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1. Introduction

It has been known for some time[1, 2, 3, 4, 5] that noncritical string theories in two

spacetime dimensions have a topological description. Subsequently the actual corre-

spondence between them and their topological duals on a Calabi-Yau manifold was

found by Ghoshal and Vafa[6]. Noncritical c = 1 string theory at the self-dual radius

is perturbatively equivalent to topological string theory on a deformed conifold. For

integer multiples of the self-dual radius, the corresponding topological theory lives on

a ZZn orbifold of the conifold geometry. The noncritical-topological equivalence was

shown both via Landau-Ginsburg models and using the ground ring[7] construction.

The above correspondence has led to considerable illumination of the existence

and properties of noncritical strings. But because the bosonic c = 1 string is non-

perturbatively unstable, it has not been possible to extend the equivalence to the
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nonperturbative level. Such an extension can be explored in the case of the nonpertur-

batively stable Type 0 string theories in two dimensions. These too have a description

in terms of topological string theory, first proposed in Ref.[8] and further explored in

Refs.[9, 10, 11]. The Calabi-Yau dual to noncritical type 0 strings at a special radius

is a ZZ2 orbifold of the conifold, while for integer multiples of this radius it is a ZZ2n

orbifold.

One of the most interesting aspects of noncritical type-0 strings is the possibility

of turning on background RR fluxes: type 0A theory has two RR gauge fields and type

0B theory has an RR scalar whose equations of motion admit linear growth in space

and time[12]. Thus in both cases there is a pair of independent RR fluxes q and q̃.

At the level of the closed string perturbation expansion the theory depends only on

|q|+ |q̃|, but at the disc level there is a subtle and important additional term in the free

energy which depends on |q| − |q̃|, as found by Maldacena and Seiberg in [13]. Only

after this extra term is included in the free energy, one finds a satisfactory physical

interpretation wherein one of the two fluxes is sourced by ZZ 0-branes while the other

has no sources.

However, the dual topological B-model of Refs.[8] and [10] depends on the complex-

structure moduli of the orbifolded conifold, which in turn depend on the fluxes only

through the combination |q| + |q̃|. Thus it is not obvious how the correspondence can

be extended to incorporate this effect. Our aim here will be to re-examine the duality

with particular reference to flux dependence. We will make the existing proposal more

precise and will then argue that the topological side must be extended to incorporate a

new feature, namely noncompact branes1. When placed at appropriate locations, they

contribute precisely the desired disc term in the free energy. Thereafter we generalise

these observations to integer multiples of the special radius and to infinite radius.

One key difference between our analysis and previous ones is that we use the

result of Ref.[13] which we consider to be rigorously true as a convergent integral

representation of the full (nonperturbative) free energy of type 0 strings.

1A tentative indication of a role for noncompact branes in this duality was found in Ref.[8].
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2. Noncritical-topological duality

2.1 Bosonic case

In this section we briefly review some relevant aspects of topological string theory on

noncompact Calabi-Yau spaces. The simplest example is the conifold, described by the

equation

zw − px = 0, (2.1)

where z, w, p, x are complex coordinates of IC4. This is therefore a three complex

dimensional non-compact manifold. It has a singularity at the origin. The singularity

can be removed by blowing up an S3 cycle at the origin, after which the equation

becomes:

zw − px = µ, (2.2)

where µ is in general complex and its modulus determines the size of the S3. Eq. (2.2)

is known as the deformed conifold (DC) and µ is its complex structure parameter. The

singularity in Eq. (2.1) can alternatively be removed by blowing up an S2 at the origin.

The resulting manifold is the resolved conifold (RC).

The topological A model on any given Calabi-Yau is a theory of quantised defor-

mations of the Calabi-Yau, sensitive only to the Kähler moduli. The B model is similar

but depends only on the complex structure moduli. The noncritical-topological duality

proposed by Ghoshal and Vafa[6] stems from the observation[7] that the ground ring

of c = 1 string theory at the self-dual radius has four generators z, w, p, x that are

worldsheet operators of conformal dimension 0 in the BRST cohomology, satisfying the

conifold relation Eq. (2.2) where

µ = igsµM (2.3)

and µM is the cosmological constant on the worldsheet in the noncritical string theory2.

