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Soft impacting mechanical systems---where the impacting surface is cushioned with a spring--damper
support---are common in engineering. Mathematically such systems come under the description of switch-
ing dynamical systems, where the dynamics toggle between two (or more) sets of differential equations,
determined by switching conditions. It has been shown that the Poincaré map of such a system would
have a power of 1/2 (the so-called square-root singularity) if the vector fields at the two sides of the
switching manifold differ, and a power of 3/2 if they are the same. These results were obtained by con-
centrating on the leading order terms in a Taylor expansion of the zero-time discontinuity map, and are
true in the immediate neighbourhood of a grazing orbit. In this paper we investigate how the character
of the two-dimensional map changes over a large parameter range as the system is driven from a non-
impacting orbit to an impacting orbit. This study leads to vital conclusions regarding the character of the
normal form of the map not only in the immediate vicinity of the grazing orbit, but also away from it, as
dependent on the system parameters. We obtain these characteristics by experiment and by simulation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

There are a large number of mechanical systems of practical in-
terest in which impacting motion occurs between elements. That is
why the fundamental nature of the impacting motion, and the re-
sulting dynamical phenomena have been a matter of great interest.
Recent years have seen considerable interest in such non-smooth
systems, in particular applied to single degree-of-freedom piece-
wise oscillators subject to periodic external forcing. The area initi-
ated decades ago by Kobrynskii [1], Feigin [2], and Filippov [3,4] has
recently grown extensively, with many theoretical studies address-
ing specific problems. The investigations by Shaw and Homes [5],
Nordmark [6], Peterka and Vacik [7], Lenci and Rega [8], Hogan [9],
Blazejczyk-Okolewska and Kapitaniak [10], Budd and Dux [11], and
Chin et al. [12], can serve as examples. Generalization of systems
with discontinuities has been proposed by Wiercigroch [13,14]. Al-
though some experimental studies on piecewise or impacting sys-
tems have been carried out (see, for example, [15--18]), there is a
large disproportion between the quantity and quality of theoretical
and experimental results. Therefore, in order to understand the laws
of motion of non-smooth systems it is essential to gather convincing
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experimental data, which can be used for the estimation of system
characteristics, and for verification of adopted models.

The above studies have provided evidence that such systems
can give rise to very rich dynamics, including high-periodic be-
haviour, quasiperiodicity, and chaos. Most interesting among these
phenomena are those which are caused by the transition from non-
impacting state to an impacting state, with the critical grazing condi-
tion acting as the boundary between two different types of dynamical
behaviours. The dynamical transitions or bifurcations caused by graz-
ing have therefore been the focus of research in this area.

It is convenient to analyse such phenomena through discrete-
time representation. Moreover, if one is interested only in the nature
of bifurcations caused by grazing, it is convenient to consider the
map in the neighbourhood of the grazing condition. Nordmark [6]
considered this representation for an impact oscillator with hard
impact against a rigid wall, and showed that the map must have the
functional form
xn+1 = axn + yn + �

yn+1 = −bxn

}
if xn �0,

xn+1 = −c
√

xn + yn + �

yn+1 = −dxn

}
if xn �0.

(1)

The square-root term causes the derivative to approach infinity as
xn → 0+, resulting in locally infinite stretching of the phase space,
called the square-root singularity. Subsequently, many researchers
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[12,19] investigated maps of this form to understand the dynamics
of the impact oscillator.

Stick-slip oscillation caused by dry friction has also caught signif-
icant research attention. Dankowicz and Nordmark [20] considered
a dry friction oscillator and showed that the map in this case will
have a power of 3/2 term in one side which gives it some special
features. To illustrate, consider the map

xn+1 =
{

axn + � if xn �0,

axn − bx
3/2
n + � if xn �0.

(2)

This map is continuous at the border xn =0, and there is no disconti-
nuity in the slope either. This implies that even though the function
is represented piecewise, it is continuous and smooth. This property
has come to be known as the "3/2 singularity'' even though it is not
really a singularity.

Molenaar et al. [21] re-analysed the impact oscillator with a hard
wall and a compliant wall, and showed that the map takes the func-
tional form

xn+1 = a1xn + yn + �

yn+1 = −a2xn

}
if xn �0,

xn+1 = ±√
xn + b1xn + yn + �

yn+1 = b2xn

}
if xn �0.

