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Abstract. The free and forced responses of a non-linear travelling beam having an intermediate guide have been
analysed. The guide is modelled as a purely elastic constraint with no inertia. While a suitably located guide
increases the natural frequencies, the friction present in the guide-beam interface tends to destabilize the system.
The presence of the guide reduces the vibration level by avoiding resonance conditions. The effect of the non-
linear term is very sensitive to the location of the guide if the guide stiffness is small. It is suggested that the guide
is placed near the antinode of the predominantly excited mode.
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1. Introduction

The problem of vibration in many axially moving continuous systems, e.g., saw-bands, mov-
ing threadlines, has been considered over the last four decades [1]. For vibration analysis of
these systems, modelled as travelling strings or beams, the well-known technique of the separ-
ation of variable cannot be used due to the presence of the gyroscopic term in the equation of
motion. A complex normal-mode method has been developed for such gyroscopic systems [2,
3]. Both free and forced, linear responses of a travelling beam or a string have been reported.
But at a high axial speed, especially near the critical speed [4] when the divergence instability
occurs, the effects of non-linearities cannot be neglected [5]. Consequently, the non-linear-
free vibration of a travelling beam has also been studied [6]. The near-resonance responses of
a harmonically and/or parametrically excited travelling beam have also been obtained using
the non-linear complex normal modes [7, 8].

In several systems like a capstan, reading-writing devices in a magnetic tape, etc., the
travelling member is allowed to pass through intermediate guides. The friction present in the
interface of the guide and the travelling member significantly alters the dynamics [9]. It has
been shown [10] that guides with hydrodynamic action can reduce the vibration of a travelling
beam. Although there exist active-control strategies [11] to reduce the vibration level, the
inclusion of a guide as a passive controller can be very easily implemented.

In this paper, the non-linear vibration of a travelling beam passing through an intermediate
guide is presented. The non-linear complex normal modes for the beam have been derived and
are subsequently used to obtain the near-resonance response to a harmonic excitation. Both
the stiffness of and the friction in the guide have been taken into consideration. It has been
shown that the frictional force has a destabilizing effect. To reduce the frictional force between
the guide and the beam, rollers can be used to maintain contact between them. It has also been
shown that the position of the guide plays a crucial role in suppressing the vibration.
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Frictionless guide

Figure 1. Schematic diagram of a travelling beam with an intermediate guide.

2. Theoretical Analysis

2.1. EQUATION OF MOTION

Consider a slender beam moving axially between two frictionless guides, as shown in Figure 1.
The axial speed;*, is maintained by means of two rigidly mounted pulleys. An intermediate
guide, consisting of two free rollers, with finite compliance is held in contact with the beam by
means of an external fordg* /2, provided by the precompression of the compliant member.
In addition, as indicated in the figure, the stiffness of the guides is assumed to be same in both
directions.

Under the usual assumption of small longitudinal vibration (in comparison to the transverse
vibration, i.e., assuming* = O (w**)), the non-linear equations of motion for the coupled
vibration in the axial and transverse directions are [5]

A 92u* s *Bzu* + *zazu* EAaZu*
c c -
PR or2 o801 082 082
dw* 92w*
=(EA — TJ)EW — (Ff + F3)8(& —d") 1)
and
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= (EA-TH— | — (=) | = krw*sE — dv), 2
( 0)4% - +2<ag>} fws(E —d) @
where
N* K3}
F*= - —_- *d*at ’ 3
D=+ @) ©

ﬁ:u&;——ﬂﬂfﬁ} (4)
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ands§(x) is the Diracs-function. The other symbols are explained in Appendix I.

The boundary conditions are obtained by neglecting the small curvature outside the fric-
tionless guides. It is well known [12-16] that the dynamics of the two spans of a band-wheel
system are not independent and it is the end curvature which is responsible for the coupling.
However, the coupling becomes negligible for the high initial tension or large pulley radius.
The end-curvature and hence the coupling becomes small enough in the presence of the
frictionless guides at the end. Consequently, the boundary conditions can be written as

u*(0,1) = u*(l,1) =0, (5)
w*(0,1) = w*({l, 1) =0, (6)
and
°w*(0,1)  *w*(,1) 0 @)
g2 g2 T

Using the following non-dimensional parameters,
w=u/l, w=w/ly?, x=%§/I, v=(E/nyi/l,
c = E/P Py, rP=L/A y=r/l, To=T5/(EAy?),
F, = F'/(EAy®, i=12
N = N*/(EAy®), K;=K}l/(EA), d=d"/l.
Equations (1-7) can be written, respectively, as
[82u 5 3%u N 2&}_ 1 0%