Based on this and other evidence, they argued that the c = 1 string with cosmological

2The factor of i exhibited here is often dropped in the literature, though it has been correctly

placed in Refs.[9, 11]. It is important because the genus expansion of the topological string free

energy is F top =
∑

g χgµ
2−2g, with coefficients that alternate in sign (given by the virtual Euler

characteristic of the moduli space of genus g Riemann surfaces), while that of the c = 1 string is

Fc=1 =
∑

g |χg|(gsµM )2−2g and is therefore positive in every genus as befits a unitary theory. A

discussion of this point may be found in Ref.[14].
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constant µM at self-dual radius is equivalent to the topological B-model on the deformed

conifold with deformation parameter µ. In particular their argument requires the genus-

g partition functions of the two theories to coincide. Writing the genus expansions of

the free energies of the c = 1 theory and the topological theory on the deformed conifold

as:

F c=1(µM) =
∞
∑

g=0

F c=1
g µ

2−2g
M

F top,DC(µ) =
∞
∑

g=0

F top,DC
g µ2−2g (2.4)

the claim then amounts to:

F c=1
g = (igs)

2−2gF top,DC
g , all g (2.5)

for which ample evidence has been found[15, 16]. There is also expected to be a 1-

1 correspondence between the physical observables (tachyons in the c = 1 case and

deformations of S3 in the B-model case) and their correlators (for a recent discussion,

see Ref.[17]).

Going beyond the self-dual radius, it has long been known[18] that the ground

ring of the c = 1 string at integer multiples of the self-dual radius, R = p, is a ZZp

orbifold of the conifold. This space has p singularities connected by (complex) lines.

The deformed version of this space is described by the equation:

zw −

p
∏

k=1

(px − µk) = 0 (2.6)

which has n homology 3-spheres of size µ1, µ2, . . . , µp, each concealing one of the sin-

gularities. The geometry develops a conifold singularity if any of the µi’s become zero,

and a line singularity if µi = µj for i 6= j. If the µi’s are all distinct and nonzero, the

manifold is non-singular.

We expect the n deformation parameters to be in correspondence with p distinct

(non-normalisable) deformations of the noncritical string theory[19]. If we only choose

to perform the cosmological constant deformation µM then these p deformation pa-

rameters must be determined in terms of µM . It has been shown via a Schwinger
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computation[20] that for an integer radius the parameters µk are given by igs
µM +ik

p
,

and k = −p−1
2

,−p−1
2

+ 1, · · · , p−1
2

. Moreover, the free energy factorises3 into a sum of

contributions as follows:

FR=p
c=1 (µ) = F top,DOCp({µk}) =

p−1
2
∑

k=− p−1
2

F top,DC(µk) (2.7)

This factorisation can be understood in the Riemann surface formulation of [21].

In this approach one thinks of the following class of noncompact Calabi-Yaus:

zw − H(p, x) = 0 (2.8)

as a fibration described by the pair of equations:

zw = H, H(p, x) = H (2.9)

The fibre is zw = H , a complex hyperbola, and the base is the complexified p, x plane.

Above points in the base satisfying H(p, x) = 0, the fibre degenerates to zw = 0, a pair

of complex planes intersecting at the origin. Such points in the base form a Riemann

surface, and it is this surface that governs the physics of the topological string theory.

Moreover the function H(p, x) plays the role of a Hamiltonian and lends an integrable

structure to the system.

In the present case of the orbifolded conifold of Eq. (2.6), the Hamiltonian is:

H(p, x) =

p
∏

k=1

(px − µk) (2.10)

and hence the Riemann surface H(p, x) = 0 factorises into disjoint Riemann surfaces[10].

This is the physical reason for the factorisation of the free energy into a sum of contri-

butions, one for each branch of the Riemann surface.

The above statements are meaningful only at the level of string perturbation theory,

since the bosonic c = 1 is not well-defined nonperturbatively. Moreover, the computa-

tion of Ref.[20] is performed by manipulating a divergent series. Later we will discuss

the analogous relation for the type 0A string, and will demonstrate factorisation of the

free energy without ever using perturbation expansions or divergent series. In this way

we will reliably show that it is nonperturbatively exact.
3We use the word “factorise” even though the free energy splits into a sum, rather than a product,

of terms. What factorises is of course the partition function.
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2.2 Type 0 case, R = 1

In Ref.[8] and subsequently Ref.[9, 10, 11], the above ideas were applied to the case of

the type 0A string. Here it is convenient to choose units in which α′ = 2. A new feature

of the type 0A string relative to the bosonic case (for more details, see Refs.[12, 22, 13]

and references therein) is that it has two distinct quantised parameters q and q̃. In the

Liouville description these arise as the fluxes of two distinct Ramond-Ramond 2-form

field strengths, Ftφ, F̃tφ. The theory has a symmetry, labelled S-duality, under which

the cosmological constant µM changes sign and at the same time, F ↔ F̃ . In the more

powerful matrix quantum mechanics (MQM) description of the same string theory, the

fluxes have quite an asymmetric origin. For µM < 0, q is the difference in the number

of D0 and D̄0 branes, or the net number of D0 branes, in the MQM. On the other

hand, q̃ is the coefficient of a Chern-Simons term involving gauge fields on the branes

and anti-branes. For µM > 0 the roles of q, q̃ are reversed. On reducing to eigenvalues,

each of the integers q and q̃ can be interpreted as the quantised angular momentum

of fermions moving in the complex plane. Moreover, if both are turned on there is an

additional coupling term arising from projection to nonsinglet sectors, such that the

Hamiltonian eventually depends only on (q + q̃).

