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Abstract-A question often asked in regard to a chronic disease is whether the risk to a biological 
relative of a case is elevated, and if so by how much the risk is altered. To answer this question, 
data may be collected directly with genetic objectives in mind by ascertaining populations of 
pedigrees. More often, the initial assessment of the question comes from family history data 
collected in an incidental manner in the course of a case-control or similar type of study. This 
paper discusses some limitations to the inferences which can be derived from such casual family 
history data. These include (i) poor statistical properties of standard relative risk measures, (ii) 
interpretational problems of observed relative riski when affected cases arise from genetic as well 
as nongenetic causes and when genes may not always be expressed in individuals in whom they 
are present, and (iii) confounding effects which may occur when a high risk allele alters the age of 
onset pattern of the disease. These problems result largely from a loss of design control over the 
degree of exposure of individuals ascertained and can lead to a small observed relative risk value 
even when genetic factors are important. Suggestions for handling such casual family history data 
are offered. 

INTRODUCTION 

A BASIC problem in contemporary epidemiology is the identification and evaluation of 
risk factors for chronic diseases such as cancers, cardiovascular disease, diabetes, etc. or 
perhaps for precursor states of these diseases. One often seeks environmental factors 
related to life style, geography, diet, occupation, and so on, and the search is ac- 
complished through a case-control design. To make such a search complete, family data 
on the disease state of close relatives of cases and controls are (or should be) gathered, at 
least to ensure that genetic risk does not confound the evaluation of environmental 
variables. As distinct from detailed pedigree data gathered explicitly to detect familial 
aggregation, we will refer to family data collected in a general risk survey as ‘casual 
family history data. 

When casual family history data of this kind are used, however, a fundamantal change 
in the analytic framework of the study occurs. Although gathered in retrospective terms, 
the family risk data are actually prospective in nature; they are studies of the exposure of 
the relative to the genes (or common family environment) of the proband. The cases and 
controls (viewed from this vantage point) become the exposing, not the exposed, factors. 
The duration of exposure is the age of the relative and the dose level is the degree of 
genetic relationship to the proband, that is, the probability of shared genes with the 
proband at any specific locus; because of Mendelian segregation of genes, only a fraction 
of the relatives are exposed. The outcome of such a study can be arrayed as in Table 1. 
Note that while the basic study on environmental risk may have been designed for a 
pre-determined number of cases and controls, there is no such pre-determination of the 
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TABLE 1. CONTINGENCY TABLE FORMAT FOR 
FAMILY HISTORY DATA 

Relative of: 

Case 
Control 

Total 

Not 
Aflected affected Total 

nil 42 N, 

nzI n22 N2 

M, M2 T 

numbers of observations in the family risk table, that is, of the numbers of relatives who 
are ascertained. 

Risk may be quantified in various ways, but is usually expressed as either the Relative 
Risk, RR = (n,i/N,)/(n,,/N,) or the Odds Ratio, OR = (n,l/n,z)/(n2,/n22). These two 
measures have different applications in case-control and cohort studies [l, 511, but to be 
general we will refer to them collectively as ‘relative risks’ unless otherwise specified. It is 
usually assumed that there is an underlying risk Pi to the relatives of cases, estimated by 
nll/N1, and a different risk PZ to relatives of controls, estimated by n,,/N,, in the 
population from which the samples were drawn. The object of the analysis is (1) to detect 
a familial excess risk (Pi > PJ, and (2) to assess the strength of&&t of proband disease 
status on the risk to the relative, that is, the amount of difference between P, and Pz. 

Standard x2 tests can be used to determine whether RR or OR are significantly different 
from their no-association value of 1.0 under the null hypothesis of no familial excess risk 
[l-3,51]. Estimating the difference in risk, however, is often not distinguished from the 
more subjective assessment of the importance of genetic factors in the etiology of the 
disease. 

We probably have already discovered most of the clearly genetically determined dis- 
orders [4]. Those that remain will be difficult to disentagle using statistical data alone; 
their understanding will require a biochemical, physiological, or molecular characteriz- 
ation instead, but this depends on the initial detection of familial clusters so that high 
risk individuals may be identified for detailed study. It is important to search for familial 
risk whenever a risk factor survey is undertaken, especially because primary genetic 
lesions are more and more frequently implicated in degenerative diseases. 

Several years ago, Lilienfeld noted as curious the fact that although there was persist- 
ent evidence for familial breast cancer, relative risks in studies of families of breast cancer 
patients vs controls always seemed to be small, about twofold [S]; similar small values 
have been observed for many chronic diseases, for example, lung cancer [6], colon cancer 
[7-lo], and adult-onset diabetes mellitus [8]. Small relative risks like these can be 
interpreted to mean that genetics are not important in the causation or epidemiology of 
the diseases for which they were derived. However, the nature of the genetics of chronic 
diseases, and of relative risks as means to assess the genetics, are such that small familial 
relative risks are to be expected much of the time. In this paper we examine some of the 
reasons why this is true. 