(3)

The map differs in three ways from the Nordmark map: (a) the sign
of square-root term, which is negative for the instantaneous impact
and positive for non-instantaneous impact, (b) the inclusion of the
term b1xn, and (c) the dependence of the coefficient b2 on the system
parameters, which is different from that of the parameter d of (1).
Molenaar et al. concluded that square-root singularity survives in
the system with the compliant wall, and hence a similar bifurcation
sequence is observed in systems with hard wall as well as compliant
wall.

Subsequently di Bernardo et al. [22,23] analysed various types of
non-smooth mechanical systems allowing grazing condition. They
showed that if the flows at the two sides of the switching surface
are different, the map will have a square-root singularity; and if the
flows in the immediate vicinity of the switching surface are the same
(but the first or the second derivative of the flow are different) then
it results in a 3/2 singularity in the map.

The hard impact oscillator, in which the state itself undergoes a
discontinuous jump at the impacting condition, obviously belongs
to the first category. The soft impact oscillator with cushion pro-
vided by only an unstressed spring (and no damper) is an exam-
ple of the second type. But soft impacting systems with prestressed
spring and/or a damper in the cushion constitutes the twilight zone
between the two types.

It has been shown by Ma et al. [24] that in such systems the de-
terminant of the Jacobian matrix remains the same in the immedi-
ate neighbourhood of the grazing condition and the trace shows the
square-root singularity. But that raises fresh questions. What are the
effects of the individual components of the cushion (spring constant,
friction, and prestressing) on the character of the map at the two
sides of the border? One can imagine smoothly changing the rele-
vant parameters to transform one type of system into another. The
question is, how does a map with 3/2 singularity smoothly change
into that with a square-root singularity? What is the behaviour of
the map away from the borderline representing the grazing condi-
tion? In this paper we probe these questions---both numerically as
well as experimentally.

The system considered in this paper consists of a mass M sup-
ported by a spring k1 and a damper R1 attached to a rigid wall (Fig. 1).
There is a sinusoidally varying force F cos�t acting on the mass.

R1

L2

L1

M

x

k1

F (t)

C
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Fig. 1. The soft impacting oscillator system considered in this paper.

When the spring is relaxed, the right end of the mass is at a distance
L1 from the wall, and x is the elongation from the unstretched po-
sition. On the other side there is a wall with a cushion at distance
L2 provided to soften the impact. The character of the vector field at
the two sides of the switching surface depends on the nature of the
cushion.

We probe the bifurcations occurring when the trajectory grazes
the boundary between non-impacting state and the impacting state.
The discrete observations are done in synchronism with the external
periodic input, to obtain a "stroboscopic sampling.'' It is known that
such switching dynamical systems yield maps that are piecewise
smooth. We are interested in the character of the two-dimensional
discrete map at the two sides of the borderline.

It is convenient to express the local linear behaviour in the normal
form [25--27]

[
xn+1

yn+1

]
=

[ � 1

−� 0

] [
xn

yn

]
+ �

[1
0

]
(4)

which is expressed in terms of only two parameters: the trace � and
the determinant � of the Jacobian matrix. We investigate how the
trace and the determinant change as the system is driven from the
non-impacting state to the impacting state by continuous variation
of the parameter.

We first probe the character of the normal form using an exper-
imental set-up where the cushioning surface contains a spring, and
no damper. In case of unstressed spring, this configuration causes
the vector field to be identical in the immediate neighbourhood of
the switching surface, and can be considered a testing ground for
the theory of the 3/2 singularity.

Then we consider four different types of cushion to illustrate the
different types of change in the vector field across the switching
surface. Since it is difficult to set up the experimental system for
all the configurations, this part of the study is conducted through
numerical means.

We show that the normal form representation of the Poincaré
map has very definite characteristic features depending on the prop-
erties of the vector field at the two sides of the borderline.