The Euclidean type 0A theory has a special value of the radius, R = 1 in these

units, at which the correspondence with the topological string is simplest. This radius

is the analogue of the self-dual radius for the bosonic c = 1 string. For type 0A noncrit-

ical strings at the special radius, the corresponding dual geometry in the topological

string has been proposed[8] to be a deformed ZZ2 orbifold of the conifold (DOC). The

identification is again based on the analysis of the ground ring of the noncritical theory.

The DOC dual to the type 0A string has two S3’s whose complex structure parameters

are identified4 with the type 0A parameters µM , q̂ = q + q̃ as:

µ = igs(µM − iq̂

2
) =

gs

2
y

µ′ = −igs(µM + iq̂

2
) =

gs

2
ȳ (2.11)

with:

y = q̂ + 2iµM (2.12)

4Again, this identification substantially agrees with that in Refs.[9, 11] but differs from that in

Refs.[8, 10] by factors of i.
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Thus the equation of the DOC is:

zw + (px − µ)(px − µ′) = 0 (2.13)

Notice that complex conjugation exchanges the moduli of the two S3’s and acts as S-

duality of the noncritical string. This is because both conjugation and S-duality act as

q̂ → q̂, µM → −µM . As a result the S-duality of type 0A noncritical strings is explicitly

geometrised in the topological B-model dual.

We note at this point that a different point of view about noncritical-topological

duality for type 0 strings is espoused in Ref.[11], according to which the topological

string is defined on the “holomorphic square root” of the space we have been discussing,

which is an ordinary conifold rather than an orbifolded one. The noncritical-topological

correpondence then has to be reformulated by saying that we have to add topological

and anti-topological free energies. While this seems to fit in with the picture of topo-

logical strings emerging from black hole studies[23, 24], it is not clear that in practical

terms it differs from the older proposal of Ref.[8]. However we will see later that our

proposal for a precise topological dual involving noncompact branes can also be phrased

in topological-anti-topological language.

The manifold Eq. (2.13) exists and is nonsingular for all nonzero µ 6= µ′. However,

the topological B-model on it is dual to type 0A noncritical string theory only in the

special case µ′ = µ̄. With this restriction, the space is nonsingular as long as µ has an

imaginary part. From Eq. (2.11), this will in turn be the case as long as the cosmological

constant µM of the noncritical theory is nonzero, which is natural since µM cuts off

the strong coupling end of the Liouville direction. Of course from the matrix model

point of view there is still a sensible string theory when µM = 0, but one in which the

standard genus expansion of the continuum theory does not hold, and where the role

of the string coupling is played by the inverse RR flux. The region where the RR flux

is of the same order as, or larger than, the cosmological constant has received some

discussion in the literature[25, 26].

The above identification leads to the following proposed equality between type 0A

string and topological B model free energies:

F0A(µM , q, q̃, R = 1) = F top,DOC
(

µ =
gs

2
y, µ′ =

gs

2
ȳ
)

(2.14)
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Using arguments analogous to those described above for the bosonic string, we also

find that the RHS perturbatively factorises:

F top,DOC
(

µ =
gs

2
y, µ′ =

gs

2
ȳ
)

= F top,DC
(gs

2
y
)

+ F top,DC
(gs

2
ȳ
)

(2.15)

In principle we can now investigate the validity of the above correspondence beyond

perturbation theory. This point was considered in Refs.[9, 11]. However, the methods

used there involve manipulation of divergent series, and we will be able to derive all

our correspondences using convergent integral representations of the relevant special

functions.

Let us see how this works in some detail. As in Ref.[10], we consider the open-

string dual of the DOC obtained from the Gopakumar-Vafa correspondence[27]. This

theory lives on a resolved orbifolded conifold (ROC) with two P 1’s whose (complex) size

parameter is irrelevant in the B-model but which have respectively N1, N2 2-dimensional

B-branes wrapped over them, where:

N1 =
y

2
=

q̂

2
+ iµM

N2 =
ȳ

2
=

q̂

2
− iµM (2.16)

The number of branes in this correspondence is inevitably complex, and therefore a

prescription is required to complexify starting from real integer values5.