1. THE SIMPLEST CASE: ETIOLOGICALLY HOMOGENEOUS 

SINGLE-GENE TRAITS 

The more complicated the etiological phenomena of a disease are, the more careful one 
must be in attempting to infer causal genetic elements. Even in the simplest case, when a 
disease is caused by an allele at a single genetic locus, and when there are no other loci, 
no age effects, and no environmental causal factors, care must be taken in interpreting 
casual family data. An examination of the relative risks produced by such a simple 
genetic circumstance will reveal some of the cautions which must be heeded in genetic 
epidemiology; in more complex situations there are additional problems, as will be 
shown later. 
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TABLE 2. PROBABILITY A RELATIVE (Y) OF A PROBAND (X) IS AFFECTED AS A FUNCTION OF DISEASE STATUS OF 

PROBAND AND DEGREE OF KINSHIP. FOR AIJTOSOMAL DOMINANT AND RECESSIVE GENES 

Probability relative is affected 

Type of relative Autosomal dominant Autosomal recessive 

Parent X-Offspring Y 
Pr(Y is Af (X is Af.) (1 + p - PV(2 - P) 
Pr(Y is Af. ) X is Nor.) 

P 
P 

Sib X-Sib Y 
PZl(l + P) 

Pr(Y is Af. )X is Af.) (4 + 5P - 6P” + P3)/(s(2 - p)) (1 + #/4 
Pr(Y is Af. 1 X is Nor.) P(4 - P)l4 P2(3 + H/(4(1 + P)) 

Uncle X/Aunt X-Nephew Y/Niece Y 
Pr(Y is AL/X is Af.) tc(f - 49 + (P/U - 2)) + (P4/(f + 4))) P(I + P)/2 
Pr(Y is AEjX is Nor.) P(2 + q)/2 PW1 - PZ) 

First Cousin X-First Cousin Y 
Pr(Y is Af. ) X is Af.) (P/4(1 - #))(4P3 + 4(15P2 f’14W + 1)) PC9 + 4PM4 
Pr(Y is Af. I X is Nor.) P(4 + 39)/4 (p”qAl - PW + 3P/4) 

Based on Li and Sacks’ [14] ITO-matrix method. p is frequency of disease-related gene, say D, in the popula- 
tion: q = 1 - p is the frequency of the alternative gene (say d) at that locus. To be affected, if disease is 
dominant, individual must have genotype either homozygous DD or heterozygous Dd: if disease is recessive. 
individual must have genotype DD. 

The first point to be borne in mind in using casual family data is that different modes 
of inheritance will appear differently in specific sets of relatives. For example, a recessive 
disorder will generally not be manifest in parent-offspring data unless the disorder is 
very common or sample sizes are very large, but rather will be found mostly in sibs 
descended from unaffected parents. A sex-linked recessive disease will usually be ob- 
served to cluster in grandfather-grandson pairs. Because the fraction of shared genes 
declines with decreasing degree of kinship, there will be a trend in the expected excess 
relative risk with different degrees of relationship. Such a trend itself may be of great help 
in sorting out genetic from environmental familial factors, as the latter may not produce 
such a trend. Although x2 tests on the contingency table can be used to detect risk excess, 
the amount of excess, and hence the power to detect it with a given sample size, will 
depend on the type of relative involved. 

The probability that a relative of a proband is affected depends, even in the simplest 
purely genetic situation, on several factors: the type of relationship, the affection status of 
the proband, and the disease frequency in the population. In general, for a single gene 
trait, the population frequency of an allele producing the disorder can be computed from 
the disease frequency in the population, rc, and a knowledge of which genotypes are 
affected [12]; while such knowledge is not available in studies of diseases of unknown 
etiology, it can be applied here to illustrate the effect of genetics on relative risks. For 
example, if there are two alleles, A and a, at a locus and if the a allele produces a disorder 
only in the aa homozygote, then the disease is recessive and the frequency of the a allele, 
p, in the population is the square root of the disease frequency, that is, p = (7~)‘. On the 
other hand, if a disease is dominant and caused by the presence of the A allele, with allele 
frequency p, then the disease frequency in the population is given by TC = pz + 2p(l - p). 
orp= I- \/‘t_ 

The probability that a relative of a proband expresses a genetic trait can be worked 
out using the ITO-matrix method of Li and Sacks [13], and a selection of such values in 
terms of gene frequencies p and q (where q = 1 - p) is given in Table 2 for a single-locus 
trait and a variety of degrees of genetic relationship. For example, consider a recessive 
disease with frequency IC = 0.05 in the population and hence allele frequency p = 0.2236. 
From Table 2, the risk to an offspring of an affected parent is simply p = 0.2236, whereas 
that to an offspring of an unaffected control is given by p2/(1 -t p) = 0.0409. Conse- 
quently, the value of RR is the ratio of these or 5.47, and OR = 6.75. 