2. The experimental set-up

An experimental oscillator developed at the University of Ab-
erdeen [17,28,29] was used for the purpose of this investigation. It
consists of a block of mild steel supported by parallel leaf springs
which allow displacement of the mass without rotation (Fig. 2). The
secondary spring is made from spring steel, with the point of contact
being accurately located via an adjustable screw. The harmonic ex-
citation was achieved using an electro-dynamic shaker. Accelerom-
eters were mounted on the base and on the oscillator, and an eddy
current displacement transducer was mounted over one leaf spring
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Fig. 2. The experimental set-up: (a) the schematic diagram, and (b) photograph
of the physical system. Parallel leaf springs ensure displacement without rotation.
Harmonic excitation is achieved via the base. Detailed description of the set-up can
be found in [28,29].
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Fig. 3. Transients in the stroboscopic map for (a) 6.3Hz (before contact) and (b) 6.9Hz (after contact). Experimental points are shown by black stars whereas linear map fit
by black circles. The linear map is a very good model for quite large perturbations, as evidenced by accuracy of the fit.

in order to measure the position of the mass under the assumption
of small displacements. Within free vibration, a natural frequency of
11Hz and damping of 2.18kg s−1 were determined using the loga-
rithmic decrements method. The stiffness ratio of the secondary to
primary springs was measured under static displacement as 1.29.
The base mounted accelerometer allowed determination of the am-
plitude of excitation from the relationship ẍmax=F�2. The data were
low pass filtered with a cutoff frequency of 100Hz before being am-
plified by the hardware. The data acquisition was performed using
LABVIEW, with a scan rate of 1000 samples per second (approxi-
mately 150 per period of forcing). The data was smoothed with a
Savitsky--Golay method, using a second order polynomial fit around
21 data points. Stroboscopic sampling was obtained by means of a
linear interpolation between the closest data points, since in gen-
eral there was not an integer number of data points per period of
excitation.

For a suitably chosen forcing amplitude and frequency, we obtain
a non-impacting orbit. As the amplitude is increased, the fixed point
moves in position, and at a specific parameter value it collides with
the border. This fixed point corresponds to the continuous-time or-
bit that just grazes the switching surface. As the parameter is further
varied, the orbit becomes impacting. The problem was to experi-
mentally determine the Jacobian matrix of the period-1 orbit as the
parameter is varied through the value corresponding to the grazing
condition. It was done in the same manner as in [29], and is briefly
described below.

Mathematically speaking, for the perturbation about a fixed point
of the stroboscopic map, v∗ = P(v∗), we can write

un+1 = (v − v∗)n+1 = �P
�x

∣∣∣∣
v=v∗

(v − v∗)n + O(u2n) (5)

where the derivative matrix is the Jacobian. Experimentally this
meant waiting for a trajectory with arbitrary initial conditions to
become close to a stable limit cycle, and then giving the oscillator a
small "kick'' to perturb the trajectory, taking care that close to graz-
ing, a non-impacting trajectory was not perturbed into a impacting
trajectory, or vice-versa. A number of Poincaré points before the
perturbation were averaged and subtracted from the data after the
perturbation, so that for a given point the linear map un+1 = Aun

provides a good estimation of the next point. Care was needed to
ensure that the strength of perturbation was sufficiently large so
that the transients could be detected above the experimental noise,
but small enough to preserve the local nature of the linear maps.
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Fig. 4. Results for the experimental system: the variation of determinant and trace, with the variation of the forcing amplitude. Two cases are presented: (a) and (b) for an
unprestressed spring; (c) and (d) for a spring with prestress.

Successively large perturbations were tested for deviation from lin-
earity until a suitable one was found. Only three points are required
to determine all four Jacobian elements, but in practice between 5
and 10 were used in order to reduce the effects of noise and as a test
of the validity of the method. A conjugate gradient method was used
to minimize a least squares fit of the linear map to the data. Fig. 3
gives two examples of these fits, both before and after impact. In all
cases tested, the eigenvalues were complex conjugates, hence there
were no real eigenvectors and the transients were rotated about the
fixed point.

The results obtained from the experiment are presented in
Fig. 4, where the parameters of the normal form (4) are estimated
for different values of the excitation amplitude F. Experimental
points are shown as black dots joined by a line where the response
in between is clearly understood. The figure shows that while
the system is driven from the non-impacting state to the impact-
ing state, the determinant of the Jacobian matrix remains almost
constant.

