
Sadhan& Vol. 24, Parts 1 & 2, February & April 1999, pp. 73-96. © Printed in India. 

Inverse modelling for parameter estimation and experiment 
design 

V K GAUR 

Indian Institute of Astrophysics, Sarjapur Road, Koramangala, 
Bangalore 560 034 India 
e-mail: gaur@cmmacs.ernet.in 

Abstract. Inverse modelling forced itself on the attention of scientists in the 
1960s with the advent of satellites and other revelatory technologies, despite 
their putative ill-posedness, when it became clear that estimation of parameters 
of a system not in themselves directly observed but extractable from their ~ig- 
natures in measured data, constituted an ineluctable problem of modern society. 
This paper begins by formulating the basic statement of inverse problems which 
have a generic form and leads through philosophical and analytical approaches 
to their possible solutions that are inherently non-unique. Finally, an example 
is provided for inverse modelling of the shear wave velocity structure of the 
crust beneath the ancient granites around Hyderabad from an analysis of rever- 
berations caused by it that appear in the early part of broadband seismograms. 
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1. Introduction 

Inverse methods have been used for a long time to obtain valid answers to various problems 
of science and engineering. Geophysicists have used inverse methods to gain knowledge of 
the earth's internal structure by analysing anomalies in the natural and stimulated geophys- 
ical fields such as the travel times of seismic waves recorded at the surface, and engineers 
have studied transfer functions of a host of  systems to characterise their inner structure. 
Gauss mentions using the method of least squares as early as 1795 to determine the orbital 
parameters of minor planets from observed data. 

Inverse methods began receiving critical attention since the sixties when the launching 
of earth-orbiting satellites opened up the possibility of viewing the earth system as a whole 
from a vantage point in space and thereby determining the structure and working of its 
infinitely coupled solid and fluid spheres. A knowledge of some state parameters of the 
atmosphere and oceans, for example, is now routinely obtained by inverting radiance data 
measured from satellites. In order to examine how the unknown parameters or functions to 
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be inferred in various inverse problems are functionally related to measured data, we first 
examine the basic statement of two typical inverse problems, of determining the vertical 
temperature distribution in the atmosphere from satellite radiometric data and the internal 
structure of an object from the intensities of criss-crossing radiation traversing the body. 
Subsequently, we shall explore the source and nature of the limitations cast on the quality 
of inverse solutions as well as of their potential usefulness. 

2. Determination of the vertical temperature distribution in the atmosphere from 
satellite radiometric data 

The radiation d(~) at different wavelengths, measured by a sensor above the top of the 
atmosphere, can be expressed as an integrated effect of the thermal radiation emitted by 
various layers whose black body temperatures are T(z). Here, we deduce the functional 
relationship between d(3-) and T(z). 

A pencil of radiation of wavelength (3.) traversing a medium, will be attenuated by its 
interaction with matter i.e., absorption and scattering. Simultaneously, however, it will also 
intensify because of emission from the medium as well as multiple scattering that may 
eventually contribute to the incident ray. If scattering by air molecules can be neglected, 
which is usually justified in view of their small size, the change in the intensity I (3.,/z, rz) 

• of an incident beam in passing through an atmospheric layer of vertical thickness dz can 
be written using Kirchoff's law for absorption and Planck's law for emission in the layer. 

dI(3.,/z, rz) = / z - l ( - / +  B)dr, (1) 

where dr  is the optical depth equal to kdz, k the absorption coefficient and B(3., T) the 
Planck radiance a t .  .... ~..rature T(z) prevailing at the altitude z; 0 cos -1/z  is the 
radiometer look angle. 

Equation (1) is the fundamental equation of radiative transfer which we shall integrate 
to obtain the emergent radiation intensity at the top of  the atmosphere. Rewriting (1) we 
get 

frotd(Ier/Iz) fro t = /z- 1B er/tzdr, (2) 

or, 

I (k , /z ,  rt) = I(3-,/Z, tO) exp[--(~rt -- rO)//z)] 

+ /z-1B exp[ - ( r t  - r0)//zldr.  

The first term on the right can be neglected if ~t is high enough, so that 

I(3-,/z, ~'t) = # - I B  exp[ .0: t  -- ~:o)//z]dr 

= fr~ t B(k, r )d t ( r ) ,  (3) 

where the new variable t ( r )  = exp[ - ( r t  - to) /#)]  may be regarded as representing 
transmission. Further, transforming to a physically realizable variable such as pressure or 
altitude e.g., t = ~o(z) where t = f ( r ) ,  we obtain 
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I(X,/z, rt) = B(X, T(z))(dt(z)/dz)dz, (4) 

o r  

I(~.) = G(~.)B(~., T)dz. (5) 
1 

The kernel of this integral equation is the derivative of the transmission function. Besides, 
the equation is nonlinear as B also varies with wavelength. To linearize this equation, B 
is computed about some appropriate reference wavelength ~.0 using Taylor's expansions 
such as, 

0~_ x0 B(~., T) = B(L 0, T) q- A~. 

= / ~ ( T )  q- AB(X), 

where B()~0, T) = / ~ ( T )  is a function solely of T(z), or 

/z? [I(;~) - AB(~.)I = d(~.) = G(;~, z) Bx[T(z)] dz. (6) 

The radiation d(~.) at different wavelengths, measured by a sensor above the top of the 
atmosphere, is thus expressed by (6) as an integrated effect of the thermal radiation emitted 
by various layers whose black body temperatures are T(z). 

Another example of inverse modelling is the problem of imaging the internal structure 
of objects from measurements made along criss-crossing rays traversing the object. 

3. Computerized axial tomography (CAT) 

This is an X-ray imaging device based on the mapping of X-ray opacity of body tissue, 
using measured attenuation of the beam intensity. The intensity of the beam diminishes 
with the distance travelled, at a rate proportional to the absorption coefficient of the medium 
traversed. 

dI  
= - r e ( x ,  y)lo, 

dl 
where m is the absorption coefficient of the medium at (x, y) and I0, the X-ray source 
intensity. At the kth detector, the measured normalized intensity Ik/lo is given by 

Iklo =exp{--flkm(x'y)dl}" (7) 

Equation (7) is a nonlinear function of the unknown m(x, y) which varies continuously 
along the beam. For a practical solution of the problem, however, it can be linearized by 
approximating the exponential with the first two terms of its Taylor's expansion. Thus, 
assuming the net absorption of X-rays to be small, e x p ( - x )  can be replaced by (1 - x), 

Iklo = 1 -- flk m(x, y) dl. 