Familial risks are functions of the allele frequency in the population, because a relative 
can inherit the high-risk allele other than by direct descent from the proband. For 
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TABLET. RELATIVERISKS* FOR SELECTED PAIRSOF RELATIVE&FOR WMINANTAND RECESSIVE 
DISORDERS, AT VARIOUS LEVELS OF THE DISEASE RATE IN THE POPULATION (PURELY OENEnc 

DISORDER) 

Dominant gene Recessive gene 

Parent- Sib- Uncle- Parent- Sib Uncle- 
Disease rate (n) offspring sib nephew** offspring sib nephew** 

0.001 1000.50 1000.75 334.22 
2001.50 2002.25 445.70 

500.38 500.44 250.69 
O.OlQ 100.50 loo.75 34.22 

201.50 202.26 45.71 
50.38 50.44 25.69 

0.100 10.49 10.74 4.22 
21.54 22.36 5.72 

5.38 5.44 3.19 

RR 
OR 

PRR 
RR 
OR 

RR 
OR 

PRR 

32.62 362.15 16.83 
33.66 493.07 17.09 
31.62 266.06 16.31 
11.00 42.94 6.05 
12.11 61.12 6.34 
10.00 30.25 5.50 
4.16 6.88 2.74 
5.62 11.37 3.20 
3.16 4.33 2.08 

*RR = Relative Risk, OR = Odds Ratio, PRR = Population Relative Risk: all defined in 
text. **Equivalent for any pair of aunt/uncle-nephew/niece. 

example, in a dominantly inherited trait, the offspring of an affected heterozygote father 
may be affected be receiving the disease allele only from the mother, and her probability 
of bearing that allele isa function of its frequency. In general, high-risk alleles for chronic 
disease will be found to be rather rare, say p < 0.10 in the population, so that the 
absolute risk to relatives of unaffected probands would be small, but this may not always 
be the case and cannot be assumed. 

In Table 3 we present numerical values for RR and OR for selected frequencies of a 
purely genetic disease, and for three types of close relatives. A third measure, PRR, is 
given and will be discussed later. The rarer the disease allele and the closer the degree of 
relationship, the larger is the relative risk. This is true, for example, in the case of 
bilateral retinoblastoma, in some families a heritable form of childhood retinal tumor 
[14]. Diseases like this are so rare that if they were not genetic the chance occurrence of 
even just two cases in the same sibship would be only one in several million families. 
Familial clustering of such conditions, therefore, can be striking, and relative risks for 
such rare diseases are extremely large-but because they are so rare they may not require 
relative risk computations to show their familiality. 

On the other hand, as can be seen from Table 3, if an allele is more common relative 
risks can become small, because with a high gene frequency the probability that a relative 
inherits the disease allele from some relative other than the proband is not trivial in 
comparison with the probability of direct inheritance from the proband. An example of 
this is sickle cell anemia. The sickle-cell hemoglobin allele has a frequency which can be 
as high as about p = 0.15 in adult West Africans [12]. Among sibs of cases in such a 
population the expected value of RR would only be about 6.0, based on Table 2, yet this 
is purely genetic disease and the allele frequency is high. 

Sampling considerations 

We have considered the expected risk to a relative of an affected proband as compared 
to that of an unaffected proband. In case-control data, sampling considerations may 
place strong constraints on the ability to make reliable inference about genetic factors 
because of the nature of the statistics RR and OR. Sample values of these measures, since 
they are ratios of random variables and have skewed sampling distributions, are not 
necessarily good estimators of the underlying population values if sample sizes, especially 
the number of controls, are small or if the disease is rare in the population [2,15]. In 
fact, the expected values of RR and OR are undefined, since for all sample sizes there is a 
positive probability of finding no affected relatives in the controls, that is (from Table l), 
of n2, being equal to zero (or of all relatives of probands affected, in the case of OR, i.e. 
n,, = 0). The probability of n21 being zero is expecially high if P2 and/or N2 are small. 
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IO 102 10s IQ4 

!Somplr size, N, 

FIG. 1. Probability of observing no affected control relatives in a case-control study with N2 
control relatives sampled, for various values of the underlying probability of affected control 
relatives in the population, PI. Dotted lines show sample sizes required to guarantee that upper 
limit of the 1 - a confidence interval will be finite. Vertical axis, in logarithmic scale, is prob- 

ability that the Relative Risk, RR, is infinite, due to n2, = 0 in the sample. 