972 " “oxar € ox2 12 9x2
dw 9w
=y’ A —y*To)——— — (F1+ F)8(x — d), (8)
ox 0x
3%w 42 9%w (2 T)82w n 3w
at2 | oxot 9x2 " axA
O [10udw y2 dw
=(1—y’T)— | 5 ——+ = (—)%| - Kywd(x — d), 9
L—y O)ax[y23x3x+ 2(ax)] Jwd(x — d) ()
N K
Fi=pu [E + 7fw(d, r)] , (10)
N K¢
u(©,7) =u(l,7) =0, (12)
w(0, 1) =w(, 1) =0, (13)
and
3%w (0 3?w(1
w( ,T): w( ’T)=0. (14)

9x2 9x2



250 G. Chakraborty and A. K. Mallik
For a small value of (i.e.,y <« 1), the longitudinal inertia in Equation (8) can be neglected
and the equation becomes
1 0%u S0w 92w (F1+ F2)s( d)
—_—,— — —_— X — s
y20x2 Y ox 9x2 tre

which, when integrated twice with respectitpresults in
y4 X 8w 2 2 X
ulx, 1) = —7/ (ﬁ) dxy + y“(F1 + Fz)/H(xl —d)dxy + xf1(7) + fo(1r), (15)
1
0 0

where
Hx—-d) =0, x<d,
=1 x>d.

The unknown constants of integratigi(t) and f>(z) can be obtained by using Equation (12),
as

fZ(T) = O’ (16)
and
y4 7 dw\?
Sfi(r) = > / (a) dx — y2(F1 + F2) (1 —d). (17)
0

Now combining Equations (10), (11), (15-17), and (9), the equation of motion for the trans-
verse vibration can be written in the following simplified form:

92w 92w 2

W—i-anxar-l-[c —{To—uNA—d)+uNH(x —d)}]
92w n 94w N8w % 5( )
ax2 T axd  \MV oy TR )ou

1
dw\? 92w
= — ) dx | —, 18
© |:/ (8x> :| dx? (18)
0
wheree (= y2/2) is a small parameter, i.e:,< 1. This equation can also be written in the
familiar state-space form [3] as

W
A~ +BW =:N, (19)
T

where
10 G K dw
_ — — ot
r=lor] s=[ ko] w=lu)

K = (2 T)82 + o NH(x —d) i §(x —d) Na K
c”— — t+ — - X—d)—s —o(x — —_— = ,
5x2 " Hxh H dx2 H dx f

0
G = 2c—,
Cax
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I as the identity operator and

1 ) r
ow d%w
0

It is not difficult to verify thatK is a self-adjoint and positive definite operator. This fact
is essential to obtain the orthogonality relations between complex normal modes which are
presented in the next section.

In order to facilitate computation, the non-analytic functions involved in Equation (18)
can be eliminated by writing the equation separately for two domains, viz.x9 < d and
d<xy<las

Bzwj 92w 2w, *w
2 j 2_7r J j
a2t %95 T 9x2 | oxd
ow dwz 5 02w :
= /ei>mu /@—od = i=12 (21)

J
wherew; is the transverse displacement in tita domain and
Ty = To—uN(1—d),
T, = To+ uNd
or
AT =T, — Ty = uN.
The matching conditions at = d can now be written as

wi(d, T) = wa(d, 1),

0 0
dn =2, ),
0x1 0x2

8211)]_ 8211)2 (22)
—(d, 1) = d, 1),

F@n =57
83 3

w1 0 w2 Bwl
— (. 1) — 3, 1)+ AT—(d,7) — Kywi(d, 1) =0.
X3 x5 dx1

The non-linear response of the beam can be studied by solving Equations (21) and (22). Since
the non-linear term can be taken as a small perturbation to the linear equation of motion, the
response of a linear beam will be discussed first and then the response of the non-linear beam.