The measured quantity (A(Ik/Io)) can then be expressed by the following integral; or 

dk -- ~oAIk _ (Io I0-- Ik) _ flk m(x, y)dl. (8) 
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4. Seismic tomography of the earth 

Similarly, the internal structure of the earth can be visualized from measurements of the 
travel times of seismic waves from known earthquake sources to a given array of seismo- 
graphs. Since travel time between a source j and a receiver k can be determined for a given 
reference earth model, travel time residuals obtained by substracting the measured value 
from the theoretically computed value can be related to departures in the seismic velocity 
structure from that of the reference earth. Thus, for rays emanating from any given source, 

1 10] Atk = (tk)observed - -  (//':)Reference Earth = U0 + dvk dl, 

where vo(x, y, z) is the reference velocity. 

 lll  vkl' I A t k =  - -  1 +  --1 dl 
v 0  v0  3 

:/,,< ! r_<,,,,<l<,,, <9, 
vO l VO .I 

or 

dk = Atk = --Amk(x,  y, z)dl. (10) 
vO 

Equations (6) (8) and (10) have the form of a Fredholm equation of the first kind in 
which the unknown parameter or function T(z) or re(x), to be determined from observed 
data, multiplied by a kernel or Green's function appears within the integral. However, the 
quantity on the left representing measured data can only form a discrete set of values for 
given arguments. A straightforward solution of such equations to extract the unknown 
parameter or function indeed exists in the case of a few special kinds of Green's functions. 
Some of the well-known integral transform pairs given below enable one to express the 
unknown function in the Fredholm's equation as an integral of the measured data multiplied 
by an inverse Green's function. For example, the Laplace transform pair, 

fO c¢ 1 [  ~+jc¢ d(y) = exp[-yz]T(z)dz; T(z) = ~ . ,a_ jc¢  exp[zy]d(y)dy, (11) 

and the Fourier transform pair, 

C '/5 d(y) = exp[-2~jyzlT(z)dz; T(z) = ~ exp[2~jzyld(y)dy. 

(12) 

However, even these perfectly invertible integrals cannot be evaluated in practice, as 
measured data, being essentially discrete, cannot be expressed as a continuous function 
required for evaluation of the integral without making assumptions that may seriously 
vitiate the solution. In the case of integration over a complex plane, one would require data 
to be specified for complex arguments, which is manifestly impractical. 

Equation (6) forms the basis of  an inverse problem in which the parameters or functions 
to be determined are continuous while the data set is always discrete. As remarked earlier, 
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its solution can be directly obtained only for a few well-behaved Green's functions. In 
addition, the only way to handle discrete values of the integrand, even though they may 
make up a continuous function, would be to resort to numerical solutions. This necessarily 
calls for a discretization of the integral by approximating it as a sum, using one of the 
several procedures of numerical quadrature. 

However, the discrete inverse formulation, which we shall return to shortly, retains all 
the potential of continuous inverse solutions as well as of their limitations, to which are of 
course added the peculiar consequences of discretization. An analysis of the former thus 
provides illuminating illustrations of the sources of uncertainties in the inverse solution, 
thereby opening up the possibility of handling them with insight. 

5. Uniqueness and stability 

Before we transit from the continuous to discrete inverse theory, we examine two analytic 
questions of great importance to solutions of inverse problems. 

The problem of non-uniqueness is embedded in the very form of the basic equation 
(6) that is, in the possibility that there may exist non-trivial solutions T*(z) of T(z) for 
which the integral vanishes (Green's functions being singular). Aspects of the solution 
represented by T* (z) would thus have no possibility of being determined from the data. 
What is more, its existence, even if real, may not be revealed in a numerical solution as even 
the true singular nature of the associated Green's function may be masked by discretization. 

Numerical solutions of  an inverse problem are thus invariably non-unique owing to this 
ban on retrieval of some parts of the solution. 

The other serious concern in solving inverse problems is one of stability. This is best 
illustrated by examining how significantly the desired information about unknown param- 
eters or functions may enter the measured data. Let us consider the integral equation (11) 
which has the negative real exponential function as the Green's function. This function 
decreases monotonically with a degree of smoothness determined by its derivative, i.e. 
the value of the exponent z. At large values of the argument y, this function is very small 
(unless z is small which would make the function even more smooth) and would have the 
effect of heavily reducing the contributions of the unknown function or parameters of the 
model to the measured data. A particular result of this is to make the data at widely varying 
values of the arguments insensitive to values of the function, thereby reducing the possi- 
bility of estimating them reliably. Conversely, infinitesimal variations in the data, which 
may as well be caused by the presence of errors, will result in wide fluctuations of the 
function or model being estimated. Thus, the inverse solution does not depend on the data 
continuously in the sense that small errors in it may lead to large variations in the solution. 

The following example due to Twomey (1977) demonstrates this fact clearly. Let (13) 
be an error-free statement of two experimental results in which the quantities on the RHS 
denote the observed data and the coefficients of the two unknowns x and y are the numerical 
values Of the two experimental conditions, 

x + y = 3 ,  

1.00001x + y = 3.00001. (13) 

The true values of x and y are obviously 1 and 2 respectively. 
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Let us now evaluate the values of  the unknowns for 3 different erroneous situations: 

(i) 0.001% error in measuring the coefficient of x in the second experiment. 

x + y = 3  

x + y = 3.00001 

These equations are inconsistent and therefore have no solution. 

(ii) 0.001% error in measuring the observed data in the second experiment. 

x + y = 3  

0.00001x + y = 3 

Solution: x = 0; y = 3. 

(iii) 0.001% errors in the measurement of both data and the coefficient in the second 
experiment. 

x + y = 3  

x + y = 3  

Undetermined system, therefore many solutions (x ---- 3 - y). 