In the case of the unprestressed spring (Figs. 4(a) and (b)), the
trace is clearly continuous across the grazing boundary, which is
indicated by the vertical line. Since the normal form of the map is
the same at the two sides of the grazing condition, the experiment
showed that the map is smooth and continuous, as expected from a
"power-of-3/2'' character.

In the case of the prestressed spring (Figs. 4(c) and (d)), the
trace, after grazing, is vastly changed and returns smoothly to a
smaller value. This is consistent with a square-root singularity at
the grazing point. However, very close to the grazing condition,
we observed noise-induced chaotic motion, due to which reliable
data could not be obtained. This explains the absence of very
large values of the trace very close to grazing. For this we need
to resort to simulation of the various configurations of the system
considered.

3. The method of numerical investigation

We now systematically study the effect of variation of the vec-
tor fields at the two sides of the border. We have adopted a spe-
cific method for the numerical study, and so a description about the
method is in order.

3.1. Solution flow and Poincaré map

A switching system with non-autonomous subsystems is usually
described by equations of the form

S1 : ẋ = f1(t,x, p1) if x ∈ M1,

S2 : ẋ = f2(t,x, p2) if x ∈ M2. (6)

where x ∈ Rn are the state variables, p1,2 are the system parame-
ters, f1 and f2 are the governing functions of sub-system S1 and S2
when the solution moves in sub-space M1 and M2, respectively. The
functions f1,2 contain time explicitly.

We assume that the sub-spaces M1 and M2 are two separated
parts of one space. That means they have no intersection and are
divided by a common border B defined only by states

B = {x ∈ Rn : �(x) = 0}, (7)

where �(x) is the border function.
Thus, the two sub-spaces are given by

M1 = {x ∈ Rn : �(x)�0},
M2 = {x ∈ Rn : �(x)�0}. (8)
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The solution of the system is governed by the functions f1 and f2 as
given in (6), depending on whether the state is in M1 or in M2. We
express the solution functions as

x(t) = �1(t, t0,x01) if x ∈ M1,

x(t) = �2(t, t0,x02) if x ∈ M2, (9)

where x01 and x02 are the initial conditions, and t0 is the starting
time.

We assume that both f1(t,x, p1) and f2(t,x, p2) are periodic func-
tions with identical period T, i.e.,

f1,2(t,x, p1,2) = f1,2(t + T,x, p1,2). (10)

Now, define the stroboscopic mapping as

Fm : Rn → Rn; x(0) �→ x(T). (11)

In this map, if a solution satisfies x(0) = x(kT) �= x(jT), k =
1,2, . . . ;0< j < k, it is a period-k solution.

In a periodically forced system, the stroboscopic sampling points
will not generally lie on the switching manifold. Suppose there is a
solution flow in one period as follows.

1. Starting at x0 ∈ M1, the state moves in M1 until the solution
satisfies the switching condition B at x1 after time �1.

2. Crossing the border B, the state moves into M2. Then at time �2,
the solution flow crosses the switching manifold again at x2, and
returns to sub-space M1.

3. Finally, the state reaches x3 after time T.

According to (9) and (7), the above solution flow can be described as

x1 = �1(�1, �0,x0) first interval when x ∈ M1; (12)

x2 = �2(�2, �1,x1) second interval when x ∈ M2; (13)

x3 = �1(T + �0, �2,x2) solution returns to x0; (14)

�(x1) = 0 point x1 is on the switching manifold; (15)

�(x2) = 0 point x2 is also on the switching manifold. (16)

This is shown schematically in Fig. 5. Since we are considering a
periodic solution, the starting time can be regarded as zero from the
analytical viewpoint. Without loss of generality, we will set �0 = 0
in the following text.

3.2. Obtaining the fixed point

The behaviour of periodic solution flow of the system is reduced
to the behaviour of fixed points of the map, Fm : x0 �→ x3. In this
section, we will introduce the method to obtain the location of the
fixed point.

