guide.

2. Theoretical Analysis

2.1. EQUATION OF MOTION

Consider a slender beam moving axially between two frictionless guides, as shown in Figure 1.
The axial speed,c∗, is maintained by means of two rigidly mounted pulleys. An intermediate
guide, consisting of two free rollers, with finite compliance is held in contact with the beam by
means of an external forceN∗/2, provided by the precompression of the compliant member.
In addition, as indicated in the figure, the stiffness of the guides is assumed to be same in both
directions.

Under the usual assumption of small longitudinal vibration (in comparison to the transverse
vibration, i.e., assumingu∗ = O(w∗2)), the non-linear equations of motion for the coupled
vibration in the axial and transverse directions are [5]
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andδ(x) is the Diracδ-function. The other symbols are explained in Appendix I.
The boundary conditions are obtained by neglecting the small curvature outside the fric-

tionless guides. It is well known [12-16] that the dynamics of the two spans of a band-wheel
system are not independent and it is the end curvature which is responsible for the coupling.
However, the coupling becomes negligible for the high initial tension or large pulley radius.
The end-curvature and hence the coupling becomes small enough in the presence of the
frictionless guides at the end. Consequently, the boundary conditions can be written as

u∗(0, t) = u∗(l, t) = 0, (5)

w∗(0, t) = w∗(l, t) = 0, (6)

and

∂2w∗(0, t)
∂ξ2

= ∂2w∗(l, t)
∂ξ2

= 0. (7)

Using the following non-dimensional parameters,

u = u∗/ l, w = w∗/(lγ 2), x = ξ/ l, τ = (E/ρ)1/2γ t/ l,
c = c∗(E/ρ)−1/2/γ, r2 = Iz/A, γ = r/ l, T0 = T ∗0 /(EAγ 2),

Fi = F ∗i /(EAγ
2), i = 1,2,

N = N∗/(EAγ 2), Kf = K∗f l/(EA), d = d∗/ l.
Equations (1–7) can be written, respectively, as[
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For a small value ofγ (i.e.,γ � 1), the longitudinal inertia in Equation (8) can be neglected
and the equation becomes

− 1

γ 2
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which, when integrated twice with respect tox, results in
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where

H(x − d) = 0; x < d,
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The unknown constants of integrationf1(τ ) andf2(τ ) can be obtained by using Equation (12),
as
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Now combining Equations (10), (11), (15–17), and (9), the equation of motion for the trans-
verse vibration can be written in the following simplified form:
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whereε (= γ 2/2) is a small parameter, i.e.,ε � 1. This equation can also be written in the
familiar state-space form [3] as
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I as the identity operator and

N =

 1∫

0

(
∂w

∂x

)2

dx

 ∂2w

∂x2
,0


T

. (20)

It is not difficult to verify thatK is a self-adjoint and positive definite operator. This fact
is essential to obtain the orthogonality relations between complex normal modes which are
presented in the next section.

In order to facilitate computation, the non-analytic functions involved in Equation (18)
can be eliminated by writing the equation separately for two domains, viz., 0< x1 ≤ d and
d < x2 < 1 as
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wherewj is the transverse displacement in thej th domain and

T1 = T0− µN(1− d),
T2 = T0+ µNd

or

1T = T2− T1 = µN.
The matching conditions atx = d can now be written as
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(22)

The non-linear response of the beam can be studied by solving Equations (21) and (22). Since
the non-linear term can be taken as a small perturbation to the linear equation of motion, the
response of a linear beam will be discussed first and then the response of the non-linear beam.