2.2. FREE AND FORCEDRESPONSES OF THH.INEAR SYSTEM

In this section, the free and forced responses of a linear travelling beam (i.es witl®
in Equation (19)) are discussed. It is well known that no stationary mode shape exists for a



252 G. Chakraborty and A. K. Mallik

travelling beam, but the harmonic oscillation is still possible at some frequencies, known as
the ‘natural frequencies’. Considering the complex normal modes [3], the natural frequencies
and the complex mode shapes can be obtained. The response of the beam at any one

of the natural frequencies' can be written as

W(x, 1) = %CD(x) gt %6@) gt (23)

LN
with @ (x) = { iwp , Whereg (x) is the complex normal mode shape. In Equation (23), the

¢

overbar denotes the complex conjugate. Substituting Equation (23) into Equation (19) (with
¢ = 0) and equating the coefficients of'é and ei@'r separately from both sides, one gets

io'/A® +Bd =0 (24)

and its complex conjugate, respectively. It is to be pointed out that the partial derivatives
appearing iPA andB (see Equation (19)) are replaced by total derivatives. Equation (24) is
now solved together with the boundary conditions to get different sets of valuesaoid ¢.
The values of theith set are called theth natural frequency and mode shape, and will be
denoted byw! and,, respectively.

It is to be noted that the above solution is to be obtained numerically. Instead of solving
Equation (24), which contains several non-analytic functions, we break it in two domains, as
explained in Section 2.1. Thus Equation (24) reduces to

do; ¢,  d*o;
. 2 }
—()2p; + 2icw —dx: + (c*—Tj) dxfj dx;.‘l

+

=0, (25)

with j = 1, 2. The matching conditions at = d are still given by Equation (22) with the
partial derivatives replaced by the total derivatives arréplaced byp. Assuming the solution
in the form

4
650) = D €, j=12

k=1

and applying the boundary conditions, one obtains

11 13
= [K1]
12 14
and
021 023
= [K>]
022 024

The four unknownseg 13, a14, o3 @andays, are now substituted in the matching conditions to
obtain a relation like

13

[Ko] j;‘ =0. (26)

24
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The existence of a non-trivial solution implies
det[Ko] = 0. (27)

The values ofw' and py's (j,k = 1,2,3,4) are obtaind numerically by solving Equa-
tions (25) and (27). It is to be noted that the matfri,] is a complex one. Hence, both
the real and imaginary parts of the determinant must vanish simultaneously.

Considering the symmetric and antisymmetric nature of the ma#icexiB, respectively,
the following orthogonality relations amongst the complex maplgs and their conjugates
are easily obtained in terms of the following complex inner products:

1
/ ®LAD,dx =0 forallm andn, (28)
0
and
1
/5;A<I>,1 dc =0 forallm #n. (29)

0

The above normal modes are used to derive the response of such a beam when an external
force f(x, 1) is applied. In the following, the steady-state response of the beam to a harmonic
excitation, i.e.,f (x, T) = f(x) cos Qt, is derived. The equation of motion is

AM +BW =f, (30)
0T
with
f={f(x,7), 0. (31)

The steady-state responséx, t) is assumed to be
1 .
W(x, 1) = 5P(x) €% +cc, (32)

where c.c. denotes the complex conjugate of the previous term. Using the modal expansion
theoremP(x) can be expanded as

P(X) = Z(pn ®, + QIzgn)- (33)

n=1

After substituting Equations (32) and (33) into Equation (30), the coefficient§?6ffem
both sides are equated. Then the orthogonality relations (28) and (29) are used tggbtain
andg, as

1—=—T
Pn = Pn €' = 2Jp ®,fadr (34)
i(Q—al) [, Ad, dr
and
. 2t oTf,d
Gy = G €% = Jo @, dx (35)

i(Q+ o) [P, Ad, dr
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Figure 2. Variation of} andw), with ¢’. d = 0.5, AT = 0, ——: &/, with no guide; —awh, Ky = 10, - - - :
o, Ky =100, — - - —o}, K y = 1000, —x—: wh, K = 0, 10, 100, 1000.

with f{ = {f(x)/2, 0}7. Itis readily seen that at or near resonance, the magnitugg wfll
be very high. Hence, the aim of controlling the vibration is to mainggimt a low value.

2.2.1. Numerical Results and Discussion
Numerical results obtained from the linear analysis (presented in the previous section) are now
discussed. All the results, unless otherwise mentioned, belong to a travelling beam having a
tension7, = 1. The important physical parameters which control the performance of the
system are

1. the speed of the beam, expressed as a parametat/(C.,)1, where(Ce)1 = /72 + T,

2. the location of the guidel,

3. the stiffness of the guid& ;; and

4. the coefficient of friction between the beam and the guide,

It is well known that an increase in the axial speed reduces the natural frequency of vi-
bration of a beam without any intermediate guide [4]. The same effect is also observed, even
in the presence of a guide. In Figure 2, the first and second natural frequencies are plotted
against the axial speed for various valuegf. For the chosen guide location, i.€.= 0.5,
the second natural frequeney,, as expected, is insensitive to any change in the stiffigss
However, the first natural frequenay; and, consequently, the first critical speed considerably
increases with increasing ;. Thus, for large values df ; (i.e., when the guide behaves like a
rigid support) the first natural frequency of the guided beam tends towards the second natural
frequency of the unguided beam.