6. Ill-posed problems 

Endemic non-uniqueness and instability of inverse solutions violate two of the three basic 
conditions of well-posed problems enunciated by Hadamard in the 19th Century: Unique- 
ness, stability and existence of solutions. The third condition requires a proof of the ex- 
istence of a solution. This is usually a difficult exercise and in its absence a solution is 
just assumed to exist. However, the problems of non-uniqueness and instability render 
most of the inverse problems ill-posed. For a long time, therefore, inverse problems were 
ignored as not being worthy of  serious study, but the realization that most urgent problems 
of contemporary concern are essentially inverse, has spurred considerable interest in the 
search for regularization methods to obtain stable, albeit approximate, solutions which are 
sensible in some sense. 

7. Numerical quadrature 

In order to carry out numerical evaluation of a Fredholm integral such as (6), it is first 
approximated by a sum. This step, termed numerical quadrature, is accomplished by 
discretizing the interval (a, b) into shorter sub-intervals of desired fineness, marked by 
quadrature points zl, z2 . . . . .  Zm, at which the respective values of the function T(z) are 
T1, T2 . . . . .  Tm. A number of quadrature formulae can be developed for this purpose de- 
pending on the choice of the interpolation functions. If this function is assumed to be linear, 
within each sub-interval, we may rewrite (6) as follows: 

fa b G(Z, y)T(z)dz = y~ Gjk T(Z, k), (14) 
k 
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where j represents the argument of the observed data, and 

Gjk={--Zk-- i  fzZk G(Z,y)dz+ Zk+l fZk+lG(z,y)dz} 
Z k  - -  Z k - 1  k - 1  Z k + l  - -  Z k  J Z k  

+ zG(z, y)dz - zG(z, y)dz . 
Z k  - -  Z k - 1  g - 1  Z k + l  - -  Z k  J z ~  

The integrals f G(z, y)dz and f zG(z, y)dz in each sub-interval can, in turn, be evaluated 
numerically or analytically. With these qualifications, (6) can now be written as: 

d = GT. (15) 

8. Nonlinearity 

It must be noted here that often enough we find that the unknown function or parameter to 
be determined is nonlinearly related to data as (5). Considerable advances have now been 
made, following developments of global optimization methods, to address such nonlinear 
inverse problems directly but a more popular approach to their solution through quasi- 
linearization can be quite effective. For example, as in (5) where B happens to be a function 
of ), we quasi-linearized this equation locally about a reference wavelength ~.0. 

In general, if Gm --- d is nonlinear, we expand the inner product [G, m] about a reference 
(initial guess) model vector m0. Accordingly, d = [G, m0] + [0 G/0mlmo, Am] +OI Am21. 
Neglecting the higher order terms in Am and in view of the linearity of inner products, 

[ ~ m  ,no' A m ] = [ F ,  Am] = [F, m] - [F, mo], 

o r  

{d - [G, m0] + [F, tool} = [F, m], 

o r  

a = (~m, (16) 

where a is the new reconstituted data vector and G the new Green's function equal to the 
Frechet derivative of G at too. A nonlinear problem can thus be reduced to a linear one. 

9. Solution of discrete linear inverse problems 

We have seen how the working equation of most inverse problems can, subject to approxi- 
mations involved in discretization and linearization whenever called for, be reduced to the 
matrix equation 

G m =  d, (17) 

where the N-dimensional vector d represents the data set, the N × M matrix G represents 
the Green's function or the physical theory relating the data to parameters of the system 
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(or model parameters mk) and m represents the M-dimensional model vector consisting, 
for example, of k values of the atmospheric temperature T(z) to be estimated at different 
attitudes zk. 

In very few cases of practical interest is the solution of the matrix equation G m =  d 
unique. Uniqueness is guaranteed only in the special case when the matrix G is non-singular 
and there can be no non-trivial solution of the homogeneous equation Gm=O. In such cases, 
the solution can be unambiguously written as m = G u I d, where Gu  1 is the unique inverse 
of matrix G and GulGu = IM = GuGu 1. However, if the data contain errors and the 
vector d is contaminated by a random error vector, the covariance of the solution can be 
estimated from the relation Cov(m) = G -  1Cov(d) ( G -  1 ) / =  a 2 G -  1 ( G -  1)t in the case of 
identically distributed random errors whose variance is a 2, G-1 being the derived inverse 
of G, and the prime indicating a transpose. 

In general, depending on the scheme of measurement defining the data argument, and 
parameterization of the model being inverted for, the matrix will not be square or even of 
full-rank. In such cases the above equation will have no unique solution and the matrix G 
will have no unique inverse. But, if a solution must be found, howsoever qualified, we must 
explore the possibilities of obtaining possible approximate solutions, and the specificities 
that such solutions will possess. 

To elucidate this problem, we consider the three possible cases when the rank of the 
N x M matrix p (G) is 

(i) p(G) ----- M < N, 

(ii) p(G) --- N < M, 

(iii) p(G) < (minimum of M and N). 

(i) Over-determ#ied system 

The first set involves a system of N linear equations in M unknown model parameters. 
These may form a consistent or an inconsistent system, depending on whether the data 
vector d belongs or not to the column space of G. If it does, then the system essentially 
reduces to M independent equations, thereby yielding a unique solution as in the case of  
a non-singular matrix. 

If, on the other hand, the above system is inconsistent, as would most often happen 
because of perturbations in measured data introduced by random errors, one must seek 
the most acceptable approximate solution. A standard approach is to design an inverse 
of the matrix G which when substituted in the original equation will result in predicted 
values of data as close to the respective measured values as possible. Normative measures 
of 'closeness' or 'distance' are defined variously, each having its particular implications 
and leading to different inverses or solutions. One is thus faced with the challenge and 
opportunity of designing the best inverse for a given situation. 

One way to approach an appropriate option is to ask how closely the inverse matrix G -  1 
maps the measured data vector into the predicted one (Menke 1989). For example, if G~-1 
is the best approximate inverse, then the estimated value of the model parameter will be 

= G / l d ,  (18) 
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and the corresponding values of the predicted data vector d will be 

d --- G ~  = ( G G / 1 ) d  = Nd,  (19) 

where, N = (GG/1) .  