2.2. FREE AND FORCED RESPONSES OF THELINEAR SYSTEM

In this section, the free and forced responses of a linear travelling beam (i.e., withε = 0
in Equation (19)) are discussed. It is well known that no stationary mode shape exists for a
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travelling beam, but the harmonic oscillation is still possible at some frequencies, known as
the ‘natural frequencies’. Considering the complex normal modes [3], the natural frequencies
and the complex mode shapes can be obtained. The response of the beamw(x, τ), at any one
of the natural frequenciesωl can be written as

W(x, τ) = a

2
8(x)eiω

lτ + a
2
8(x) e−iω

l τ , (23)

with8(x) =
{
iωlφ

φ

}
, whereφ(x) is the complex normal mode shape. In Equation (23), the

overbar denotes the complex conjugate. Substituting Equation (23) into Equation (19) (with
ε = 0) and equating the coefficients of eiωl τ and e−iωl τ separately from both sides, one gets

iωlA8+ B8 = 0 (24)

and its complex conjugate, respectively. It is to be pointed out that the partial derivatives
appearing inA andB (see Equation (19)) are replaced by total derivatives. Equation (24) is
now solved together with the boundary conditions to get different sets of values ofωl andφ.
The values of thenth set are called thenth natural frequency and mode shape, and will be
denoted byωln andφn, respectively.

It is to be noted that the above solution is to be obtained numerically. Instead of solving
Equation (24), which contains several non-analytic functions, we break it in two domains, as
explained in Section 2.1. Thus Equation (24) reduces to

−(ωl)2φj + 2icωl
dφj
dxj
+ (c2− Tj )d

2φj

dx2
j

+ d4φj

dx4
j

= 0, (25)

with j = 1,2. The matching conditions atx = d are still given by Equation (22) with the
partial derivatives replaced by the total derivatives andw replaced byφ. Assuming the solution
in the form

φj (xj ) =
4∑
k=1

αjk epjkxj , j = 1,2

and applying the boundary conditions, one obtains{
α11

α12

}
= [K1]

{
α13

α14

}
and{

α21

α22

}
= [K2]

{
α23

α24

}
.

The four unknowns,α13, α14, α23 andα24, are now substituted in the matching conditions to
obtain a relation like

[K0]


α13

α14

α23

α24

 = 0. (26)
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The existence of a non-trivial solution implies

det[K0] = 0. (27)

The values ofωl and pjk ’s (j, k = 1,2,3,4) are obtaind numerically by solving Equa-
tions (25) and (27). It is to be noted that the matrix[K0] is a complex one. Hence, both
the real and imaginary parts of the determinant must vanish simultaneously.

Considering the symmetric and antisymmetric nature of the matricesA andB, respectively,
the following orthogonality relations amongst the complex modesφn’s and their conjugates
are easily obtained in terms of the following complex inner products:

1∫
0

8T
mA8n dx = 0 for allm andn, (28)

and
1∫

0

8
T

mA8n dx = 0 for allm 6= n. (29)

The above normal modes are used to derive the response of such a beam when an external
forcef (x, τ) is applied. In the following, the steady-state response of the beam to a harmonic
excitation, i.e.,f (x, τ) = f (x) cos�τ , is derived. The equation of motion is

A
∂W
∂τ
+ BW = f, (30)

with

f = {f (x, τ), 0}T . (31)

The steady-state responsew(x, τ) is assumed to be

W(x, τ) = 1

2
P(x)ei�τ + c.c., (32)

where c.c. denotes the complex conjugate of the previous term. Using the modal expansion
theorem,P(x) can be expanded as

P(x) =
∞∑
n=1

(pn8n + qn8n). (33)

After substituting Equations (32) and (33) into Equation (30), the coefficients of ei�τ from
both sides are equated. Then the orthogonality relations (28) and (29) are used to obtainpn
andqn as
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0 8
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0 8
T

nA8n dx
(34)

and
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0 8
T
n f1 dx
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0 8
T
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Figure 2. Variation ofωl1 andωl2 with c′. d = 0.5,1T = 0, —·—: ωl1 with no guide; —:ωl2, Kf = 10, - - - :

ωl1,Kf = 100, — - - —:ωl1,Kf = 1000, —×—: ωl2,Kf = 0,10, 100, 1000.

with f1 = {f (x)/2, 0}T . It is readily seen that at or near resonance, the magnitude ofpn will
be very high. Hence, the aim of controlling the vibration is to maintainpn at a low value.