Figures 3a and 3b show the variation of the natural frequencies with the guide location. It
is observed that the first natural frequermflyis maximum withd = 0.5, whereas the value
of ), attains a maximum whe# = 0.25 andd = 0.75. For a stationary simply-supported
beam, the point = 0.5 corresponds to the antinode of the first mode and the node of the
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Figure 3b. Variation ofcul2 with the guide-locationc’ = 0.5, AT =0, - - -: Ky =10,— Ky = 100.
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Figure 4. Variation ofw} with AT ¢’ = 0.95,7, = 10.0,d = 0.5, K s = 10.

second mode. Although the concepts of nodes and antinodes cannot be used for a travelling
beam, the response envelope, however, becomes maximum or minimura&2.5 when

the beam vibrates at its first or second natural frequency, respectively [7]. Similarly, for the
second natural frequency, the response envelope reaches a maximum wakte025 and

x = 0.75. Thus, from this example, it is confirmed, much satisfying our expectation, that the
guide makes the system stiff if it is placed where the response envelope reaches its maximum.
Attention may be drawn to one of the general results for a constrained flexible system, known
as the ‘eigenvalue inclusion principle’. For a gyroscopic system, it has been shown [17] that
for a beam or string having a stiffness constraint, /itie natural frequency of a constrained
system (say2(?) satisfies the following inequalities

(nc)

ot < 00 < ol

wherew" is thenth natural frequency of the unconstrained system. Numerical results ob-
tained for the guided travelling beam are in conformity with the above result.

Figure 4 shows the variation af, with the coefficient of the guide friction. It is seen that
the friction reduces the stiffness of the system. From Equation (21), it can be concluded that
the friction introduces a compressive load in the first spaa (© < d). This compressive load
may become so high that the span may undergo divergence instability, as shown in Figure 4.
Thus, in addition to damaging the beam surface, the presence of friction may cause instability
in the system.

No ‘frequency loci veering’ has been observed for a guided travelling beam. This supports
the observation reported in [13]. The non-cyclic disordered beam, discussed in this reference,
corresponds to the present model wkh — oo andd = 0.5. However, the phenomena of
‘frequency loci veering’ and ‘mode localization’ have been observed for a guided travelling
string [9].
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Figure 5. Amplitude of the frequency response of the first linear ma@e= 10, AT = 0,¢’ = 0.5,d = 0.5; —:
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The effect of the intermediate guide on the steady-state harmonic response is shown in
Figure 5. Only the magnitude gf,, when the beam is excited by a point harmonic load
f(x) = Fod(x — x0) atxo = 1/3 with the excitation frequenc2 ~ o, is plotted. By
changing the natural frequency, the guide helps to avoid the resonance at a particular speed.
As expected, the near-resonance response decreases with the stiffness of the guide.

Figures 6a and 6b show the effects of the guide-location on the steady-state responses.
As seen from the figures, the guide, when suitably placed, can attenuate the response level
of a resonantly excited beam. As the application of the guide shifts the natural frequency,
the resonance condition can be avoided. If the guide is flexible, then its optimal location
corresponds to the position where the response envelope attains a maximum and depends on
the mode which is resonantly excited. In other words, to minimize the vibration, the guide is
placed at a location where the response of the uncontrolled system is maximum. However, as
the stiffness of the guide increases, the location of the guide looses its importance as long as
it does not coincide with any of the nodal points of the response envelope. The shift of the
natural frequency, after placing the stiff guide anywhere within two successive nodal points,
is so large that the response amplitude becomes practically insensitive to the guide-location.