Thus, we see that the degree of closeness of (GG/1  = N) to the identity matrix I, in fact, 
determines the fidelity with which a predicted data vector may approximate the observed 
one, and a sensible decision would be to design G~ -1 in such a way as to minimize the 

norm of (I - GG/1  ). 

Let the desired inverse solution be G] -1, such that II I - G G / ]  II is a minimum. We 

first choose to minimize the Euclidean norm of the kth row vector of (I - GG~I) ,  or of 

(I - N), where N = G G t  1 . Let, 

II Ikp -- Nkp II = &,  (20) 

= ~ N2p - 2 Z Nkplkp + Z I2p" (21) 
P P P 

T o  seek the desired G/-1, therefore, and recalling that N = G G / 1 ,  we set 

a&/aGq~ = o, (22) 

where Gqr 1 is the (q, r) element of G/1 . 
It may be noted that each of the terms in (2) is positive and the differential of the last 

term which is not a function of G/1 ,  must be zero, (24) then reduces to 

Oaqr 1 ~p (~m akin aml)(~n akn a n 7 - 2 ( ~ t  Ikp akt a-tpl : 0 ,  

or 

{ ~ :E Gkm Gmlp Gkn t~qn ~rp "~- Gkm Gkn Gn 7 ~qm t~rp) 
p m n 

-2  ~-'t Ikp Gkt 8qt ~rp ] : O, 

or 

or 

Gqk (Gkm Gmr) 
m 

! = Gkqlkp~rp -~ Gqklkr, 

G ' G G / 1  --- G' 

or 

G• 1 = ( G ' G ) - I G  '. (23) 

This inverse is the same as would be obtained by minimizing the sum of squares of the 
misfits between the actual data elements and the corresponding values predicted from the 
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estimated model vector. For this reason, G~ -1 is called the least squares inverse. It can be 

shown that G~ -1 always gives a unique solution. A graphically illustrative example for a 
two dimensional model vector is given below. 

It would be instructive to show that the corresponding model resolution matrix R = 
G/-1G which measures the fidelity with which estimated model parameters relate to true 
ones, is in fact the identity matrix, and that the normalized covariance of the estimated 
model parameters is (G'G) -1 . 

Indeed, it may often be desirable to minimize both II (I - GG -1) ]1 and some fraction 
say e2 of the normalized covariance of m. If E represents the normalized data covariance 
matrix, the resulting inverse can be shown to be 

Gd 1 = (G~G + e2E)- IG ' .  (24) 

Equation (24) is identical to the damped least squares inverse. It will also be instructive 
to show that whilst G~ -1 is not unique, the inverse solution always is. A proof of this for 
p (G) = 2, is given below. 

Least squares solution for p(G)=2 ,  N>2:  Assuming that some measurable property 
(d) of a material is linearly dependent on, say, temperature (T), a number of measurements 
are made at different temperatures to determine the parameters of the linear model: d = 
ml + m2T. 

The N measured values of data so generated can be expressed as: 

o r  

E'il LI "ll l Ill2 d2 = T2 ml + . , 

m2 

d TN eN 

d = G m + E  

where ei is the error associated with the measurement di. 
It is clear that if N = 1, both ml and rn2 cannot be estimated. If N = 2, a solution can 

be obtained for 'ml and m2 by assuming that the data is free from errors (neglecting el). 
When N > 2, and the equations are inconsistent owing to random errors, the vector d does 
not belong to the column space of G. Therefore, there is no unique solution. However, it 
would be sensible to estimate m 1 and m2 by imposing the condition that the sum of the 
squares of error terms be a minimum. Accordingly, 

N N 

o r  

E 82 = R = Z [ d i - m l - m 2 T / ]  2, 
i=1 i = l  

R = [ y ~ d 2 - 2 m l E d i - 2 m 2 Z d i T i  

+2mlm2 Y~ T / +  Nm 2 + m 2 ~ Ti2]. 

In a 3-dimensional coordinate system, R represents an elliptical paraboloid (figure 1) with 
just one minimum, thereby proving that the least squares solution is unique. 
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m2 

Figure 1. The mean square prediction error R plotted as 
a function of model parameters of a 2-dimensional model 
space, describes an elliptical paraboloid which manifestly 
has a minimum for a unique pair of model parameters that 
constitute the least squares solution. 

The estimates of the model parameters m0, m 1 can be obtained by equating to zero, the 
differentials of R w.r.t, m 1 and m2. This would yield, 

Z di ~_, ri2 -- y~ Ti ~_, di Ti 
m l =  

N Z T / z  - (y-~ 7~) 2 

N Y~ d~ T~ - )-~ ~ ~_, d~ 
N ~ T/2 - ()-~ T/) 2 

(ii) Under-determined system 

When the rank of the matrix is N < M, the data vector d will always belong to the column 
space of G. Therefore, m will always have a solution, albeit a non-unique one. For, G 
in this case is so conditioned that in operating on an M-dimensional model vector, it can 
only illuminate the resultant transformation in a lower N-dimensional data space, leaving 
the remaining (M - N)-dimensional subspace totally obscure. The operation Gm in this 
case annihilates all information belonging to this null subspace which is orthogonal to 
the N-dimensional illuminated subspace and is formed by (M - N) linearly independent 
vectors, each comprising M elements. 

The N-dimensional measured data thus reflect only a partial view of the model from 
a lower dimensional space and its inversion to estimate the model can only provide an 
incomplete image of the model. However, we have two options to make the best of this 
fuzzy situation. One can, in the first place, ask what definition of the model can best be 
extracted from the available data. Alternatively, if some additional guiding insights are 
available, one may attempt building up its missing dimension by designing an appropriate, 
even-though wholly arbitrary, combination of the row vectors of the null space. In effect 
this would amount to adding (M - N) independent but wholly arbitrary equations to raise 
the rank of the matrix to M, thereby contriving a unique inverse. The resulting solution 
would, however, be legitimate only to the extent that the added equations can be justified. 