It has often occurred in practice that samples of data on relatives of controls contained 
very few (or no) cases of a disorder. It seems probable to us that many times such results 
have not been reported in terms of relative risks, possibly because the investigator 
considered the sampling design or its outcome to be faulty or uninformative, or because 
the association was taken to be sufficient proof of causation (see [3]). In the remaining 
cases with small P2 and/or Nz, when a finite relative risk is observed and reported as 
such, the estimate of the relative risk in that case will often be smaller than the underly- 
ing population value. This negative bias in the estimation of the true RR or OR from 
small samples is strictly an artifact of inadequate samples, but the literature is replete 
with examples and this may tend to give an erroneous impression that the true relative 
risks are very small. Yet, when the frequencies of predisposing alleles are small and risk 
to control relatives consequently least, the true relative risks are largest, and these larger 
values may be missed or under-estimated because the absolute risks are so small as to 
require very large samples. 

These sampling problems make it important not simply to present a sample value of 
the point estimated or RR or OR but to present its confidence interval as well. There are 
several large-sample methods for constructing confidence intervals from 2 x 2 tables by 
logarithmic transformation or to provide point estimators using Yates’ continuity correc- 
tion, etc. but the adequacy of the approximation with small P2 and Nz is still a matter of 
debate (e.g. [2, 16-173). Complete enumeration of the sampling distribution is the safest 
way to study the small sample (small N2,P2) properties of RR and OR, because the 
approximate methods may be misleading. No matter how it is estimated, if the confi- 
dence interva1 is very wide, or if it does not have a finite upper bound (e.g. if the 
probability that nlz = 0 exceeds a/2, for the lOO(1 - a)“/;, confidence interval), the 
observed relative risk has little practical value as a point estimate, even though it may 
indicate whether or not the measure is statistically significant. 

To indicate the minimal sample sizes needed to ensure a finite upper bound to the 95 
and 99% confidence intervals for RR, we present in Fig. 1 some values of the probability 
of observing nzl = 0 for particular sample sizes N2 and a selection of P, values (note 
that RR < l/P,). OR can be undefined also if nr2 = 0, if all relatives of cases are 
affected, but as this is unlikely to occur in a genetic context, we have ignored this 
circumstance. One should obtain samples of relatives considerably larger than these 
limits in order to get a narrow enough confidence interval to be useful in practice. 
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We recommend using the confidence interval in addition to the point estimate of 
relative risk because of the problems just discussed [ 181. No careful investigator will use 
inadequate samples by design, but this can nonetheless occur if data must be stratified in 
several ways, such as by age, sex, types of relatives. The problem of adequate sample sizes 
after stratification may occur when family data are included in what is basically a search 
for exposure.risks in a cohort, for example, of workers in a particular industry. When the 
resulting disease is rare, a chance occurrence of one or two high-risk families in those 
workers might greatly inflate the apparent exposure risk, so that family history must be 
included, but the expected risk to controls might be too low to ensure detection. 

There is another restriction on the type and the size of the samples. Often, data on 
multiple relatives per case/control are gathered in studies of family risk history, for 
example multiple sibs, several offspring, etc. So far as testing the null hypothesis of 
no-association is concerned, there is no problem with this kind of data. But if the null 
hypothesis is rejected, then the accurate estimation of the relative risks and their stan- 
dard errors becomes virtually impossible from data on multiple relatives, because of the 
dependency of these multiple observations under any genetic model. In general, unless 
complete pedigrees are gathered and the data subjected to formal genetic analytic 
methods [19-211, only one relative per proband can be used for estimation, even though 
this puts restrictions on sample sizes. In some situations, where family history data 
gathered without regard to probands’ disease status may be available, there are some 
simplified methods which may be applied at least to estimate the power of tests to detect 
a given level of excess risk [22-241, and in this case the data may include multiple 
relatives. 

2. MORE COMPLEX ETIOLOGY: INCOMPLETE PENETRANCE. 

SPORADIC CASES 

For most chronic diseases it is likely that the majority of cases one would ascertain 
will be of environmental origin (not involving the inheritance of susceptibility alleles), 
even though such alleles do exist in the population. Such cases will not be familial unless 
there is shared family environmental exposure (which is very difficult to distinguish from 
genetic risk). We will refer to these cases as ‘sporadic’ cases, because that is how they 
appear in family data. In human genetics terminology they are called ‘phenocopies’. On 
the other hand, some bearers of susceptibility alleles may not manifest the disease at the 
time they are observed; this failure to express a phenotype is common with medical 
disorders and is known as ‘incomplete penetrance’. One result of incomplete penetrance 
is that some controls one might ascertain could be the bearers of high-risk alleles even 
though unaffected at time of ascertainment. Incomplete penetrance can be due to the 
mollifying effect of other gene loci, manifestation of the trait only at a subclinical level, 
lack of exposure to some environmental stimulus, delayed age of onset, and so on. 

