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Star products from commutative string theory
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Abstract. A boundary-state computation is performed to obtain derivative corrections to the
Chern–Simons coupling between ap-brane and the RR gauge potentialCp�3. We work to quadratic
order in the gauge field strengthF, but all orders in derivatives. In a certain limit, which requires the
presence of a constantB-field background, it is found that these corrections neatly sum up into the
�2 product of (commutative) gauge fields. The result is in agreement with a recent prediction using
noncommutativity.
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1. Introduction

In a recent paper [1] it was shown that the noncommutative formulation of open-string
theory can actually give detailed information about ordinary commutative string theory.
Once open Wilson lines are included in the noncommutative action, one has exact equality
of commutative and noncommutative actions including allα 0 corrections on both sides.
As a result, a lot of information aboutα 0 corrections on the commutative side is encoded
in the lowest-order term (Chern–Simons or DBI) on the noncommutative side, and can be
extracted explicitly.

The predictions of ref. [1] were tested against several boundary-state computations
in commutative open-string theory performed in [2], and an impressive agreement was
found. The latter calculations were restricted to low-derivative orders, largely because the
boundary-state computation becomes rather tedious when we go to high derivative order.
However, in some specific cases, particularly when focusing on Chern–Simons couplings
in the Seiberg–Witten limit [3], the predictions from noncommutativity in [1] are simple
and elegant to all derivative orders as long as we work with weak field strengths (quadratic
order inF). This suggests that the boundary state computation can be performed for these
special cases, and in the given limits, to all derivative orders.

In this short paper, we perform precisely such a calculation using techniques and formu-
lae already established in [2]. It turns out that the derivative corrections neatly sum up and
give rise to a�2 product [4] between a pair of commutative field strengths:
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The expression obtained in this way for the derivative corrections agrees perfectly with a
prediction from noncommutativity that was made in [1].

Besides verifying this prediction, the calculation described here suggests that derivative
corrections to brane actions in commutative string theory, even away from the Seiberg–
Witten limit, might have a novel underlying mathematical structure. We will comment on
this at the end.

2. Chern–Simons corrections: RR 6-form

In this section, we compute the corrections to the term

SCS=
1
2

Z
C(6)

RR
^F ^F (2)

on a Euclidean D9-brane of type IIB string theory with noncommutativity along all 10
directions. HereC6 is the Ramond–Ramond 6-form potential. The computation is per-
formed to all orders in the derivative expansion, but keeping only terms of order(F 2). The
use of D9-branes is purely a convenience, the same calculation can be trivially applied to
Dp-branes and their coupling to the RR formC(p�3).

The computation of corrections will be done in the boundary-state formalism. Useful
background on how to compute derivative corrections in this formalism may be found in
[2]. The formalism itself was developed in [5], and has been reviewed recently in [6].
Earlier work on derivative corrections can be found in [7].

Let us denote the sum of all derivative corrections toSCS as∆SCS. Our starting point is
the expression

SCS+∆SCS=


C
��e� i

2πα0

R
dσdθDφ µ Aµ (φ)

��B�R; (3)

wherejCi represents the RR field andjBiR is the Ramond-sector boundary state for zero
field strength. We are using superspace notation, for exampleφ µ = Xµ + θψµ andD is
the supercovariant derivative.

Combining eqs (2.3), (2.6), (2.13) of [2], we can rewrite this as

SCS+∆SCS=


C
��e i

2πα0

R
dσdθ ∑∞

k=0
1

(k+1)!
k+1
k+2Deφ ν

eφ µ
eφ λ1 ���eφ λk∂λ1

:::∂λk
Fµν (x)

� e
i

2πα0

R
dσ [eΨµ ψν

0 +ψµ
0

ψν
0 ]∑

∞
k=0

1
k!
eXλ1 ���eXλk∂λ1

:::∂λk
Fµν (x)��B�R; (4)

where nonzero modes have a tilde on them, while the zero modes are explicitly indicated.
Since we are looking for couplings to the RR 6-formC(6), and working to orderF 2,

we only need terms with the structure∂ : : :∂F ^ ∂ : : :∂F . For such terms, twoF ’s and 4
ψ0’s must be retained. Thus we can drop the first exponential factor in eq. (4) above as

well as the first fermion bilineareΨµψν
0 in the second exponential. Then, expanding the

exponential to second order, we get
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SCS+∆SCS=
1
2

∞
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∞

∑
p=0

�
i

2πα 0

�2Z 2π

0
dσ1

Z 2π

0
dσ2



C
���1

2
ψ µ

0 ψν
0

��
1
2

ψα
0 ψβ
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� 1
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eXλ1(σ1) � � � eXλn(σ1)

1
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�∂λ1
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Fµν(x)∂ρ1
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Now we need to evaluate the 2-point functions of theeX. The relevant contributions have
nonlogarithmic finite parts [2] and come from propagators for which there is no self-
contraction. This requires thatn = p. Then we get a combinatorial factor ofn! from
the number of such contractions in


�eX(σ1)
�n�eX(σ2)

�n�
. The result is
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1
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��
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0 ψβ

0

���B�R: (6)

The fermion zero mode expectation values are evaluated using the recipe

1
2

ψ µ
0 ψν

0 Fµν ! (�iα 0)F; (7)

where theF on the right hand side is a differential 2-form. The justification for this can be
found in eq. (B3) of [2]. Thus we are led to

SCS+∆SCS= Tλ1:::λn;ρ1:::ρn∂λ1
: : :∂λn

F ^∂ρ1
: : :∂ρnF; (8)

where

Tλ1:::λn;ρ1:::ρn � 1
2

1
n!