2.2.1. Numerical Results and Discussion
Numerical results obtained from the linear analysis (presented in the previous section) are now
discussed. All the results, unless otherwise mentioned, belong to a travelling beam having a
tensionT2 = 1. The important physical parameters which control the performance of the
system are
1. the speed of the beam, expressed as a parameterc′ = c/(Ccr)1, where(Ccr)1 =

√
π2+ T2,

2. the location of the guide,d,
3. the stiffness of the guide,Kf ; and
4. the coefficient of friction between the beam and the guide,µ.

It is well known that an increase in the axial speed reduces the natural frequency of vi-
bration of a beam without any intermediate guide [4]. The same effect is also observed, even
in the presence of a guide. In Figure 2, the first and second natural frequencies are plotted
against the axial speed for various values ofKf . For the chosen guide location, i.e.,d = 0.5,
the second natural frequency,ωl2, as expected, is insensitive to any change in the stiffnessKf .
However, the first natural frequencyωl1 and, consequently, the first critical speed considerably
increases with increasingKf . Thus, for large values ofKf (i.e., when the guide behaves like a
rigid support) the first natural frequency of the guided beam tends towards the second natural
frequency of the unguided beam.

Figures 3a and 3b show the variation of the natural frequencies with the guide location. It
is observed that the first natural frequencyωl1 is maximum withd = 0.5, whereas the value
of ωl2 attains a maximum whend = 0.25 andd = 0.75. For a stationary simply-supported
beam, the pointx = 0.5 corresponds to the antinode of the first mode and the node of the
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Figure 3a. Variation ofωl1 with the guide-location.c′ = 0.5,1T = 0, - - -:Kf = 10, —:Kf = 100.

Figure 3b. Variation ofωl2 with the guide-location.c′ = 0.5,1T = 0, - - -:Kf = 10, —:Kf = 100.
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Figure 4. Variation ofωl1 with 1T . c′ = 0.95,T2 = 10.0, d = 0.5,Kf = 10.

second mode. Although the concepts of nodes and antinodes cannot be used for a travelling
beam, the response envelope, however, becomes maximum or minimum atx = 0.5 when
the beam vibrates at its first or second natural frequency, respectively [7]. Similarly, for the
second natural frequency, the response envelope reaches a maximum value atx = 0.25 and
x = 0.75. Thus, from this example, it is confirmed, much satisfying our expectation, that the
guide makes the system stiff if it is placed where the response envelope reaches its maximum.
Attention may be drawn to one of the general results for a constrained flexible system, known
as the ‘eigenvalue inclusion principle’. For a gyroscopic system, it has been shown [17] that
for a beam or string having a stiffness constraint, thenth natural frequency of a constrained
system (say�(c)n ) satisfies the following inequalities

ω(nc)n ≤ �(c)n ≤ ω(nc)n+1,

whereω(nc)n is thenth natural frequency of the unconstrained system. Numerical results ob-
tained for the guided travelling beam are in conformity with the above result.

Figure 4 shows the variation ofωl1 with the coefficient of the guide friction,µ. It is seen that
the friction reduces the stiffness of the system. From Equation (21), it can be concluded that
the friction introduces a compressive load in the first span (0< x < d). This compressive load
may become so high that the span may undergo divergence instability, as shown in Figure 4.
Thus, in addition to damaging the beam surface, the presence of friction may cause instability
in the system.

No ‘frequency loci veering’ has been observed for a guided travelling beam. This supports
the observation reported in [13]. The non-cyclic disordered beam, discussed in this reference,
corresponds to the present model withKf → ∞ andd = 0.5. However, the phenomena of
‘frequency loci veering’ and ‘mode localization’ have been observed for a guided travelling
string [9].
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Figure 5. Amplitude of the frequency response of the first linear mode.F0 = 10,1T = 0, c′ = 0.5, d = 0.5; —:
no guide (Kf = 0), - - -:Kf = 10, —·—: Kf = 100.

The effect of the intermediate guide on the steady-state harmonic response is shown in
Figure 5. Only the magnitude ofp1, when the beam is excited by a point harmonic load
f (x) = F0δ(x − x0) at x0 = 1/3 with the excitation frequency� ≈ ωl1, is plotted. By
changing the natural frequency, the guide helps to avoid the resonance at a particular speed.
As expected, the near-resonance response decreases with the stiffness of the guide.