2.3. BFFECTS OF THENON-LINEARITY

In this section the effects of the non-linearity on the free and near-resonance forced responses
are presented. It may be mentioned that the relationship between different linear natural fre-
guencies depends on the various system parameters. Some typical relationships may give rise
to internal and combinatorial resonances which are not considered in this work. Thus, only
such combinations of parameters are taken where all the natural frequencies are distinct and
no special relation between them exists. For such a system, the free and near-resonance forced
harmonic responses are analysed.
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In the absence of any internal resonance, the harmonic response of a free travelling beam
has already been presented in reference [7]. A concept of complex non-linear normal mode
has been developed. For the free vibration inrttienon-linear normal mode, the response is
assumed as

W(x, 1) = %‘Ifn(X) g€t + W, (x) e, (36)

N Q|

whereV¥, = { lwlzw" } with v, and w, as thenth non-linear mode shape and the cor-
n

responding frequency, respectively. Both these quantities, however, are amplitude-dependent.
Assuming small non-linearityp, andW¥, are expanded, respectively, as

o = 0, +efy” 4 (37)
W, = &, + A+, (38)

WhereA(l’” does not contaid,,. Now Equation (35) is substituted into Equation (19). There-
after, balancing the harmonics (i.e., equating the coefficient&’df and e separately),
the following equation and its complex conjugate are obtained:

i, =AW, + =B, = eNy, (39)
2 2
where
a’a 2 dyr, \ 2 &y ldw dy Py '
Ny, == ") d 42 n 2P gy » ol . 40
=178 / <dx> ol dr v a2 |’ (40)
0

Using expansions (37) and (38) together with the orthogonality relations (26—29), a perturba-
tion technique yields

@l _ Ay, dn)
 _ _TMT”’ (41)
00
A1 =aa Z &n®m + thcbm ) (42)
m;ﬁn m=1
where
1 o, A b0 2
= —— 9 m n,
S 40)/[1 - a)iln In
1 o A
hm C()m (¢m’¢n)’ m:1’2’3"‘.’

4ol + ol ty

1
z,,:/EZAcpndx, n=123,...,
0
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and

1
n nd n

)\’(¢n17 ¢l’l - (/ ¢m ¢ ) (/ ¢ ¢ dx)
0
1 1

d?p, de, \?
+(/¢de) (/(dx) dx).
0 0

The above-mentioned non-linear normal modes can be used to obtain the near-resonance
harmonic response of the beam when excited by an external fogcecosQz, i.e., with

the equation of motion

W
A=~ +BW —eN =1, (43)
T

wheref = { f(x) cosQt, 0}7.
The principal harmonic response of the beam can be assumed as

W(x, 1) = }(A(x)eigf + A(x) ey, (44)

For the near-resonance excitati@w ', the response is approximated as [7]

A=a,V, + Z ap W + Z b, W + 0(£?), (45)
m#n m=1
wherea,, = ea,, b,, = ¢b,,. Now Equations (44) and (45) are substituted into Equation (43)
and the coefficients of & are equated from both sides. Then using the orthogonality relations
(28) and (29), the following equations [7] are obtained, after neglecting tefsis

2 1@:f1d)€
a, = fO 1—T s (46)
(2 —w,) [y ¥, AW, dx
2[5 @, "¢ dx
gay = a,, = fo ! m#n
i(Q— )fo D, A<I> dx
and
2[5 ®Tf; dx
eby = b/, = Jo @ufs m=12...,

l(Q—i-a)l)fO(I) Ad,, dx

wheref; = {f(x)/2,0}7. The complex cubic equation (46) can be solved numerically.
Assuminga, = a, €%, Equation (46), for a point load (x) = Fod(x — xo), takes the form

20)1 (1—1’1)

6 n
A° + [75
(@1)2(1 — rp)?
— ek +@hHa =0, (47)

where

—v (M + <M{>2)} A*

— 20(M{' QO + M{Q{)} A?
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w!

1
—-2 [G.rdr=of +iol.
0

1
F ng 1n/¢mfdx +_ Zhinw,n/¢mfdx =Mf+lM]1_,

m#n m=1

(n)
Q Fo .
S: ~127 rl:a’ v:<n> SZ’ A:\/gan‘
It may be mentioned that depending upon the system parameters, either one or three roots may
exist. As shown in [7], the intermediate root is always unstable and is not observable in reality.

It was also shown in [7] that the steady-state response of the beam, up to the(@yder

UJ(X, T) = an‘bi(x) COS(QT + 9/1 + pn),

where tarp, = —¢1/¢1 ande; =,/ ($1)? + (¢1)2.

2.3.1. Numerical Results and Discussion
In this section, numerical results showing the effect of non-linearity on the free and forced
responses of a travelling beam are presented. The tension of the Bgasagain taken as
unity, i.e., T, = 1.