In the open string description, the partition function arises as follows. Using

Eqs.(2.11) and (2.12), we find:

F top,DOC
(

µ =
gs

2
y, µ′ =

gs

2
ȳ
)

= F top,ROC
(

N1 =
y

2
, N2 =

ȳ

2

)

= F top,RC
(

N =
y

2

)

+ F top,RC
(

N =
ȳ

2

)

(2.17)

where in the last step, factorisation of the Hamiltonian H(p, x) has been used.

On an ordinary resolved conifold, the free energy of N D-branes is given by the log

of the matrix integral:

e−Ftop,RC(N) =
1

vol(U(N)

∫

dMe−
1
2
trM2

=
(2π)

N2

2

vol(U(N)
(2.18)

5However, we see that the total number of branes in the background N1+N2 = q̂ is real and integer.

This is striking, and somewhat reminiscent of fractional branes, though we do not have an explanation

of this fact.
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Now we use[28]

vol(U(N)) =
(2π)

1
2
(N2+N)

G2(N + 1)
(2.19)

where G2(x) is the Barnes double-Γ function[29] defined by:

G2(z + 1) = Γ(z)G2(z), G2(1) = 1 (2.20)

Thus we find

−F top,RC
(

N =
y

2

)

− F top,RC
(

N =
ȳ

2

)

=
(

log G2

(y

2
+ 1
)

−
y

4
log 2π

)

+ c.c. (2.21)

Let us compare the above with what we know about the noncritical string starting

from the matrix model. In Ref.[13] the authors have given a complete nonperturbative

solution for the free energy of Type 0 noncritical strings at arbitrary radius R. The

free energy of type 0A theory is given by:

−F0A(µM , q, q̃, R) = Ω(y, R) + Ω(ȳ, R) +
πµMR

2
(|q| − |q̃|) (2.22)

where the function Ω is defined by the convergent (for Re y > −
(

1 + 1
R

)

) integral:

Ω(y, R) ≡ −

∫ ∞

0

dt

t

[

e−
yt

2

4 sinh t
2
sinh t

2R

−
R

t2
+

Ry

2t
+

(

1

24

(

R +
1

R

)

−
Ry2

8

)

e−t

]

(2.23)

At the special radius R = 1 it is easily shown from the integral form that:

Ω(y, R = 1) = log G2

(y

2
+ 1
)

−
y

4
log 2π (2.24)

where G2 is the Barnes function discussed above.

If we temporarily ignore the last term in Eq. (2.22), we see that the free energy is

the sum of holomorphic and antiholomorphic contributions. Moreover, each of these is

known to be the (complexified) free energy of the bosonic c = 1 string at radius R[30].

This is in agreement with Eqs.(2.14),(2.15).

However, the last term in Eq. (2.22) does not seem to come from the topological

string. We will discuss this issue in the following section. First we will generalise

the considerations of this subsection to the case where the radius of the time circle is

different from R = 1, in particular to integer radii. We will also comment on the case

of rational radii R = p

p′
.

– 9 –



2.3 Integer radius

We have seen that the c = 1 bosonic string at R = p (an integer multiple of the self-dual

radius R = 1) is dual to a topological string living on a Zn orbifold of the conifold.

An analogous result has been proposed for the type 0A string[11]. We will provide a

simple and general derivation of this result using only properties of convergent integral

representations.

Inserting the value R = p into the expression for Ω, Eq. (2.23), we rewrite the first

term in the integrand:

e−
yt

2

4 sinh t
2
sinh t

2p

→
e−

yt

2

4(sinh t
2
)2

sinh t
2

sinh t
2p

(2.25)

Next, use:
sinh t

2

sinh t
2p

=

p
∑

k=1

e
t
2p

(p−(2k−1)) (2.26)

Now define:

yk = y +
−p + (2k − 1)

p
, k = 1, 2, . . . , p (2.27)

Using the identities:

p
∑

k=1

1

t2
=

p

t2

p
∑

k=1

yk

2t
=

py

2t

p
∑

k=1

(

1

12
−

y2
k

8

)

=
1

24

(

p +
1

p

)

−
py2

8
(2.28)

of which only the third one is not completely obvious, but nonetheless easy to prove.

It follows that:

Ω
(

y, R = p
)

=

p
∑

k=1

Ω(yk, R = 1) (2.29)

We see that the free energy at rational radius factorises into 2p distinct contributions,

of which p are holomorphic in y and the remaining are anti-holomorphic. Each of the

contributions corresponds to a theory at R = 1, or equivalently to the contribution of

topological B-branes. The factorisation is exact.
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Let us analyse this in some more detail. First, by definition Re y ≥ 0, which not

only ensures convergence of the LHS of Eq. (2.29), but also ensures that the RHS is

convergent since this implies that Re yk > −
(

1 + 1
R

)

= −2 for all k. Therefore the

equality is between convergent integral representations as promised.