Figures 6a and 6b show the effects of the guide-location on the steady-state responses.
As seen from the figures, the guide, when suitably placed, can attenuate the response level
of a resonantly excited beam. As the application of the guide shifts the natural frequency,
the resonance condition can be avoided. If the guide is flexible, then its optimal location
corresponds to the position where the response envelope attains a maximum and depends on
the mode which is resonantly excited. In other words, to minimize the vibration, the guide is
placed at a location where the response of the uncontrolled system is maximum. However, as
the stiffness of the guide increases, the location of the guide looses its importance as long as
it does not coincide with any of the nodal points of the response envelope. The shift of the
natural frequency, after placing the stiff guide anywhere within two successive nodal points,
is so large that the response amplitude becomes practically insensitive to the guide-location.

2.3. EFFECTS OF THENON-LINEARITY

In this section the effects of the non-linearity on the free and near-resonance forced responses
are presented. It may be mentioned that the relationship between different linear natural fre-
quencies depends on the various system parameters. Some typical relationships may give rise
to internal and combinatorial resonances which are not considered in this work. Thus, only
such combinations of parameters are taken where all the natural frequencies are distinct and
no special relation between them exists. For such a system, the free and near-resonance forced
harmonic responses are analysed.
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Figure 6a. Effect of the guide-location oñp1. c′ = 0.5, 1T = 0, � = 8.7, F0 = 10; —: Kf = 10, - - -:
Kf = 100.

Figure 6b. Effect of the guide-location oñp2. c′ = 0.5, 1T = 0, � = 39.0, F0 = 10; —:Kf = 10, - - -:
Kf = 100.
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In the absence of any internal resonance, the harmonic response of a free travelling beam
has already been presented in reference [7]. A concept of complex non-linear normal mode
has been developed. For the free vibration in thenth non-linear normal mode, the response is
assumed as

W(x, τ) = a

2
9n(x)eiωnτ + a

2
9n(x)e−iωnτ , (36)

where9n =
{
iωnψn
ψn

}
, with ψn andωn as thenth non-linear mode shape and the cor-

responding frequency, respectively. Both these quantities, however, are amplitude-dependent.
Assuming small non-linearity,ωn and9n are expanded, respectively, as

ωn = ωln + εβ(n)1 + · · · , (37)

9n = 8n + ε11+ · · · , (38)

where1(n)

1 does not contain8n. Now Equation (35) is substituted into Equation (19). There-
after, balancing the harmonics (i.e., equating the coefficients of eiωnτ and e−iωnτ separately),
the following equation and its complex conjugate are obtained:

iωn
a

2
A9n + a2B9n = εNψ, (39)

where

Nψ =
a2a

8

 1∫
0

(
dψn
dx

)2

dx

 d2ψn

dx2
+ 2

 1∫
0

dψn
dx

dψn

dx
dx

 d2ψn

dx2

 ,0

T

. (40)

Using expansions (37) and (38) together with the orthogonality relations (26–29), a perturba-
tion technique yields

β
(n)
1 = −

ωln

4
aa
λ(φn, φn)

tn
, (41)

11 = aa
∑
m6=n

gm8m +
∞∑
m=1
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 , (42)

where

gm = −1

4

ωlm

ωln − ωlm
λ(φm, φn)
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, m 6= n,
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4

ωlm

ωln + ωlm
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, m = 1,2,3, . . . ,
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1∫

0

8
T

nA8n dx, n = 1,2,3, . . . ,
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and

λ(φm, φn) = 2

 1∫
0

φm
d2φn

d2x
dx

 1∫
0

dφn
dx

dφn
dx

dx



+
 1∫

0

φm
d2φn

dx2
dx

 1∫
0

(
dφn
dx

)2

dx

 .
The above-mentioned non-linear normal modes can be used to obtain the near-resonance
harmonic response of the beam when excited by an external forcef (x) cos�τ , i.e., with
the equation of motion

A
∂W
∂τ
+ BW − εN = f, (43)

wheref = {f (x) cos�τ,0}T .
The principal harmonic response of the beam can be assumed as