The result of sporadic cases and incomplete penetrance in controls is that dividing 
family data according to cases and controls does not provide the kind of sharp division 
in exposure (of relatives) which is the rationale for the case-control or cohort-exposure 
approaches. The resulting relative risks should be carefully interpreted in terms of the 
strength of the genetic effect. To avoid some of the estimation problems occasioned by 
the use of controls, and to gain a more intuitively interpretable result, one can use what 
we will here term the Population Relative Risk, PRR, defined as 

PRR = 
Prob (Relative is affected ( Proband is affected) P, 

Prob (Random member of population is affected) = 7 ’ 

The meaning of PRR is clear and relevant to chronic disease epidemiology: it is the 
excess risk of the relative of an affected individual as compared to that of a random 
member of the population. This is a straightforward. way to express familial risk. A 
sample of controls is not used, but rather the value of the population risk, rc, obtained 
from some secondary source such as national health statistics (censuses, diseases regis- 
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tries, etc.) for a group demographically like the cases and their relatives, is used. Data of 
these kinds are often available, and when based on complete enumeration, rr can be 
assumed known without any sampling error. Even when the secondary source is not as 
exhaustive as a census or registry, it may be based on such large sam les that there is 
effectively no sampling error. When this can be assumed, the sample A R 

(2) 

is an unbiased estimator of the underlying PRR in the population, and provides the kind 
of ‘observed/expected’ test desired of family history data. The confidence interval can be 
computed directly from the variance, which is 

Var(P/Ri) = 
B,(l - Pi) 

N n2 , 
1 

because if samples are large enough the distribution of PRR is asymptotically normal. 
The test of significance of association of risk is thus straightforward: 

(4) 

In Table 3 we have provided values of PRR corresponding to the RR and OR which 
would arise under the same purely genetic conditions. 

The PRR is a form of indirectly standardized risk ratio, such as the standardized 
mortality or standardized incidence ratio (SMR or SIR), comparing a chosen subset of a 
population to the population of which it is a constituent. The population risk includes 
both the high and low risk subgroups, so that PRR is smaller than measures of risk 
which are based on clear exposure or risk divisions, but when one cannot construct 
samples with such a well-defined exposure it is reasonable to use such a measure, which 
at least is based on a meaningful comparison group (the whole population). PRR has 
been used by geneticists in the past both to detect familial risk and to illustrate theoreti- 
cally the expected effects of genetic risk. Penrose derived tables similar to our Table 3. 
allowing for incomplete penetrance [25]. Edwards [26] and others [27,28] have used 
PRR or similar measures to show the differences in expectation arising from different 
modes of inheritance such a dominant, recessive, and multilocus. It is difficult to dis- 
tinguish between single locus traits and multilocus traits which are expressed dichoto- 
mously (affected/unaffected) only when a genetic threshold has been reached [26], and 
many diseases produce PRR values which are compatible with a mixture of environmen- 
tal and genetic effects [29]. Kruger [12, 303 has given a series of nomograms which can 
be used, with special kinds of family data, to discriminate among different modes of 
inheritance. Although many diseases may be multilocus in etiology, there is good evi- 
dence, for a wide range of chronic diseases, that only one major locus is important, so 
that in this paper we are only interested in the single-locus case. Conclusions in regard to 
multilocus conditions would be similar to those given here. 

Even without the complicating factors of incomplete penetrance and the occurrence of 
sporadic cases, Table 3 shows that PRR has smaller values than do the other measures. 
When there is incomplete penetrance and sporadics, all the measures are reduced. Incom- 
plete penetrance usually reduces the numerator of PRR, and sporadic cases dispropor- 
tionately increase the denominator, both effects lowering the value of the index. Table 4 
provides a selection of PRR values for sib-sib pairs and a range of disease frequency, 
penetrance, and sporadic rates to illustrate the effects which can occur. The relationship 
among the various parameters is complex; for simplicity we avoid these formulae here as 
they are available elsewhere [31]. For comparative purposes, values are in Table 4 
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TABLE 4. VALUES OF POPULATION RELATIVE RISK (PRR) IN SIB-SIB PAIRS WITH INCOM- 

PLETE PENETRANCE ANS SPORADIC CASES, FOR SEVERAL VALUES OF DISEASE FREQUENCY 

Disease Proportion Dominant 
frequency of Penetrance fraction 

(x) sporadics 1 0.75 0.5 Recessive 

0.001 0 500.44 373.745 250.750 266.061 
0.5 248.67 1 189.218 121.283 131.030 
0.99 5.990 3.878 2.338 3.503 

0.01 0 50.443 37.925 25.750 30.250 
0.5 25.524 19.925 13.564 14.725 
0.99 1.490 1.294 1.147 1.250 

0.1 0 5.441 4.283 3.250 4.331 
0.5 3.210 2.774 2.292 2.324 
0.99 1.040 1.027 1.016 1.043 