A fixed point exists if x(0)=x(T), i.e., if x0=x3. To determine a pe-
riodic solution, we have 3n+2 scalar unknowns y={x0,x1,x2, �1, �2}.
Meanwhile, there are 3n+2 scalar equations in (12)--(16), which can
be rewritten as

G1,n(y) = x1 − �1(�1,0,x0) = 0, (17)

Gn+1,2n(y) = x2 − �2(�2, �1,x1) = 0, (18)

G2n+1,3n(y) = x0 − �1(T, �2,x2) = 0, (19)

Bt = T + �0

x = x3

t = �0
x = x0

x = x1

t = �1

t = �2

x = x2

�1 (t, �0, x0)

�1 (t, �2, x2)
�2 (t, �1, x1)

Fixed point

Fig. 5. A period-1 orbit, and its Poincaré map x0 �→ x3.

G3n+1(y) = �(x1) = 0, (20)

G3n+2(y) = �(x2) = 0. (21)

In general, the solutions may not be available in closed form. We
therefore have to solve the above equation sets using appropriate
numerical method. For this purpose, we have used Newton's method,
such that

yk+1 = yk − G(yk)

G′(yk)
, k = 0,1, . . . , (22)

where G′(yk) is the partial derivatives �G(yk)/�yk of the solution with
respect to the unknowns for each step. It can be obtained as

�G(y)

�y
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�G1,n(y)

�y
�Gn+1,2n(y)

�y
�G2n+1,3n(y)

�y
�G3n+1(y)

�y
�G3n+2(y)

�y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−��1(�1)

�x0

.

.

. In
.
.
. On,n

.

.

. −��1(�1)

��1

.

.

. On,1

On,n

.

.

. −��2(�2)

�x1

.

.

. In
.
.
. −��2(�2)

��1

.

.

. −��2(�2)

��2

In
.
.
. On,n

.

.

. −��1(T)

�x2

.

.

. On,1

.

.

. −��1(T)

��2

O1,n

.

.

.
��(x1)

�x1

.

.

. O1,n

.

.

. 0
.
.
. 0

O1,n

.

.

. O1,n

.

.

.
��(x2)

�x2

.

.

. 0
.
.
. 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)

where In is an identity matrix with order n, and Oi,j indicate zero
matrix with i rows and j columns. Moreover, the shorter notations
used here mean

�1(�1) �→ �1(�1,0,x0); �2(�2) �→ �2(�2, �1,x1);

�1(T) �→ �1(T, �2,x2). (24)

Now, let us look at the terms in (23), which need to be known in
order to apply the Newton algorithm. The partial derivatives of the
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solution flow with respect to time can be written as

��1(�1)

��1
= ��1(t,0,x0)

�t

∣∣∣∣
t=�1

= f1(�1,x1, p1), (25)

��2(�2)

��2
= ��2(t, �1,x1)

�t

∣∣∣∣
t=�2

= f2(�2,x2, p2). (26)

On the other hand, partial derivatives of the solution flow with re-
spect to the initial time points �1 and �2 [30] are

��2(�2)

��1
= ��2(�2, �1,x1)

��1
= −��2(�2, �1,x1)

�x1
f2(�1,x1, p2),

(27)

��1(T)

��2
= ��1(T, �2,x2)

��2
= −��1(T, �2,x2)

�x2
f1(�2,x2, p1).

(28)

Next, we need to obtain the values of ��1(�1)/�x0, ��2(�2)/�x1,
and ��1(T)/�x2. These partial derivatives of the solution functions
with respect to the initial conditions are obtained by solving the
differential equations or linear variational equations [30]:

d
dt

(
��1(�1)

�x0

)
= �f1

�x

(
��1(�1)

�x0

)
,

��1(�1)

�x0

∣∣∣∣
t=0

= In, (29)

d
dt

(
��2(�2)

�x1

)
= �f2

�x

(
��2(�2)

�x1

)
,

��2(�2)

�x1

∣∣∣∣
t=�1

= In, (30)

d
dt

(
��1(T)

�x2

)
= �f1

�x

(
��1(T)

�x2

)
,

��1(T)

�x2

∣∣∣∣
t=�2

= In. (31)

Finally,
��

�x

∣∣∣∣
x=x1,x2

have to be written in a right form. Because the

border function �(x)=0 is a one-dimensional equation, ��/�x is just
a 1× n matrix, whose elements are derivatives with respect to each
variable of x.