From the above result we can conclude that for type 0 string theory at every

integer radius R = p, there is an exact noncritical-topological correspondence where

the corresponding topological string lives on a Z2p orbifold[18] of the conifold, whose

deformed version is:

zw −

k=p
∏

k=1

(px − µk)

k=p
∏

k=1

(px − µ̄k) (2.30)

where

µk =
gs

2
yk (2.31)

and yk are defined in Eq. (2.27). This manifold has 2p independent 3-cycles that

occur in complex conjugate pairs. The factorisation into contributions from these

cycles is nonperturbatively exact upto non-universal terms, and even those terms vanish

identically at integer 0A radius.

The resolved version of this correspondence would involve the same Z2p orbifold

of the conifold but now with the 2p singularities blown up into P 1’s with Nk B-branes

wrapped over each of the first p cycles, and the complex conjugate number of branes

on the remaining p cycles, where:

Nk =
yk

2
(2.32)

As before, the partition function in this picture arises from the vol(U(N) factors as-

sociated to each set of Nk branes, giving the most direct derivation of the noncritical-

topological correspondence.

This generalised correspondence too can be phrased in topological-anti-topological

language. In this case the topological theory lives on a Zp orbifold, with p cycles labelled

by an integer k and Nk branes wrapped on each of them. The remaining contribution

to the free energy arises on combining with the anti-topological version of this theory.

2.4 Rational radius

Let us now consider more general rational radii of the form R = p

p′
, with p and p′

co-prime. A similar derivation to the previous one goes through in this case, though

– 11 –



the interpretation presents some subtleties that we will discuss.

Inserting the value of R into the expression for Ω, Eq. (2.23), we send t → t
p′

and

then rewrite the first term in the integrand:

e
− yt

2p′

4 sinh t
2p′

sinh t
2p

→
e
− yt

2p′

4(sinh t
2
)2

sinh t
2

sinh t
2p′

sinh t
2

sinh t
2p

(2.33)

Using Eq. (2.26) and defining:

yk,k′ =
y − p′ + (2k′ − 1)

p′
+

−p + (2k − 1)

p
, k = 1, 2, . . . , p; k′ = 1, 2, . . . , p′ (2.34)

we find the following identities, generalising Eq. (2.28):

p
∑

k=1

p′
∑

k′=1

1

t2
=

pp′

t2

p
∑

k=1

p′
∑

k′=1

yk,k′

2t
=

py

2t

p
∑

k=1

p′
∑

k′=1

(

1

12
−

y2
k,k′

8

)

=
1

24

(

p

p′
+

p′

p

)

−
py2

8p′
(2.35)

Thus we find:

Ω
(

y, R =
p

p′

)

=

p′
∑

k′=1

p
∑

k=1

Ω(yk,k′, R = 1) −

(

1

24

( p

p′
+

p′

p

)

−
py2

8p′

)

log p′ (2.36)

Thus, at rational radius the free energy factorises into 2pp′ distinct contributions, of

which pp′ are holomorphic in y and the remaining are anti-holomorphic. However, in

general the factorisation is exact only upto an analytic and therefore non-universal

term. If we consider the special case of p′ = 1, corresponding to integer radius in

the type 0A theory, then the non-universal term vanishes. On the other hand if we

take p = 1, corresponding to even integer radius in the type 0B theory, then the non-

universal term is present. Subtracting the two expressions (after scaling y → ym in

one of them) we find:

Ω

(

ym, R =
1

m

)

− Ω (y, R = m) = −

(

1

24

(

m +
1

m

)

−
y2

8m

)

log m (2.37)

– 12 –



which is precisely Eq.(A.39) of [13]. There, we see that the apparent violation of T-

duality by the extra term is actually harmless and can be understand as due to the

difference in natural cutoffs for type 0A and 0B. This explains the presence of the

non-universal term, and confirms that its presence can be ignored.

We would now like to interpret the above factorisation property in terms of con-

tributions from singularities. For the bosonic string, the original ground ring analysis

of Ref.[18] tells us that the (singular) ring at R = p

p′
is a Zp × Zp′ orbifold of the

conifold. Assuming that in type 0 strings the parameters are complexified and occur

in complex-conjugate pairs, we expect in this case to find a Z2p × Z2p′ orbifold of the

form:
p′
∏

k′=1

(zw − αk′)

p′
∏

k′=1

(zw − ᾱk′) =

p
∏

k=1

(px − βk)

p
∏

k=1

(px − β̄k) (2.38)

for some set of p + p′ complex parameters αk′, βk. Such a space no longer has an inter-

pretation as a fibration over a Riemann surface and the analysis of its partition function

is therefore more complicated. We expect that for some (not necessarily simple) choice

of the parameters, the free energy on this space can be written as a sum of terms as in

Eq. (2.36) but will not be able to show this here.