Calculations based on [31], see text. For this table, disease frequency, n, taken as 
independent variable, gene frequency then computed for each mode of inheritance 
for specified sporadic fraction, penetrance 1.0. Incomplete penetrance not con- 
sidered for recessive case. Within section specified by a value of R, actual disease 
frequency varies slightly, as a consequence of interdependency of variables, with 
changes in sporadic and penetrance fractions. 

corresponding to the purely genetic conditions of Table 3 (penetrance = 1.0, sporadic 
rate = 0.0). We have not discussed details of incomplete penetrance in this paper, and as 
the concept is somewhat involved in relation to recessive traits we only present fully 
penetrant recessive PRR values. Clearly, the more common the disease and the higher 
the fraction of sporadics (i.e. environmental and stochastic cases), the smaller is PRR, and 
PRR values of 2-5 are not difficult to obtain. Note also that under these conditions one 
cannot expect to find cases arising in sibships in the classic Mendelian proportions (such 
as 4 or i), and such proportions should nor be considered as the required signposts of 
genetic risk. 

An illustration of the more complex situation can be found in adult-onset diabetes 
mellitus. The lifetime probability of diabetes in Western Europeans living to old age is 
about 5%. Although there are clearly some nongenetic causal factors related to obesity, 
diet, and other aspects of lifestyle, there is persistent evidence for additional familial 
aggregation, and the child of one affected parent has about a 20% lifetime risk [ll]. This 
yields a population value of PRR of about 4.0 in such parent/child pairs. The risk of 
diabetes in Mexican-Americans is much higher than 5%, perhaps as high as 25-50x in 
those living to old age, based on preliminary work done at this center. Risk in Amerin- 
dians in the southwestern U.S. is similarly elevated. The shared ancestry of these groups, 
along with evidence from family data, provide very strong indication that a sizeable 
fraction of cases in these populations may be of genetic origin. If every case were genetic, 
one might expect to find 50% or more children of affected probands to be affected 
(Mendelian proportions) but if the value of x is about 0.25 or more, PRR will be 
substantially less than 4.0-about 2.0 or even less. This is an artifact of PRR, and in no 
way indicates a minimal involvement of genetic factors in the disease. The effect of 
high prevalance or incidence in the population in reducing relative risks has been noted 
before [32]. 

Eficts of difirential age of onset 

Almost by definition, a degenerative or chronic disease is one which has variable age of 
onset, and risk which increases with age. It can be important to decide whether, in a 
given case, it is better to express risk in terms of incidence, prevalence, or cumulative 
incidence. Often, studies are mixed in this regard. Cases may be ascertained at incidence, 
that is, individuals affected at their age of observation, whereas relatives may only be 
classified as to prevalence, whether or not affected by their last observed age. Studies will 
rarely be comparable in terms of the numbers, sexes and ages of the relatives obtained so 
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that comparing relative risks from more than one investigation into the same disease 

may be difficult. Incidence per person-year at risk might be the best measure to use in 
dealing with age-onset problems, cumulating such incidence for a given age range. This 
may depend to some extent on the nature of the disease, for example, as to whether or 
not the disease can recur more than once in the same individual and how those who have 
recovered are to be classified. 

The absolute risk of onset changes with age by several orders of magnitude for most 
degenerative diseases, so that the sampling variance of a measure like PRR is sensitive to 
age (equation 3). Thus, if a pooled significance test is desired, the pooled variance of the 
test statistic must be a weighted average of the variances of the age subclasses. A Mantel- 
Haenszel test [33,34] against population risk, can take into account differences in risk 
between age strata as well as stratification by degree of relationship. Such a test assumes 
that the direction of risk difference is the same for all strata, but in relation to age this 
may not always be the case with genetic risk and the test may consequently fail to 
discriminate between a true circumstance of no-association and an association manifest 
only in certain subsets of the data. In addition, the Mantel-Haenszel test is used when it 
can be assumed that the magnitude, as well as the direction, or risk difference is constant 
across all strata, which suggests that a separate test for each type of relationship would 
be better than a single pooled test. 