Now we can evaluate every element of the matrix in (23) for a
given x. By choosing good initial values and using Newton's itera-
tions, we can converge to the fixed point. In each step, the elements
of the matrix in (23) are updated depending on the current value
of x. Thus, while the procedure converges on the fixed point, the
elements of the matrix in (23) also converge onto the values corre-
sponding to the fixed point.

3.3. Obtaining the Jacobian matrix at the fixed point

In this section we show how the information about the stability
of the fixed point can be extracted from the elements of the matrix
in (23). From (12)--(14) we can write

�x1
�x0

= ��1(�1)

��1

��1
�x0

+ ��1(�1)

�x0
, (32)

�x2
�x0

= ��2(�2)

��2

��2
�x0

+ ��2(�2)

��1

��1
�x0

+ ��2(�2)

�x1

�x1
�x0

, (33)

�x3
�x0

= ��1(T)

��2

��2
�x0

+ ��1(T)

�x2

�x2
�x0

. (34)

Substituting (25), (26) and (27), (28) into (32)--(34), we get

�x1
�x0

= f1(�1,x1, p1)
��1
�x0

+ ��1(�1)

�x0
, (35)

�x2
�x0

= f2(�2,x2, p2)
��2
�x0

− ��2(�2)

�x1
f2(�1,x1, p2)

��1
�x0

+ ��2(�2)

�x1

�x1
�x0

, (36)

�x3
�x0

= − ��1(T)

�x2
f1(�2,x2, p1)

��2
�x0

+ ��1(T)

�x2

�x2
�x0

. (37)

Note that (37) gives the Jacobian matrix of the Poincaré map x0 �→
x3, which is needed in order to analyse the stability property.

To evaluate (35)--(37), we also need the partial derivatives of the
evolution times within each sub-system with respect to the initial
condition. Since the times of evolution within each sub-system is
determined by the switching condition, these partial derivatives can
be obtained from the expressions of the switching manifolds. From
(15) and (16) we can write

��(x1)

�x0
= ��

�x
�x1
�x0

= 0 and

��(x2)

�x0
= ��

�x
�x2
�x0

= 0. (38)

As described at the end of Section 3.2, �(x) = 0 is a one-dimensional
equation. For example, when �(x) is in a simple form like x(1)=
constant, ��/�x = [1,0, . . . ,0]. Thus, if ��/�x · �x1/�x0 = 0 as given
by (38), the corresponding first row of �x1/�x0 must be [0, . . . ,0].
But if the switching manifold is given by an equation involving more
than one state variable like the form �(x) = x(1) − x(2) = 0, then
��/�x = [1, −1,0, . . . ,0]. Thus the difference between the first two
rows of �x1/�x0 will be zero. Anyway, ��/�x supplies the additional
information of specific dimension(s) related to border function, by
which we can solve the partial derivatives of the times of evolution
with respect to the initial state x0. Substituting (35) and (36) into
(38), we get

��1
�x0

= − (��/�x)((��1(�1))/�x0)

(��/�x)f1(�1,x1, p1)
and

��2
�x0

=
��
�x

��2(�2)
�x1

�x1
�x0

− ��
�x

��2(�2)
�x1

f2(�1,x1, p2)
��1
�x0

��
�x f2(�2,x2, p2)

. (39)

These expressions, substituted into (37), give the Jacobian matrix
�x3/x0 of the Poincaré map. Then by finding the eigenvalues, we can
determine the stability of specific fixed point, i.e., of the correspond-
ing periodic orbit in continuous time.

Thus, all the terms necessary to obtain the Jacobian matrix
are derived in the process of finding the fixed point, and hence
the Jacobian of the fixed point can be obtained with very lit-
tle additional computational burden. We only need to substitute
the right terms into the right places.1 A separate program was

1 In this paper we are considering only period-1 orbits. For higher periodic
orbits, the solution flow can be formulated according to the time instants at which
the flow crosses the border or reaches the sampling time nT. The process will only
involve a larger number of equations of the form (12)--(16). Therefore, to compute
a complicated orbit we will only need to solve a larger number of simultaneous
algebraic equations for a larger number of unknowns. An effective numerical method
can solve them and can find the position of the fixed point without much difficulty.
Note that for a period-n fixed point, the Jacobian matrix is to be composed by
multiplying the Jacobian matrices corresponding to each period in the orbit.
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written where one can give an initial condition and compute the
orbit for one (or an integer multiple) period of the external forc-
ing function. If the final state comes close to the initial state, that
position is taken as the initial value for the Newton--Raphson
routine.