An alternate interpretation of the factorised free energy is that it corresponds to a

Z2pp′ orbifold of the conifold:

zw −

k=p

k′=p′
∏

k=1

k′=1

(px − µk,k′)

k=p

k′=p′
∏

k=1

k′=1

(px − µ̄k,k′) (2.39)

where

µk,k′ =
gs

2
yk,k′ (2.40)

and yk,k′ are defined in Eq. (2.34). This manifold has 2pp′ independent 3-cycles that

occur in complex conjugate pairs. The resolved version of this space has the 2pp′

singularities blown up into P 1’s with Nk,k′ B-branes wrapped over each of the first pp′

cycles, and the complex conjugate number of branes on the remaining pp′ cycles, where:

Nk,k′ =
yk,k′

2
(2.41)

The advantage of this latter interpretation is that it preserves the fibred structure of the

manifold with a Riemann surface as the base, and therefore all previous computations
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manifestly go through in the same way. Unfortunately this interpretation is at variance

with the original proposal[6] that the variety occurring on the topological B-model side

is in correspondence with the ground ring on the noncritical side.

3. Disc amplitudes and noncompact branes

3.1 R = 1

In the correspondence between noncritical type 0A strings and the B-model on the

conifold Eq. (2.13) (and more generally Eq. (2.30)) that we have discussed above, there

is right away a puzzle. The former depends on three parameters, q, q̃, µM , which in

the continuum Liouville description arise as the two independent RR fluxes and the

cosmological constant (in the matrix model description these three parameters arise as

a net D-brane number, a Chern-Simons term and the Fermi level respectively[12, 13]).

However the topological dual only depends on the complex number y = |q|+ |q̃|+2iµM ,

and therefore on only two of these three parameters. It reproduces most of the free

energy, which indeed depends only on two parameters and is the sum of mutually

complex conjugate terms. However, the extra term in the free energy:

Fdisc,2 = −
πR

2
µM(|q| − |q̃|) (3.1)

is unaccounted for (the reason for the label on this contribution will become clear

shortly).

This term is responsible for an important effect. From the factorised part of the

free energy one extracts the following disc contribution in the limit of large µ and fixed

q̂[13]:

Fdisc,1 = +
πR

2
|µM |(|q| + |q̃|) (3.2)

Hence the total disc amplitude is:

Fdisc = Fdisc,1 + Fdisc,2 =
πR

2

[

(

|µM | − µM

)

|q| +
(

|µM | + µM

)

|q̃|
]

(3.3)

This can be written as:

Fdisc = (2πR)
µM

2
|q̃|, µM > 0

= (2πR)
|µM |

2
|q|, µM < 0 (3.4)
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The physical interpretation is that for µM > 0 the RR flux of q̃ units associated to

the gauge field Ã is supported by |q̃| ZZ branes in the vacuum, with the contribution

per brane to the free energy being given by the product of its extent in Euclidean time

(2πR) and its tension ( |µM |
2

). The other flux of q units associated to the gauge field A

has no source. Similarly for µM < 0 the vacuum contains |q| ZZ branes sourcing the

first flux while the other flux of q̃ units is not supported by any source..

Note that in the absence of the term Fdisc,2 there is no satisfactory physical inter-

pretation of the disc amplitude in terms of ZZ branes. This makes the term extremely

important for a consistent noncritical string theory.

We now propose that the missing term is supplied, on the topological side, by

noncompact B-branes wrapping a degenerate fibre of the Calabi-Yau over the Riemann

surface H(p, x) = 0. Such branes have been extensively studied in Refs.[31, 21] where

they have been shown to give rise to the Kontsevich parameters of topological matrix

models. These branes are, in particular, fermionic. Since we are considering the free

energy of the string theory, we work in the vacuum where such Kontsevich branes are

absent. However, as we now explain, it is still possible to place noncompact branes at

infinity on the Riemann surface and they can reproduce just the desired term in the

free energy.