W(x, τ) = 1

2
(3(x)ei�τ +3(x)e−i�τ ). (44)

For the near-resonance excitation� ≈ ωln, the response is approximated as [7]

3 = an9n +
∞∑
m6=n

a′m9m +
∞∑
m=1

b′m9m + o(ε2), (45)

wherea′m = εam, b′m = εbm. Now Equations (44) and (45) are substituted into Equation (43)
and the coefficients of ei�τ are equated from both sides. Then using the orthogonality relations
(28) and (29), the following equations [7] are obtained, after neglecting termso(ε2):

an = 2
∫ 1

0 9
T

n f1 dx

i(�− ωn)
∫ 1

0 9
T

nA9n dx
, (46)

εam = a′m =
2
∫ 1

0 8
T

mf1 dx

i(�− ωlm)
∫ 1

0 8
T

mA8m dx
; m 6= n

and

εbm = b′m =
2
∫ 1

0 8
T
mf1 dx

i(�+ ωlm)
∫ 1

0 8
T

mA8m dx
; m = 1,2 . . . ,

where f1 = {f (x)/2,0}T . The complex cubic equation (46) can be solved numerically.
Assumingan = ãn eiθn , Equation (46), for a point loadf (x) = F0δ(x − x0), takes the form

A6 +
[

2ωln(1− r1)
S

− ν ((MR
1 )

2+ (MI
1)

2)]A4

+
[
(ωln)

2(1− r1)2
S2

− 2ν(MR
1 Q

R
1 +MI

1Q
I
1)

]
A2

− ν[(QR
1 )

2+ (QI
1)

2] = 0, (47)

where
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Figure 7. Effect of the guide-location onβ(1)1 /aa. c′ = 0.5,1T = 0; —:Kf = 10, - - -:Kf = 100.

Q1 = −ω
l
n

F0

1∫
0

φnf dx = QR
1 + iQI

1,

M1 = 1

F0

−∑
m6=n

gmω
l
m

1∫
0

φmf dx

+ 1

F0


∞∑
m=1

hmω
l
m

1∫
0

φmf dx

 = MR
1 + iMI

1 ,

S = β
(n)

1

ã2
n

, r1 = �

ωln
, ν =

(
F0

tn

)2
ε

S2
, A = √εãn.

It may be mentioned that depending upon the system parameters, either one or three roots may
exist. As shown in [7], the intermediate root is always unstable and is not observable in reality.
It was also shown in [7] that the steady-state response of the beam, up to the ordero(1), is

w(x, τ) = ãnφ∗1(x) cos(�τ + θn + ρn),

where tanρn = −φI1/φR1 andφ∗1 =
√
(φR1 )

2+ (φI1)2.
2.3.1. Numerical Results and Discussion
In this section, numerical results showing the effect of non-linearity on the free and forced
responses of a travelling beam are presented. The tension of the beam,T2, is again taken as
unity, i.e.,T2 = 1.

Owing to the presence of the non-linear term, the natural frequency shows a hardening
characteristics, since the termβ(n)1 /aa (see Equation (37)) is positive. In Figure 7, the variation
of β(1)1 /aa with the guide location,d, is shown. As seen from the figure, the non-linear effects
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Figure 8. Effect of frictional force onβ(1)1 /aa. c′ = 0.5, d = 0.5,Kf = 100,T2 = 1.0; —:1T/T2 = 0, - - -:
1T/T2 = 0.1, — - —:1T/T2 = 0.3.

depend strongly on the location and the stiffness of the guide. For the values of the parameters
considered in this paper, the termβ(n)1 /aa, however, changes little with increasing frictional
force. This is shown in Figure 8.