4. Different types of soft impacting systems

In this section we consider four different types of the cushion,
resulting in different characteristic transitions of the vector field from
one side of the switching surface to the other. Since the distance
of the fixed point from the borderline is directly dependent on the
forcing amplitude, in the following study we take F as the bifurcation
parameter. For each value of the parameter F, we obtain the fixed
point---irrespective of whether it is stable or unstable---and the trace
and the determinant of the Jacobian matrix, which are then plotted
against F.

4.1. System A

We start with a system similar to the one in the experimental
set-up, where the cushion in front of the wall has only an unstressed
spring with spring constant k2, and no mass or frictional element,
as shown in Fig. 6. In the unstressed position, the impacting surface
is at a distance L2 from the wall.

L1

k2

k1

R1

L2

M

x

F (t)

Fig. 6. Schematic diagram of the System-A.
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Fig. 7. The variation of (a) determinant and (b) trace of the Jacobian matrix of System-A as F is varied through the grazing condition. The parameters in normalized units
are M = 1, k1 = k2 = 1, L2 − L1 = 0.5, R1 = 0.1, � = 0.8.

If x + L1 < L2 then it is a simple harmonic oscillator given by the
equation

Mẍ + R1ẋ + k1x = F cos�t. (40)

We call it Subsystem-1.
If x+L1�L2 then a soft impact occurs, following which the system

equation changes to

Mẍ + R1ẋ + k1x + k2(L1 + x − L2) = F cos�t. (41)

We call it Subsystem-2.
When an impact occurs, the term k2(L1 + x − L2) is zero, and so

the vector field in the immediate neighbourhood of the switching
manifold at the two sides are the same.

The results showing the variation of the trace and the determinant
of the Jacobian matrix with the forcing amplitude are given in Fig. 7.

It is noticeable that the determinant remains invariant over a
large range of the parameter, and the trace is continuous across
the grazing condition. However, the trace changes very fast sub-
sequently, and the derivative of the trace with respect to the
parameter seems to have a square-root type singularity. If the pa-
rameter at which grazing takes place is denoted as Fg, then the
derivative of the trace with respect to the parameter tends to ∞ as
F → F+

g . These results are supported by the experiment reported in
Section 2.

L1

k1

R1

k2

R2

L2

M

x

F (t)

Fig. 8. Schematic diagram of the System-B.
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Fig. 9. The variation of (a) determinant and (b) trace of the Jacobian matrix of System-B as F is varied through the grazing condition. The parameters are M = 1, k1 = 1,
L2 − L1 = 0.5, � = 0.8, R1 = 0.1. R2 is varied in steps.

4.2. System B

Now we consider the system which has a damper (R2) along
with the spring k2 in the cushioning surface as shown in Fig. 8.
Subsystem-1 remains unaltered, and Subsystem-2 changes to

Mẍ + (R1 + R2)ẋ + k1x + k2(L1 + x − L2) = F cos�t. (42)

In this case the mass disengages from the cushion when the contact
force becomes zero, i.e., when k2(L1 +x− L2)+R2ẋ=0. As an impact
occurs, the damper reacts with a force R2ẋ, and therefore the vector
field at the two sides of the switching surface are not the same.
However, when grazing occurs at zero velocity, this term is zero,
and hence in the immediate neighbourhood of the grazing point
(x = L2 − L1, ẋ = 0) the vector field is smooth.

The results for this system is given in Fig. 9. The main dif-
ference caused by the damper is the change in the determinant
following the grazing condition. Even though the determinant is
continuous across the grazing condition, it shows a sharp gradient
following the transition into impacting state, which depends on the
value of R2. The change observed in the trace is only a quantitative
shift.

4.3. System C

We now consider the case where the spring k2 is prestressed
by a distance d to the position L2 as shown in Fig. 10. In this
system at the impacting condition (even at zero-velocity) the pre-
stressed spring applies a force on the mass, and so the vector field
is non-smooth everywhere on the switching surface. Note that if
d = 0, it reduces to System-A, and by varying the parameter d,
one can introduce various degrees of prestressing. In this system
the cushion does not have a dissipative element, which allows us
to study the effect of prestressing as distinct from the effect of
dissipation.