�
i

2πα 0

�2

(�iα 0)2

�
Z 2π

0
dσ1

Z 2π

0
dσ2Dλ1ρ1(σ1�σ2) � � �Dλnρn(σ1�σ2): (9)

Now we insert the expression for the propagator

Dµν(σ1�σ2) = α 0

∞

∑
m=1

e�εm

m

�
hµνeim(σ2�σ1)+hνµe�im(σ2�σ1)

�
; (10)

whereε is a regulator, and

hµν � 1
g+2πα 0(B+F)

: (11)

As is well-known, the propagator is no longer symmetric when aB-field background is
turned on. We now find that
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�
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It is convenient to define

(h+)µν � hµν
; (h�)µν � hνµ

which allows us to write�
hµνeim(σ2�σ1)+hνµe�im(σ2�σ1)

�
=∑

�

(h�)µν e�im(σ2�σ1)

and we find that

Tλ1:::λn;ρ1:::ρn =
1
2

1
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(α 0)n

Z 2π

0

dσ
2π

n

∏
i=1

�
∑
�

(h�)λiρi

∞

∑
m=1

e�εm

m
e�imσ

�
: (13)

After evaluating the sum overm, the result depending on the regulatorε , is

Tλ1:::λn;ρ1:::ρn =
1
2

1
n!
(α 0)n

Z 2π

0

dσ
2π

n

∏
i=1

 
�∑

�

(h�)λiρi ln(1�e�ε�iσ)

!
:

(14)

At this point it is difficult to proceed further without introducing some simplification.
The integral above, for generalhµν , can only be performed explicitly forn= 2, as has in
fact been done in [2]. However, if we take a limit where

gµν � δ ; Bµν � fixed; α 0 �
p

δ (15)

with δ ! 0, a simplification occurs. This is indeed just the Seiberg–Witten limit [3]. In
this limit, the ‘metric’hµν becomes antisymmetric

hµν ! θ µν

2πα 0
; (16)

where

θ µν �
�

1
B

�µν
(17)

and hence we find

∑
�

(h�)λiρi ln(1�e�ε�iσ) =
1

2πα 0
θ λiρi ln

�
1�e�ε+iσ

1�e�ε�iσ

�

=
1

2πα 0
i (σ �π)θ λiρi

: (18)
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The integrand has simplified considerably and the integral can now be done. Also, we have
now taken the regulatorε to 0, as it is no longer needed. It follows that

Tλ1:::λn;ρ1:::ρn =
1
2

1
n!

�
� i

2π

�n

θ λ1ρ1
: : :θ λnρn

Z 2π

0

dσ
2π

(σ �π)n

=

8<
:

1
2

1
n!

�� i
2π
�n πn

n+1 θ λ1ρ1 : : :θ λnρn (evenn)

0 (oddn)
: (19)

Inserting this in eq. (8), it follows that keeping all derivative orders, but restricting to
quadratic order inF , and in the Seiberg–Witten limit

SCS+∆SCS=
1
2

Z
C(6)^

∞

∑
j=0

(�1) j 1
22 j(2 j +1)!

�θ λ1ρ1 : : :θ λ2 j ρ2 j ∂λ1
: : :∂λ2 j

F ^∂ρ1
: : :∂ρ2 j

F

=
1
2

Z
C(6)^hF ^Fi�2

; (20)

where the product�2 is defined in eq. (1).
This agrees with a prediction from noncommutativity made in eq. (4.13) of ref. [1]. In

that sense, the result is not surprising. However, it is amusing that using the boundary-state
formalism in ordinary (commutative) string theory, we were explicitly able to obtain the� 2
product without invoking noncommutativity in any form.

3. Conclusions

It should be reasonably straightforward to repeat the calculation above to compute deriva-
tive corrections to

R
C(10�2n)^ (F)n for n= 3;4;5 restricting to corrections of orderF n. In

the Seiberg–Witten limit, one should find the�n product in this way for these values ofn.
The analogous calculation for the DBI action will perhaps be more difficult.

One of the most interesting questions raised by this calculation and the work in ref.
[1] is, what is the full expression for the derivative corrections, away from the Seiberg–
Witten limit. We know that general string amplitudes depend on transcendental numbers,
for exampleζ -functions of odd argument. As noted in [1], the Seiberg–Witten limit causes
these to go away in all the cases examined, leading to much simpler results which can
then be recovered using noncommutativity or, as in this paper, explicit boundary state
calculation. Clearly these simpler results place a strong constraint on the form of the full
derivative corrections, away from the Seiberg–Witten limit. The question is then whether
this constraint can be combined with other inputs, such as boundary-state computations,
gauge invariance and background-independence [3,8], to recover the full corrections. This
could have important consequences in understanding string theory beyond the derivative
expansion.
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