A search for the best possible solution, in turn, requires that the estimated model vector 
be as close to the true one as possible, since ~ = Gmld = GmlGm = Rm, R must 
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be as nearly equal to the identity matrix as possible. This can be ensured by minimizing 
the Euclidean norm of II I - R II. Let Sk represent the Dirichlet spread of the kth row of 
R, then 

Sk = Z ( l k p  -- Rkp) 2 = Z [ I 2 p  + Rk2p -- 2IkpRkp]. (25) 

P P 
Since each Sk is positive, we can minimize the total spread o f R  = ~ k  Sk by minimizing 

each & respectively with respect to each of the elements Gqr 1 of the desired inverse G m 1. 
Accordingly, 

0 i v / 2  , OGqr 1 I[~p "I- Zm Zn GkmOmpOkn Gnp 

(26) 

or 

or 

Z GrpGxpGq 1 ~- Grplqp ' (27) 
X 

E -1 t t Z Gqx (GxpGp r) = Gq r" (28) 
p x 

Thus elements Gq 1 of the desired inverse Gm 1 must satisfy (28) or, Gm 1 = G' (GG')  -1 . 

The above Gm 1 will be recognized as the Minimum Norm solution obtained by mini- 
mizing the length of the model vector, or what is the same, by excluding any contributions 
from the null space. 

It would be instructive to show that in this case the counterpart data resolution matrix, 
N, is the identity matrix, and that the normalized model covariance is G ' (GG' ) -2G.  

However, when errors in data or uncertainties in the adopted mathematical model are 
known to be significant, it may be desirable to seek an inverse that would simultane- 
ously minimize both the Euclidean norm of the solution, as well as some fraction of the 
model covariance. The resulting solutionis given by the damped minimum norm inverse 
G ' (GG'  + e2E) -1, so named by analogy to (24), where E as before represents the data 
error covariance matrix. 

Another choice of an acceptable solution (Menke 1989) that can be obtained from 
available data alone without the aid of any a-priori assumptions, is to seek a unique 
solution of some weighted average of the model parameters even though a unique solution 
of the model parameters themselves is not possible. For example, if mp be a particular 
partially illuminated solution of  the model and m0i the (M - N) independent vectors of  
the null space, a general solution using arbitrary coefficient o/i can be written as follows: 

M-N 
mgen = mp + E otimoi, (29) 

i 

and 
M-:- N 

(m) = cOtmgen = oJmp + E Oli °fmoi' (30) 
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where (m) is the weighted average which can be made unique by determining the particular 
vector Wp which reduces all its products with m0i to zero, so that, 

i (31) (ml = COpmp. 

That at least one such averaging vector w~ does exist, can be clearly seen by recalling the 
i desired relations w~moi = 0 which provide the necessary (M - N) constraints. 

Estimates of weighted averages of model parameters indeed have a clear physical mean- 
ing, and therefore significance, particularly if they possess some natural ordering in space 
and time, such as the depth of an irregular subsurface horizon below points on the earth's 
surface. 

Finally, if some insightful knowledge about the nature of the model parameters is inde- 
pendently available or can be assumed as reasonable, one may approach the problem by 
building up a legitimate image of it, as an opportunity for creative design by exploiting the 
presumed attributes of the model in an imaginative way. 

(iii) Partially determined system 

Most real world inverse problems are essentially under-determined but often include a 
subspace of model parameters which may be either over-determined or inconsistently 
incorporated. Data from a tomography experiment, for example, may result in such a 
mixed system if some compartments of the discretized region lie in the path of more than 
adequate number of rays and others are sparsely sampled. In such a case, a subspace 
S0(m) of model parameters will remain unilluminated by the measured data, while only a 
subspace Sp (d) of the data space may be spanned by the column space of G, whose rank 
p is less than the minimum of N and M. 

Partially determined problems of this kind can of course be handled by using the afore- 
mentioned strategies if over- and under-determined parts of  the mixed system could be 
separated. This is indeed possible using the spectral or Singular Value Decomposition 
(SVD) of an (N x M) matrix G in terms of the two sets of orthonormal eigenvectors U 
and V of GG t and GtG respectively, and their eigenvalue matrix A 2. To understand its 
significance, we construct an augmented (N + M ) x  (N + M) matrix S from G and its 
transpose G r, and examine its characteristic equation 

sw_-I°, 
or 

[o,G 01Ev :l= il U/ Vi ] '  (32) 

which, in turn, yield 

GV = UA, 

G'U = VA, (33) 

where A is the diagonal matrix of the eigenvalues of S. 
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The above relations, in turn, yield 

G 'GV = V A  2, (34) 

GG~U = UA 2, (35) 

which enable us to interpret V and U as the set of orthonormal eigenvectors of GfG and 
GG I respectively, so that UU ~ = IN and VV ~ = IM.  Using these properties of U and V, 
we can then write (43) as follows: 

G = UAV';  G' = VAU ~. (36) 

The vectors U and V respectively span the full spaces S(d) and S(m) of data and model 
parameters. But the rank of G being p, only the subspaces Sp(d) and Sp(m) spanned by 
eigenvectors Up and Vp corresponding to non-zero eigenvalues, contain any information 
about predicted data or model parameters. Thus, we see that G.can be written as 

G = UAV'  = UpApV~,, (37) 

where A is partitioned as 

The null spaces So (d) and So (m) are similarly spanned by the eigenvectors U0 and V0 
which must be respectively orthogonal to Up and Vp. 

In seeking an acceptable solution of Gm = d, or ~ = Gp  1 d, we therefore look for an 
inverse that would ensure that ~ has no component in So (m), and the predicted data has 
no component in Sp (d). Using the condition that the null spaces So both of data and the 
model are respectively orthogonal to the illuminated Sp vector space, it can be shown that 
one such inverse, also called the natural inverse of a partially determined linear system, is 
given by 

Gp 1 = VpAplUp.  (39) 

The respective values of  R, N and the normalized Covn (m) are, in turn, given by 

l = VpV'p, (40) 

N = U p U p ,  (41) 

Covn (~)  --2 ' = VpAp Vp. (42) 

Whilst SVD provides a simple way of identifying the null vectors of Gm = d and thereby 
the number p needed for constructing the inverse, a problem often arises from the endemic 
character of most real world data kernels in that the small eigenvalues decrease very 
smoothly making it difficult to distinguish between those that are actually zero from the 
near-zero ones. 