Subsystem-1 remains unaltered, and Subsystem-2 changes to

Mẍ + R1ẋ + (k1 + k2)x + (d + L1 − L2)k2 = F cos�t. (43)

The results for variation in d (with R2 = 0) are shown in Fig. 11.
The most important aspect is that the trace becomes discontinuous

L1

L2

k2

k1

R1

M

x

F (t)

d

Fig. 10. Schematic diagram of the System-C.

across the grazing condition. Since the value changes over several
orders of magnitude and since it has negative value, we plot the
logarithm of the negative of the trace. The graph clearly shows that
the trace changes discontinuously at the border, and that the value of
the trace approaches −∞ as the bifurcation parameter is approached
from the right side. In the absence of any dissipation in the cushion,
even if there is prestressing in the spring k2, the determinant remains
invariant.

4.4. System D

Now we consider the case where we add a dissipative element
to the cushion as shown in Fig. 12. Since all possible parameters
are considered, it is now possible to probe the problem of smooth
transition from a system with 3/2 singularity to that with square-
root singularity. Subsystem-1 remains unaltered, and Subsystem-2
changes to

Mẍ + (R1 + R2)ẋ + (k1 + k2)x + (d + L1 − L2)k2

= F cos�t. (44)

The results are given in Figs. 13 and 14.
The determinant is continuous across the grazing condition, and

its gradient following grazing depends on the extent of prestressing.
On the other hand, the graph of the trace shows that it is continu-
ous only when there is no prestressing, and goes to −∞ if there is
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Fig. 11. The variation of (a) determinant and (b) trace of the Jacobian matrix of System-C as F is varied through the grazing condition. The parameters are M = 1, k1 = 1,
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Fig. 12. Schematic diagram of the System-D.

prestressing. Figs. 14(b) shows how the nature of the curve changes
very close to the grazing condition, so that both the square-root
singularity and the 3/2 singularity can be exhibited by a single family
of functions.

5. Conclusions

In this paper we have systematically studied four system con-
figurations of soft impact oscillator, which has enabled us to reach
important conclusions regarding how the Jacobian matrix of the
fixed point changes as the system is driven from a non-impacting
orbit to an impacting orbit by the change of a parameter. To
conduct the numerical investigation, we have adopted a specific
technique that allows one to locate the fixed point irrespective
of its stability, and to obtain its Jacobian matrix in a single com-
putational procedure. Experiments have been conducted on two
system configurations, which validate the results obtained from
simulation.

The important conclusions are:

1. For System-A (i.e., where there is no discontinuous change in the
vector field), the determinant is invariant, the variation of the
trace is continuous, and the derivative of the trace with respect
to the parameter tends to infinity as F → F+

g , where F+
g is the

parameter value for the grazing condition.
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Fig. 13. The change of determinant of the Jacobian matrix when F crosses the grazing
value. The parameters are m1 = 1, k1 = 1, L2 − L1 = 0.5, � = 0.8, R1 = R2 = 0.1.

2. For System-B (i.e., where the vector field changes discontinu-
ously except at the zero-velocity contact point), the determi-
nant varies continuously, and the derivative of the determinant
tends to infinity as F → F+

g . The change of the determinant
following transition to impacting motion depends on the fric-
tion of the cushion. The trace behaves in the same way as in
System-A.

3. For System-C (i.e., where the vector field changes discontinu-
ously on the switching manifold, but there is no dissipation at
the cushion), the determinant remains invariant, the trace varies
discontinuously at the grazing condition, and shows a singularity
as F → F+

g .
4. For System-D (i.e., where all possible system elements are con-

sidered), with the smooth variation of prestressing, the curve
for the trace changes through a family of functions, from one
with 3/2 singularity to one with square-root singularity. The de-
terminant changes continuously following the passage to the
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Fig. 14. (a) The change of trace for the same condition as in Fig. 13. (b) Enlarged portion showing the family of curves close to the grazing condition.

impacting state, and its derivative at F+
g is dependent on the ex-

tent of prestressing.
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