Consider the case R = 1. Suppose we place a single noncompact B-brane along one

branch of the degenerate fibre over a point x on the Riemann surface. We would like

to isolate its contribution to the free energy compared with that of a brane at a fixed

reference position x∗, or in other words we assume that the brane is asymptotically at

x∗ but its interior region has been moved to x. The action of such a brane has been

shown[31, 21] to be6:

S(x) =
1

gs

∫ x

x∗

p(z) dz (3.5)

As we have seen, for the case of interest to us the Riemann surface consists of two

disjoint factors:

xp =
gs

2
y, xp =

gs

2
ȳ (3.6)

6In the language of Ref.[21], we place the branes in the “x-patch” and never move them to the

“p-patch”.
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Thus a brane on the first branch contributes:

S(x) =
µ

gs

ln
x

x∗

(3.7)

Let us now place one noncompact brane above each of the two branches, and take their

asymptotic positions to be at x∗, x
′
∗ which will both be sent to infinity. Then their total

contribution to the free energy is:

S(x, x′) =
1

2

(

y ln
x

x∗
+ ȳ ln

x′

x′
∗

)

(3.8)

Now we will choose our branes such that x, x′ are also at infinity, but rotated by

angles θ, θ′ respectively along the circle at infinity relative to the original points x∗, x
′
∗.

Namely:

x = x∗ eiθ, x′ = x′
∗ eiθ′ (3.9)

It follows that:

S(x1, x2) =
i

2
(y θ + ȳ θ′)

= −µM(θ − θ′) + i
q̂

2
(θ + θ′) (3.10)

The factors of gs have conveniently cancelled out, and the real part of the above con-

tribution is proportional to µM . Now if we choose:

θ = −θ′ =
π

4
(|q| − |q̃|) (3.11)

we find that the noncompact branes give a contribution:

S = −
π

2
µM(|q| − |q̃|) (3.12)

to the free energy, precisely equal to that in Eq. (3.1) at R = 1.

To summarise, we have shown that if we place a noncompact B-brane at x → ∞

on each branch of the Riemann surface

H(p, x) = (px − µ)(px − µ′) = 0 (3.13)

and moreover require that the branes wind at infinity by the angles in Eq. (3.11), we

precisely reproduce the disc contribution to the free energy of Eq. (3.1). This situation

is depicted in Fig.1.
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p = ∞

x∗
1

x∗
2x = ∞ x1

x2

Figure 1: The Riemann surface with noncompact branes at infinity.

This then completes the definition of the topological dual to type 0A strings at the

special radius.

The above system also has a description in topological-anti-topological language.

As we have seen, the topological theory then lives on the pure conifold, having a

Riemann surface with only one branch. Now we place a single noncompact brane on it

with winding angle θ given by Eq. (3.11). Adding the anti-topological theory introduces

the second noncompact brane with winding −θ and we recover the correct free energy.

3.2 Integer and rational radius

Let us now extend these considerations to other integer radii. At radius R = p, we

have the possibility of placing noncompact branes at infinity on each of 2n branches of

the Riemann surface H(x, p) = 0 obtained from Eq. (2.30). Parametrising the angles

by which these branes wind as:

xi = x∗i e
i θi , x′

i = x′
∗i e

i θ′i , (3.14)

the contribution of these branes to the free energy is:

S(xi, x
′
i) =

i

2

n
∑

j=1

(

yj θj + ȳj θ′j
)

= −µM

n
∑

j=1

(θj − θ′j) + i

n
∑

j=1

q̂j

2
(θj + θ′j) (3.15)

where

q̂j = q̂ − 1 +
2j − 1

n
, j = 1, 2, . . . , n (3.16)
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It is natural to take

θj = −θ′j =
π

4
(|q| − |q̃|) , all j = 1, 2, . . . , n (3.17)

which leads to a contribution to the free energy:

S = −
πn

2
µM(|q| − |q̃|) (3.18)

in precise agreement with Eq. (3.1) for R = n.

It appears as if in this case the noncompact brane configuration is not unique.

However, note that choosing θj = −θ′j for all j is essential to make the free energy real.

After this, the choice we have made is the most symmetric one which gives the correct

disc amplitude.

In the topological-anti-topological approach, we would instead have p branches in

the Riemann surface and therefore p noncompact branes with associated angles θk. The

remaining noncompact branes with angles −θk then arise on the anti-topological side.

It is quite nontrivial that we were able to reproduce the subtle disc term by a

simple configuration of noncompact branes in every case. The scaling with gs of the

holomorphic Chern-Simons action and of the complex-structure moduli µk,k′ defined

in Eq. (2.40) exactly cancel out. Moreover, µk,k′ all have a common imaginary part

proportional to µM . These facts were important in allowing us to obtain the desired

contribution from noncompact branes.

Now let us briefly consider rational radius. If we accept the Z2p × Z2p′ orbifold

interpretation of Eq. (2.38) then it is not clear how to extend the above considerations

to radius R = p

p′
. This is because the manifold is no longer of the form zw = H(p, x)

and therefore the Riemann surface interpretation itself needs to be generalised, which

lies beyond the scope of the present work.

4. Discussion

One of our main results has been that the noncritical-topological correspondence for

type 0 noncritical strings has to include noncompact branes on the topological side.