For many degenerative diseases the effect of familial factors seems to be to raise the 
risk at young adult ages, that is, to shift the age-onset curve toward younger years. It is 
not clear whether genetic risk remains in excess at older ages. Often, the clinical pathol- 
ogy of the disease is basically the same, so far as one can tell, in both familial and 
sporadic cases and the only discernable effect of high risk alleles is to lower the ages of 
onset. The best approach to detect genetic risk when this may be occurring is to stratify 
data according to the ages of both probands and relatives. The age and disease status of a 
proband affect the probability that he/she is the bearer of a high-risk allele, which in turn 
affects the probability that the relative received such an allele from the proband. Simi- 
larly, the relative’s age and disease status are informative as to whether an allele was in 
fact inherited. A young affected individual is more likely to be the bearer of a genetic risk 
factor than one affected at old age, and the child of the former will have a higher 
expected risk than a child of the latter. If family history data are stratified in this manner, 
genetically-based onset effects produce PRR greater than 1.0 only in some subsets of the 
data, revealing their existence, Two-way stratification may place constraints on sample 
sizes, but this should be done at least by dividing cases and their relatives each into two 
broad age classes, such as below and above age 50. Failing to stratify in this way may 
simply obscure the evidence for familial risk. Technically speaking, in fact, one might 
desire data on the age and affection status of unascertained relatives as being relevant to 
the problem. For example, if differential mortality or infertility due to a genetic disease 
selects against susceptibility alleles in parents, the risk in sib sets may be better assessed if 
they are classified according to the ages of their parents at the birth of those children. 
Breast cancer, vulnerability to ovarian cysts, and similar conditions are examples where 
this might be important; risk would be likely to show up in sib-sib data mostly in those 
born to young mothers because women surviving and able to bear children at older ages 
are less likely to carry high risk alleles. 

An example of the age effect can be found in the condition known as Familial Poly- 
posis Coli (FPC). This is a single-locus dominant genetic disorder [7, lo]. Individuals 
bearing the FPC allele develop numerous polyps in the colon during young adult years 
and in about 80% or more of such individuals one or more of the polyps is transformed 
to become carcinoma of the colon by age 50. In the U.S. at large, the risk of colon cancer 
by age 50 is only about 0.002, so that a person with early onset of colon cancer has a 
substantial probability of being a victim of FPC (or one of several similar syndromes) 
and the PRR for a child of such a person is very much’above the usual 2-5 fold relative 
risk observed in general colon cancer data [lo]. In data on incidence per person-year of 
risk classified according to age, the expected PRR dec!ines as the ages of the children of 
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an early-onset parent increase, because the older these unaffected children are the lower 
is the chance that they inherited the FPC allele. The older a proband is at onset, the 
lower the chance that he/she has FPC and the lower the value of PRR for the children, to 
the point that the children of a late-onset case can have PRR slightly less than 1.0, that is, 
less than the risk to a randomly chosen member of the population of the same age 
[35-371. An old, unaffected offspring even of a known FPC victim can have PRR less 
than 1.0 when ages are properly accounted for. The precursor lesion for FPC (polyps) is 
well known, so that individuals can be assigned to their proper risk group via colono- 
scopic examination. But there may be many similar kinds of genetic subsets of otherwise 
common diseases which no not have a currently known precursor state, and it would be 
easy to miss the familial excess risk in family history data not stratified by the ages of 
both probands and relatives. 

The use of age-stratified relative risks has been successful in identifying high-risk 
individuals in whom specific genetic factors are probably operating. This has been the 
case in regard to breast cancer. Many family history studies showed relative risks on the 
order of about 2-3 [S, 38411. By age subdivision, Anderson [42] identified families 
whose relative risks were very greatly elevated (estimated to be about 50); these were 
bilateral, premenopausal, multiply-affected nuclear families. Large-scale studies of Utah 
Mormon pedigrees have corroborated both the familiality of breast cancer and the 
nature of the high-risk subsets [43,44], and recently several workers using similar criteria 
to identify probands have claimed that a single gene, located on chromosome 10, may be 
responsible for at least some cases of this kind of early-onset breast cancer [45,46]. 

DISCUSSION 

A relative risk is a labile index whose value depends on the type and ages of the 
individuals from whom is was derived. Apart from its use to detect risk excess, there may 
not be a correspondence of relative risk values from different studies of the same disease, 
and clearly there is no single or “true” familial relative risk in a population. Much the 
same could be said in regard to environmental relative risk. except that in the genetic 
case there is less design control over the degree of exposure in those sampled. Epidemio- 
logists also seem to be less sensitive to these issues in relation to familial factors. 

What is one really trying to estimate from a sample relative risk estimate? Probably, 
this is some form of lifetime risk of expression of a disease in the relative of an affected 
proband as compared to that in the population or to relatives of unaffected controls. 
This would make intuitive sense both epidemiologically and to the geneticist advising 
family members of their risks, but such data are usually not available from casual family 
studies. Furthermore, one must decide whether “lifetime” should refer to the natural 
lifetimes of actual individuals, in which case one must consider the dynamics of compet- 
ing causes of mortality, or to the risk to an individual if he/she lives to a specified old. 
age, that is, the risk should no other cause intervene. Even here, however, one would 
have to decide whether such lifetime relative risks should be conditioned on the age of 
onset in the proband, and again it seems that no single index will be fully satisfactory. 
These things are rarely considered. 