Owing to the presence of the non-linear term, the natural frequency shows a hardening
characteristics, since the te;ﬁﬁ” /aa (see Equation (37)) is positive. In Figure 7, the variation

of ﬂil)/aa with the guide locationd, is shown. As seen from the figure, the non-linear effects
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Figure 8. Effect of frictional force on@il)/aﬁ. ¢/ =05,d=05K;=100,T> =10, — AT/T, =0, -- -
AT/T> =01, —-— AT/T, = 0.3.

depend strongly on the location and the stiffness of the guide. For the values of the parameters
considered in this paper, the telﬁ{f’)/aa, however, changes little with increasing frictional
force. This is shown in Figure 8.

As seen from Figure 9, the linear theory, when compared with the non-linear theory for
such a hard system, overestimates the steady-state response when the excitation frequency is
equal to the natural frequency i.€,= ! and underestimates the response wites «!.
Therefore, special attention should be given to the response at ! . Figure 10 shows
the variation of the maximum amplitude (since there exists a possibility of getting multiple
amplitudes depending upon the initial conditions), i.e., the maximum valde, @btained by
solving Equation (47) witlk = 1. Three excitation frequencie®, = 8.7, 12 and 15, are con-
sidered. These frequencies are such that the first mode is primarily excited. The significance of
the choice of the guide location, so far as the maximum amplitude is concerned, can be clearly
seen in Figure 10. Itis seen that far= 8.7 (i.e.,Q < ) = 10.87), the non-linear response is
less compared to the linear response. If a guide is placed, the linear natural frequency increases
(see Section 2.2.1) and the excitation frequency becomes much less compared to the natural
frequency, i.e., the frequency at which the resonance occurs. For a suitable guide-location,
the difference between the excitation and the natural frequencies becomes so large that the
effect of non-linearity is hardly perceptable. When> «! (for example,Q = 12 or 15),
the response amplitude predicted by the linear theory is much smaller than that obtained by
the non-linear analysis. If a guide is now placed, the difference bet®esmd ) decreases
and, as per the characteristics of a hard system, the response amplitude again decreases. It is
to be pointed out that even if the linear theory may not suggest the requirement of a guide
by underestimating the response, a guide may be required because of the presence of the
non-linear term.
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Figure 9. Near-resonance response of the travelling beam with an intermediate guil®.5,d = 0.5, AT =0,
K r =100, Fy = 1000,¢ = 0.0001; —: stable solution (non-linear theory), — - —: unstable solution (non-linear
theory), - - -: linear theory.

Figure 10. Effect of the guide-location on the maximum value of the roots of Equation (4A.0.5, AT = 0,
K¢ =100,Fp/e =10, —Q=87,---Q=12, —— Q=15
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3. Conclusions

The free and forced responses of a guided travelling beam, including the non-linear effects,
have been studied in this paper. The guide is modelled as an elastic constraint having fric-
tional contact. While the stiffness of the guide has a stabilizing effect so far as the divergence
instability is concerned, the friction between the guide and the beam adds to the instability.
Further, if the guide is placed at a proper location, the steady-state amplitude of vibration
under a harmonic excitation can be reduced significantly. Thus, the guide can serve the pur-
pose of a passive controller. The choice of a suitable guide location plays a very important
role in controlling the vibration. The effect of non-linear terms for proper selection of the
guide-location has also been clearly brought out.

Appendix

List of Symbols

transverse displacement of the beam

longitudinal displacement of the beam

uniform axial speed

initial tension in the beam

location of the guide

stiffness of the guide

precompression of the guide

density of the beam material

Young'’s modulus of the beam material

area of cross-section of the beam

length of the beam

second moment of area of cross-section about the neutral axis
radius of gyration of the beam cross-sectioy/£ /A
slenderness ratio/ ! <« 1

y?/2

longitudinal distance of a point on the beam from left support
time

non-dimensional distance

non-dimensional time

non-dimensional transverse displacement
non-dimensional longitudinal displacement
non-dimensional axial speed

non-dimensional tension

tension in thejth span, wherg = 1, 2

difference between the tensions in different spangy — T1)
c/\/m

non-dimensional location of the guide

non-dimensional stiffness of the guide
non-dimensional precompression of the guide

nth linear non-stationary complex normal modepX + i¢!
V-1

linear natural frequency afth linear mode
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Y = nth non-linear complex normal mode X + iy!

Wy = frequency corresponding tdh non-linear normal mode

f* = transverse force per unit length

f = non-dimensional transverse force

Q = non-dimensional frequency of excitation

. = J(@DZ+ (¢])2. |

a, = participation of thezth linear mode= a, €.
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