As seen from Figure 9, the linear theory, when compared with the non-linear theory for
such a hard system, overestimates the steady-state response when the excitation frequency is
equal to the natural frequency i.e.,� = ωln and underestimates the response when� > ωln.
Therefore, special attention should be given to the response at� > ωln. Figure 10 shows
the variation of the maximum amplitude (since there exists a possibility of getting multiple
amplitudes depending upon the initial conditions), i.e., the maximum value ofA1, obtained by
solving Equation (47) withn = 1. Three excitation frequencies,� = 8.7, 12 and 15, are con-
sidered. These frequencies are such that the first mode is primarily excited. The significance of
the choice of the guide location, so far as the maximum amplitude is concerned, can be clearly
seen in Figure 10. It is seen that for� = 8.7 (i.e.,� < ωl1 = 10.87), the non-linear response is
less compared to the linear response. If a guide is placed, the linear natural frequency increases
(see Section 2.2.1) and the excitation frequency becomes much less compared to the natural
frequency, i.e., the frequency at which the resonance occurs. For a suitable guide-location,
the difference between the excitation and the natural frequencies becomes so large that the
effect of non-linearity is hardly perceptable. When� > ωl1 (for example,� = 12 or 15),
the response amplitude predicted by the linear theory is much smaller than that obtained by
the non-linear analysis. If a guide is now placed, the difference between� andωl1 decreases
and, as per the characteristics of a hard system, the response amplitude again decreases. It is
to be pointed out that even if the linear theory may not suggest the requirement of a guide
by underestimating the response, a guide may be required because of the presence of the
non-linear term.
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Figure 9. Near-resonance response of the travelling beam with an intermediate guide.c′ = 0.5,d = 0.5,1T = 0,
Kf = 100,F0 = 1000,ε = 0.0001; —: stable solution (non-linear theory), — - —: unstable solution (non-linear
theory), - - -: linear theory.

Figure 10. Effect of the guide-location on the maximum value of the roots of Equation (47).c′ = 0.5,1T = 0,
Kf = 100,F0

√
ε = 10; —:� = 8.7, - - -:� = 12, —·—:� = 15.
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3. Conclusions

The free and forced responses of a guided travelling beam, including the non-linear effects,
have been studied in this paper. The guide is modelled as an elastic constraint having fric-
tional contact. While the stiffness of the guide has a stabilizing effect so far as the divergence
instability is concerned, the friction between the guide and the beam adds to the instability.
Further, if the guide is placed at a proper location, the steady-state amplitude of vibration
under a harmonic excitation can be reduced significantly. Thus, the guide can serve the pur-
pose of a passive controller. The choice of a suitable guide location plays a very important
role in controlling the vibration. The effect of non-linear terms for proper selection of the
guide-location has also been clearly brought out.

Appendix I: List of Symbols

w∗ = transverse displacement of the beam
u∗ = longitudinal displacement of the beam
c∗ = uniform axial speed
T ∗0 = initial tension in the beam
d∗ = location of the guide
k∗f /2 = stiffness of the guide
N∗/2 = precompression of the guide
ρ = density of the beam material
E = Young’s modulus of the beam material
A = area of cross-section of the beam
l = length of the beam
Iz = second moment of area of cross-section about the neutral axis
r = radius of gyration of the beam cross-section =

√
Iz/A

γ = slenderness ratio,r/ l � 1
ε = γ 2/2
ξ = longitudinal distance of a point on the beam from left support
t = time
x = non-dimensional distance
τ = non-dimensional time
w = non-dimensional transverse displacement
u = non-dimensional longitudinal displacement
c = non-dimensional axial speed
T0 = non-dimensional tension
Tj = tension in thej th span, wherej = 1,2
1T = difference between the tensions in different spans (= T2− T1)
c′ = c/

√
π2+ T2

d = non-dimensional location of the guide
kf /2 = non-dimensional stiffness of the guide
N/2 = non-dimensional precompression of the guide
φn = nth linear non-stationary complex normal mode= φRn + iφIn
i =

√−1
ωln = linear natural frequency ofnth linear mode



Non-Linear Vibration of a Travelling Beam265

ψn = nth non-linear complex normal mode= ψR
n + iψI

n

ωn = frequency corresponding tonth non-linear normal mode
f ∗ = transverse force per unit length
f = non-dimensional transverse force
� = non-dimensional frequency of excitation
φ∗n =

√
(φRn )

2+ (φIn)2.
an = participation of thenth linear mode= ãn eiθn .
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