This introduces a dependence on a new parameter which we interpret as |q| − |q̃| on

the noncritical side, and renders the duality consistent with the dependence of the

noncritical theory on three parameters: µM , q and q̃.
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The identification between the phases of noncompact branes and the parameter

|q| − |q̃|, via Eq. (3.11), appears rather ad hoc. From Eq. (3.11) it is tempting to

imagine that there could be a missing normalisation factor of 8 which changes π
4

to 2π.

In that case one could have postulated that the noncompact branes have an integer

winding at infinity and this integer gets identified with the integer |q|− |q̃|. This would

make the identification a little less ad hoc. However we did not find such a missing

normalisation factor.

Given that the subtle disc term is required in the noncritical string by consistency,

one may ask if the presence of noncompact branes in the topological theory is also a

consistency requirement. However, this seems not to be the case. On the noncritical

side there is the possibility of ZZ branes in the vacuum, and it is only after including

the subtle term that the vacuum has a definite intepretation as containing or not

containing such branes. However ZZ branes do not (so far) have a direct analogue on the

topological side and so it is possible that the topological theory without the subtle disc

term, and hence with an exactly holomorphically factorised free energy, is consistent

by itself. The only thing that would fail is its correspondence to the noncritical theory.

Nevertheless it would be interesting if there were a way to understand ZZ branes from

the noncritical side. It would be equally interesting to understand the presence[13] of

qq̃ fundamental strings in the vacuum, for which we have not found a direct topological

explanation.

We also found that the free energy of the full type 0A theory has a nonpertur-

batively exact factorisation into contributions from compact and noncompact branes.

Apparently there is no room for any interactions between these different branes, or in

other words the open strings stretched among any two of these branes (both compact,

or both noncompact, or one of each) seem to decouple completely. This is somewhat

puzzling but must be related in some way to the topological nature of the theory as

well as to having distinct branches of the Riemann surface H(p, x) = 0.

It is amusing that compact and noncompact branes make use of different pieces of

the holomorphic Chern-Simons theory restricted to a 2-cycle[32]:

S =
1

gs

∫

tr(Φ1D̄Φ0 + W (Φ0)ω) (4.1)

For compact branes, the first term can be shown to be irrelevant while the second
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one gives a matrix-valued superpotential, which for our case is simply an independent

quadratic for each branch of the Riemann surface. For noncompact branes it is the

second term which is irrelevant (because the volume is infinite, we subtract the free

energy of deformed compact branes from the undeformed ones[31]) while the first term

leads to the expression
∫

pdx. In this case there is no matrix model, because we have

placed only one brane on each branch.

It is clearly of interest to generalise our construction to include more noncompact

branes that act as sources for incoming closed-string tachyons on the noncritical side7, as

well as non-normalisable deformations of the conifold which are associated to outgoing

tachyons[21]. When carried out for the general orbifolded conifold Eq. (2.30), this will

provide the analogue of the Normal Matrix Model[33, 34] for type 0 strings, valid for

all rational radius. This is an important generalisation of the KP[35] model which has

already been found using the topological string construction for both bosonic c = 1

strings[21] and type 0 strings[8].

As is well known, topological descriptions of noncritical strings are simplest at

R = 1 in appropriate units, and can then be generalised to integer multiples of this

radius, as done before for bosonic strings and in this paper for type 0 strings. In this

way we can describe the Euclidean or finite-temperature version of the theory. To get

to the zero-temperature case one then has to take the limit R → ∞. This limit has

been explored before, most recently in Ref.[36] where it was related to deconstruction.

Our analysis in the present work can potentially add something to this story. Consider

Eq. (2.34) at p′ = 1 and take p → ∞. In this limit we find that yk,k′ varies continuously

in the open interval (y − 1, y + 1). From Eq. (2.12) this amounts to saying that the

RR flux effectively varies continuously over the same interval. This suggests a higher-

dimensional origin and may again link the topological theory to deconstruction in some

way.

As we have seen, all our considerations extend to the topological-anti-topological

picture of Ref.[11], which seems more natural in one sense. The Z2p orbifolded conifold

has in principle 2p independent complex structure parameters µk, µ̄k. The noncritical-

topological correspondence requires half of them to be constrained to be complex con-

jugates of the other half, which is naturally achieved if we think of the system in the

7Our noncompact branes do not act as such sources precisely because they are located at x → ∞.
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topological-anti-topological way. In that case only the p parameters µk can be indepen-

dent. However, as we have seen, the µk are all determined in terms of two parameters

embodied in y, and the topological-anti-topological picture does not seem to help in

explaining this fact. Therefore, if it is to be genuinely useful, perhaps it needs to be ex-

tended to a generalised principle where the holomorphic part of the free energy further

factorises into contributions from p independent theories.
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