These near-zero eigenvalues are the prime source of instability in the inverse solutions 
as can be discerned from (39), since they introduce high frequency oscillations. This 
problem can be circumvented either by specifying a cut-off eigenvalue which will amount 
to reducing the dimension of  the operational eigenspace or by enhancing the near-zero 
eigenvalues, which will have the effect of enforcing smoothness on the inverted solution. 
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If only the very small eigenvalues are excluded, the solution will be generally close 
to the natural solution and have good variance, as the covariance of the estimated model 
(42) is extremely sensitive to the smallest non-zero eigenvalue. However, the model and 
data resolution would deteriorate, exposing the inevitable trade-off between resolution and 
variance, which every inverse problem has to deal with by an appropriate parameterization 
of the model. 

If on the other hand, one chooses to enhance the eigenvalues by an amount propor- 
tional to the error in the data vector, it would be desirable to seek an inverse that would 
simultaneously minimize the norm of the data misfit vector and that of the solution rough- 
ness represented by the vector of some-order difference of the parameter components. 
As before, trade-off exists between the error misfit and the degree of smoothness. The 
resulting inverse in this case is given by 

(G'G + e2H ) - lG  ', (43) 

where 0 < e 2 < 1 is the trade-off parameter, and H = KrK, K being the finite difference 
coefficient matrix. For example, the following K matrix of order (M - 2)x M would 
represent a second-order difference. 

- 1  2 - 1  0 
0 - 1  2 - 1  
0 0 - 1  2 

K =  
0 0 0 - 1  

0 0 0 0 
0 0 0 0 

- 1  0 
2 - 1  

(M-2)xM. 

It will be recognized that K = I reproduces the damped least squares solution, also known 
as ridge regression or Marquardt, while K constituted from first-order differentials leads 
to a solution known as Occam's solution. 

10. Generalized inverse 

It may be mentioned here that the various inverses discussed above belong to a class of 
generalized inverses G -g which determine exact or approximate solutions of basic equation 
G m =  d depending on the structure of G .  They satisfy the relation G G - g G  = G, in 
addition to satisfying additional conditions or constraints imposed on them. For example, 
in deriving G m 1 for the under-determined problem, we made the demand that the model 
resolution matrix R which affects a weighted averaging of the true model in yielding 
the estimated parameters be as close to an identity matrix as possible, and proceeded 
to minimize II I - R II or II I - GmlG II. However when data or model parameters 
have a natural ordering, one would prefer that the off-diagonal values in R are inversely 
proportional to their distance from the diagonal. This would make the model estimates more 
nearly representative of the local averages. A generalized inverse designed to accomplish 
this by damping the side lobes of the row spread in R was constructed by Backus and 
Gilbert and bears their name. 
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Figure 2. Simplified geologi- 
cal map of the southern Indian 
peninsular shield from Sarvothaman 
& Leelanandam (1987). (1) Dec- 
can basalts; (2) Proterozoic forma- 
tions; (3) Gondwanas; (4) Younger 
granites; (5) Dharwar Supergroup 
metasediments/volcanics; (6) Un- 
classified crystallines - granite- 
gneiss; (7) Granulite facies; (8) 
Granite-granulite boundary. 

11. Design of experiments 

We have seen that most real world problems are inverse and do not possess a unique solu- 
tion. The challenge in all these cases is to design the best approximate solution. However, 
inverse formalisms are also exciting because they provide a creative opportunity to explore 
the character of the data spaces in which a particular model space may be mapped, as well 
as the view of the model space from that of measured data. This visualization is indeed 
provided by the form of the data kernel matrix G which is partly dependent on the way 
data is measured but not on the data itself. The illuminating potential of G can therefore 
be explored in order to bring out all the intrinsic limitations of possible solutions and their 
significance and quality, in advance of the data collection exercise. In situations where 
the solution can or is to be obtained on the basis of experimental data, such an analysis 
provides a creative opportunity to design the experiment appropriatelY which would, in 
turn, effect desirable structuring of the data kernel. Indeed, analysis of data inversion and 
adaptive experiment design have very high potential, not always fully exploited, to push the 
sharpness of solutions to the limit of resolution theoretically permitted in a given situation. 

Finally, actual results of seismogram inversion to obtain the shear velocity structure 
Vs (z) beneath the Archaean Granites around Hyderabad (figure 2) (Gaur & Priestley 1997) 
is presented below as an example of inverse modelling. 

12. Velocity structure beneath Hyderabad 

The groundmotion record G(t) at a site generated by an earthquake (seismogram) is known 
to begin with the first arriving compressional waves (P)  followed by its reverberations 
generated by the layered structure beneath the recording site (a few hundred kilometres 
deep) and later by the slower shear and surface waves. The reverberations (figure 3a) 
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Figure 3. (a) Ray diagram showing the main P-S converted phases which comprise the 
Receiver Function for a single layer overlying a half space; (b) showing the corresponding 
wave form. 

that represent a convolution of the incident (P)  wave with the velocity structure m(z) 
beneath the recording site are themselves quite weak, but yield discernible signals of P 
to S converted phases (Ps) after deconvolution of the vertical component of the P wave 
from the horizontal component of the reverberations (figure 3b) recorded before the onset 
of the next dominating shear (S) waves, which being slower than the P waves lag behind 
it depending on the distance of the earthquake from the site. These selectively extracted 
converted phases are called Receiver Functions, denoting an attribute of the seismogram 
that is wholly reflective of the properties of the earth directly beneath the receiver (recording 
seismograph). 