There are two additional sources of error to which family data are particularly prone 
and which can affect relative risk analysis. One is ascertainment bias. There are many 
ways in which affected family members can come to the attention of the investigator 
disproportionately as compared to unaffected members (e.g. [12]). Multiply-affected 
families may be more likely to show up in referral clinics, and there is great recall bias in 
the use of anamnestic data alone, on which many studies rely. Affected probands may 
have heightened awareness of other cases of the same disease in their family, relative to 
unaffected probands, which may lead to an upward bias; on the other hand for social or 
other reasons relatives may not reveal the true nature of a diagnosis, leading to a 
downward bias. One should verify, for example, whether a relative said to have had 
breast cancer actually had benign breast disease, or vice versa. 



Assessment of Relative Risk of Chronic Disease 549 

The second source of error is pedigree error. Careful pedigree studies using biochemi- 
cal marker genes usually detect a sizeable percentage of unreported nonpaternity. This 
may be due to unknown nonpaternity, unreported illegitmacy, adoptions, and so on. 
Pedigree errors usually result in an underestimate of familial risk when genes are 
involved because they substitute random individuals for related ones [36]. Family his- 
tory based on interview or questionnaire is vulnerable to this source of error, although it 
takes a considerable effort, including genetic studies of blood samples, to obtain a good 
estimate of the extent to which it has occurred in a particular study. 

We have reviewed many difficulties with the use of casual family history data and 
showed that small relative risks can result in a number of ways and that relative risks can 
in any case be difficult to interpret. Does this mean that use should not be made of such 
data? To the contrary, we would argue that it is very important to include family history, 
with all of its pitfalls, in any reasonably comprehensive risk-factor survey. Furthermore, 
it is a realistic fact that a casual family history is the only economically practicable way 
to examine family risk for large numbers of diseases, at least initially. We would only 
stress three major cautions in interpreting results from such work: (1) small relative risks, 
of the order of 2, should not be overlooked [35]; (2) small relative risks indicate, gener- 
ally, a large fraction of cases are sporadic but do nor indicate that there is little genetic 
involvement; and (3) casual family history data should only be used to test the null 
hypothesis and should not be expected to be very informative about the nature of 
genetic factors, which require follow-up studies. What are the benefits to following up 
relative risks which are greater than 1.0, even if small? We believe that they are basically 
three. 

First, the epidemiology of genetics of a disease is a function of parameters like gene 
frequency which underlie the process, and when preliminary studies have indicated that 
there is excess familial risk these parameters can be estimated and the mode of inheri- 
tance of risk better understood. The method of choice for doing so is known as complex 
segregation analysis. This is an extension of basic principles of Mendelian segregation to 
cover a range of complexities including sporadics and incomplete penetrance (e.g. 
[19,20]). The method requires family data which have been collected according to cer- 
tain principles for avoiding ascertainment bias [47-49]. Segregation analysis does not 
involve concepts like strength-of-effect, but rather is a means of testing the goodness of fit 
of a specific genetic model to data and of estimating the underlying parameters. Results 
from different studies are directly comparable, and age effects can be taken into account 
through age-onset functions assigned to different genotypes by the model. High risk 
individuals can be identified within the family structures. 

The second reason has to do with etiology. If susceptibility is due to a very common 
allele, most people may be susceptible, as might be the case with regard to some infec- 
tious disease; one might wish to look at low risk individuals in order to understand the 
immunogenetics of their resistance. More often, however, only a minority of individuals 
will be predisposed and it can be important to identify them to understand the genetic 
mechanisms of their risk. This may not simply lead to an understanding of the genetics of 
the disease in those individuals but also in the population at large. Many chronic 
diseases seem ultimately to be the result of some genetic event(s): the incorporation of a 
viral gene into the genome, the stochastic occurrence of a mutation producing a clone of 
autoantibodies, the accumulation of somatic mutations as the result of exposure to 
environmental mutagens, etc. Solid adult carcinomas are generally thought to be the 
result of the latter kind of mutational process. Although sporadic cases may be the result 
of such changes in somatic tissue, occasionally the same mutational events may occur in 
germ line cells and be inheritable in the bearers of such mutations and their descendants 
in the population [SO]. High risk families provide an opportunity to see the alternative 
alleles segregating, with a consequent opportunity to perform genetic linkage studies to 
locate such alleles on their chromosome or, with the genetic technology rapidly becom- 
ing available, to identify the locus or its gene products themselves. Such identification is 
an important strategy in contemporary genetic epidemiology. 
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The final reason for following up family risk studies is related to treatment. The 
identification of a high risk subset of individuals can be important to an understanding of 
the course of the disease and to assigning risk to individuals based on prodromal symp- 
toms which may be identified through studying them. These individuals would benefit 
from genetic counseling to advise them of their risk and that to their family members and 
to suggest prophylactic measures they may take; they may also benefit from screening for 
early detection. Although the genetically predisposed may comprise only a small propor- 
tion of all cases of a disease in the population they may be a numerically important group. 
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