The Receiver Function thus obtained over a horizontally stratified earth appears (Ammon 
1991) as a scaled version of the radial component of  ground motion with the P multi- 
ples entirely eliminated. The deconvolution is accomplished by division in the Fourier 
transformed frequency domain and retransformation of the quotient back to the time do- 
main. Let V(t), R(t) represent a ray description of  the vertical and radial components of  
ground motion respectively and V (W), R(W) their Fourier domain counterparts. Then, 

V(t) = ~_, vkS(t - tk), (44) 
k 
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R(t )  = ~_, rkS(t  -- tk), (45) 
k 

and the Fourier domain Receiver Function 
H ( w )  = R ( w ) / V ( w ) ,  (46) 

where S(t)  is the source time function and tk the instant of arrival of the kth ray, k = 0 
representing the direct P phase. 

In practice, of course, one must band limit V(w), R(w)  by using a Gaussian filter F ( w )  
of appropriate width, and also forestall any instability in deconvolution that may arise from 
division by spectral values of V ( w )  that are either zero or very small. This can be done by 
constraining the lowest value of the denominator to remain above a practicable value set 
by a small parameter called the water level parameter (Clayton & Wiggins 1976). 

Accordingly, one may rewrite (46) as 

H ( w )  = [ R ( w ) V * ( w ) F ( w ) l / c k ( w ) ,  (47) 

where, V* is the complex conjugate of V, and 

F ( w )  = f exp(--wE/4a2),  (48) 

is the Gaussian filter normalized to unit amplitude in the time domain by the factor f ,  and 
having a width a, and, 

~b (w) = max[ V (w) V* (w), c. max{ V (w) V* (w)}], (49) 

q~ (w) is set to the greater of the two quantities in parenthesis on the RHS of (49). 
The corresponding time-domain Receiver Function h(t)  can then be shown (Ammon 

1991) to be given by, 

• h(t)  = (ro/vo)[~(t) + rsk(t - tk)], 

where r0 and v0 are the vertical and horizontal amplitudes of the direct P phase, and rsk 
those of the various converted shear wave phases. 

It may be noted that a judicious choice of a and c is critical in determining the shape 
of the Receiver Function owing to their effects on the waveform spectra. In addition, the 
choice of c has to be a trade-offbetween the extent o f  such modification and stability of the 
deconvolution process. Options for such a choice can be delineated by abstracting Receiver 
Functions for a suite of a and c values and examining their signal quality, particularly of 
the self-deconvolved vertical component. 

The factor (ro/vo) scales the radial Receiver Function and therefore clearly depends on 
the epicentral distance as well as on the extent of contamination by scattered waves. In 
the original treatment of Receiver Function analysis, this quantity used to be iaormalized 
to unity, thereby obliterating the effect of varying epicentral distances (through the inci- 
dence angle of P waves), which is advantageous when stacking Receiver Functions from 
events covering a large geographical spread. This approach, however, forfeits valuable 
information implicit in this quantity, particularly that concerning the near surface velocity 
structure and estimates of contamination by scattering. Modern analysis of Receiver Func- 
tions, following Ammon (1991), therefore retains their true amplitudes and preserves the 
ratio (ro/vo) of the radial and vertical.amplitudes of the P wave. In practice, this is ac- 
complished by deconvolving the vertical P wave from itself, which is seldom the expected 
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delta function owing to spectrum modification by the water level and Gaussian parameters, 
and using its maximum amplitude to normalize the radial Receiver Function. 

Before inverting Receiver Functions for velocity structure, it is desirable to reduce the 
effect of random errors introduced by the computational processes and earth noise. This 
can be achieved by stacking a number of Receiver Functions arising from closely spaced 
events (in our case within 2°). If records of an adequate number of such close events 
are not available and the signal-to-noise-ratio of the Receiver Function is unsatisfactory, 
recourse could be had to form composite Receiver Functions from a wider geographical 
spread of earthquakes, but in that case it would be necessary to suppress the range effect on 
individual Receiver Functions by normalizing the zero lag amplitude ratio (r0/v0) to unity. 

It may be remarked here that whilst the tangential Receiver Function over a horizontal 
earth should ideally be zero, small amplitudes would generally appear in it owing to the 
presence of small levels of scattered energy in the seismograms. Significant finite ampli- 
tudes of tangential Receiver Functions therefore suggest departures from horizontal strati- 
fication and systematic variations of coherent phases, if present, can be used to infer the na- 
ture of inhomogeneity. The relative amplitudes of tangential and radial Receiver Functions 
are therefore an important guide in parameterizing the velocity structure to be inverted for. 

Inversion of Receiver Functions to obtain the shear wave velocity structure is accom- 
plished by parameterizing the latter in a manner such that the inverse problem is overde- 
termined i.e., the number n of data points dj, is greater than the number m of unknown 
parameters of the velocity structure. For a layered earth model, this is normally defined as 
consisting of m layers each of constant thickness and uniform velocity mk. The thickness 
of the layer is chosen to be such that it can be clearly resolved by the data phases being 
inverted. For example, in the case of predominantly 1.0 s period shear waves having a wave 
length of over 3.5 km in the upper lithosphere, a layer thickness of 1-2 km should be quite 
satisfactory. When the earth model is so defined, determination of the velocity structure is 
reduced to the problem of estimating the unknown velocities in each of the m layers. 

13. Data and analysis 

Three-component broadband seismograms recorded at Hyderabad between May 1989 
and March 1996 were obtained from the Geoscope Data Centre at Paris. Both radial 

Table 1. Data for the period 1990-95. 

Year Julian day Latitude Longitude Depth (km) Magnitude (mb) 
1990 150 45.841 26.668 89 6.7 
1990 364 -5.097 150.967 179 6.6 
1992 246 -6.046 112.138 625 5.9 
1992 255 -6.087 26.651 11 6.7 
1992 292 -6.279 130.214 119 5.8 
1993 015 43.30 143.691 102 6.9 
1994 104 -6.587 129.771 166 5.8 
1994 194 -7.532 127.770 159 6.5 
1994 271 -5.786 110.352 638 5.9 
1994 319 -5.589 110.186 561 6.2 
1995 235 18.856 145.218 595 6.3 
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Figure  4. HYB single-event radial Receiver Functions (c = 0.00l ,  a = 5.0) plotted as a 
function of  event azimuth. The higher frequency Ganssian was chosen in this case to better 
resolve time differences in Ps-P delay. The distance and azimuth of  the events from HYB 
are given to the right of  each trace. 
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Figure  5. Three single-event radial Receiver Functions (c = 0.001, a = 2.5) and the 
resulting radial stack for events lying between latitude 6.35 and 7.5 ° south and longitude 128 
and 130 ° east. 
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and transverse Receiver Functions were generated from a large number of  those for 
which broadband records were available, using different values of  the Gaussian width 
a (5, 2.5, 1.0) and the water-level parameter c (0.0001, 0.001, 0.01, 0.1). After a close 
scrutiny of  the signal quality of  these Receiver Functions, 11 of  them (table 1), were 
selected for further analysis. 

Figure 4, shows the Receiver Functions (c = 0.001, a = 5.0) obtained from six 
events, including both shallow and intermediate focus, f rom different azimuths. Their  radial 
components show a remarkable coherence of  phases. The time delays (3.04-0.1 s) of  the Ps 
phase varies systematically with azimuth. This variation can be explained by two different 
velocity models: variations in the velocity structure o f  the mid to lower crust or variations 
in the Moho depth. However, possible variations, as will be shown later, are estimated to be 
small, and coupled with the small relative amplitudes (<  10%) of  the tangential Receiver 
Functions (figure 4), warrant the crust to be modelled as a predominantly one-dimensional 
structure on which small perturbations may be superpose& 

Figure 5 shows the radial Receiver Functions (c = 0.001, a = 2.5) of  3 events clustered 
between 128 ° and 130°E and 6.35 ° and 7.5°S, as well as the stacked radial Receiver 
Function from these three events. Figure 6 compares this with another radial Receiver 

110 - 112 STACK 

° 

I , , , , I . . . .  I , , , , I , , , , I , , , , I ~ , , ~ I 

0 5 10 15 20 25 3 0  

Seconds 

Figure 6. Comparison of two radial (the upper waveform in each) and tangential Receiver 
Function stacks used in the simultaneous inversion for the crustal structure beneath HYB. 
The upper pair of Receiver Functions are from three events lying between 5.6 and 6.0 ° south 
and longitude 110 and 112 ° east. The lower pair of Receiver Functions are from the events 
shown in figure 5. The mean and +1 standard deviation are shown. 
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Figure 7. (a) Initial crustal models from the simultaneous inversion of the two radial 
Receiver Functions shown in figure 6. The dotted line denotes the initial starting model; 
(b) The fit of the resulting model synthetic radial Receiver Functions to the 4- one standard 
deviation bounds. 
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Figure 8. (a) Crustal models from the simultaneous inversion of the two radial Receiver 
Functions shown in figure 6, after constraining the surface layer to be 10km thick; (b) The 
fit of the resulting model synthetic radial Receiver Functions to the 4- one standard deviation 
bounds. 
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Figure 9. (a) Final crustal models from the simultaneous inversion of the two radial 
Receiver Functions shown in figure 6, after constraining the surface layer to be 10 km thick, 
and the shear wave velocity in this layer to lie in the range 3.46 to 3.61 km/s; (b) The fit of the 
resulting model synthetic radial Receiver Functions to the 4- one standard deviation bounds. 

Function (c = 0.001, a = 2.5) stack composed of  3 events lying between 110 ° and 
l12°E  and 5.6 ° and 6°S. 

For inverting the stacked Receiver Functions, we adopted a starting reference model 
(dotted line in figure 7) based on some knowledge of  the surface and average crustal ve- 
locities around Hyderabad (personal communication with Sri Nagesh and S S Rai). From 
this, we generated a family of  20 new initial models (Ammon et al 1991) by adding to 
the reference model, a 2-component perturbation vector, with the purpose of  obtaining 
a group of  models which whilst being significantly different from each other would be 
expected to share some essential attributes of  the parent model. The 2-component vector 
used to perturb the initial model consisted of a cubic perturbation vector scaled to a maxi- 
mum velocity perturbation of  !.0 km/s, and a random velocity change up to 20% of cubic 
perturbation. 

Synthetic Receiver Functions were then computed using the same values a and c (2.5, 
0.001) selected earlier, and a P wave ray parameter (horizontal slowness) of  0.063 s/km 
corresponding to a source approximately 60 ° away, to iterate the inversion process. Figure 
7 shows the crustal models obtained after simultaneous inversion of the two stacked Re- 
ceiver Functions shown in figure 6, for each of the initial models. Examination of  several 
hundred such inversions, however, showed that the S wave velocity in the first 10 km was 
substantially uniform (3.48 -4- 0.12 kin/s) .  
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This warranted investigation of a more constrained solution space in which shear wave 
velocity in the upper 10 km whilst free to excurse between the limits prescribed earlier, was 
held uniform. The result is shown in figure 8. The velocity range in the top layer that char- 
acterizes about 75% of all these models lay within a narrower limit 3.46 < Vs < 3.61 kin. 

Assuming that this range of top layer velocity shared by a majority of velocity solutions 
may approximate the real one more closely, we then imposed an additional constraint that 
the shear wave velocity in the top 10 km thick crustal layer should vary only within these 
limits. 

The inverted velocity model of the Hyderabad crust, subject to constraints suggested by 
these data, is shown in figure 9. 

References 

Ammon C J 1991 The isolation of receiver effects from teleseismic P waveforms. Bull. Seism. 
Soc. Am. 6:2504-2510 

Clayton R W, Wiggins R A 1976 Source shape estimation and deconvolution of teleseismic body 
waves. Geophys. J.R. Astron. Soc. 47:151-177 

Gaur V K, Priestley K 1997 Shear wave velocity structure beneath the Archaean granites around 
Hyderabad, inferred from Receiver Function analysis. Proc. Indian Acad. Sci. (Earth Planet. 
Sci.) 106:1-8 

Menke W 1989 Geophysical data analysis: Discrete inverse theory (London: Academic Press) 
Twomey S 1977 Introduction to the mathematics of inversion in remote sensing and indirect 

measurements: developments in geomathematics (Amsterdam: Elsevier Scientific) vol. 3 


