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Abstract. Ellobius lutescens carries an apparently identical 
karyotype (2n = 17) in both sexes. On the basis of indirect 
evidence the unpaired chromosome 9 has been considered 
to represent the X chromosome of this species. We have 
obtained data to substantiate this view by four different 
techniques. After fusion of H P R T -  RAG cells with E. lutes- 
cens fibroblasts we demonstrated that the enzymes HPRT 
and G6PD are localized on the presumptive X chromo- 
some. By analysis of pachytene figures after silver staining 
we showed by electron microscopy that the single chromo- 
some exhibits the typical features of an X chromosome 
in male meiosis. Hybridization of (GATA)4 and (GACA)4 
oligonucleotide probes to E. luteseens DNA revealed sever- 
al distinct bands in the high molecular weight range some 
of which appeared to be specific for the individual but not 
for the sex of the animal. Hybridization in situ of the 
(GATA)4 probe on metaphase spreads of E. lutescens did 
not highlight any particular chromosome segment but 
showed a significant deficit of these sequences in chromo- 
some 9, These observations are discussed with respect to 
their bearing on X chromosome determination. Finally it 
is concluded that E. lutescens should be an ideal tool for 
testing candidate genes assumed to be involved in primary 
sex determination. 

Introduction 

Ellobius lutescens is a species of mull vole with a distinctive 
karyotype with respect to chromosomal sex determination. 
Since the earliest cytogenetic investigations (Matthey 1953, 
1958) it has been known to possess eight pairs of homolo- 
gous chromosomes and a single one in both sexes. 

Studies of male and female meiosis (Matthey 1958, 
1964; Castro-Sierra and Wolf 1968) and analysis of chro- 
mosome replication by autoradiography (Schmid 1967; 
Castro-Sierra and Wolf 1967) have suggested that the single 
chromosome (no. 9) represents the X chromosome. This 
hypothesis, however, would not allow E. lutescens to gener- 
ate predominantly balanced offspring without complicated 
meiotic mechanisms. Though such a mechanism had been 
found in Microtus oregoni (Ohno 1963), it has not been 
possible to obtain corresponding evidence for E. lutescens. 
Hence, only accidental findings remain as a basis for expla- 
nation, e.g., the association of the sex vesicle with an au- 
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tosomal bivalent has been interpreted as indicating autoso- 
real integration of the Y chromosome (Castro-Sierra and 
Wolf 1968). 

The analysis of banding patterns has yielded differing 
results on chromosomal sex determination (de la Maza and 
Sawyer 1976; Wolf et al. 1979). Nevertheless, both studies 
suggested the integration of morphologically visible corre- 
lates of sex chromosomes into one homologue of pair no. 1. 
Recently it has become clear that the differences between 
both chromosomes 1 do not represent a chromosomal basis 
for sex determination in E. lutescens (Djalali et al. 1986). 
Thus the coincidence of variant no. 1 chromosomes with 
the sex of their carriers seems fortuitous. 

It has generally been accepted that chromosome 9 of 
E. lutescens represents one X chromosome in this species. 
The evidence, however, is rather indirect: 
The DNA content of  this chromosome comprises roughly 
5% of the haploid genome (Ohno et al. 1964) which corre- 
sponds well with the mammalian X (Castro-Sierra and Wolf 
1967). 
The single chromosome is included in the sex vesicle during 
pachytene of male meiosis as is usual for mammalian sex 
chromosomes (Matthey 1958; Castro-Sierra and Wolf 
1968). 
There is no example of a completely unpaired mammalian 
autosome, but this is the common situation with the mam- 
malian X chromosomes in male mammals. 

The particular chromosome constitution of E. lutescens 
and the contradictory results of banding analyses necessi- 
tate particular caution before accepting assumptions and 
hypotheses. Therefore, we tried to characterize chromo- 
some 9 of E. lutescens by several techniques to confirm that 
it is, indeed, the X chromosome. A priori we considered 
four techniques as potentially informative either about the 
identity of  the X chromosome or chromosomal sex determi- 
nation in this species: (i) Somatic cell genetics might allow 
the assignation of X linked enzymes to chromosome 9 of 
E. lutescens. (ii) Silver staining of the synaptonemal com- 
plexes should demonstrate any pairing of the smallest chro- 
mosome with an autosomal bivalent. (iii) Sex-specific sim- 
ple repeated sequences of snakes (the so-called Bkm DNA) 
show sex-specific restriction fragments in several animals 
(for review see Epplen and Ohno 1987) including other ro- 
dent species. This might also apply to E. lutescens and thus 
- in conjunction with in situ hybridization - indicate a chro- 
mosomal segment involved in sex determination. (iv) When 
Bkm DNA, or its main component the GATA/GACA se- 



quences, is used for hybridization in situ the labelling is 
concentrated on the heterochromatic sex chromosome in 
mice (Singh and Jones 1982). Unequal distribution of these 
sequences in E. lutescens might help to understand chromo- 
somal sex determination. 

These techniques should allow a decision on whether 
chromosome 9 of E. lutescens is indeed the X chromosome 
and possibly give further insight into chromosomal sex de- 
termination in this species. 

Materials and methods 

Animals'. The animals studied were a kind gift of Dr. Far- 
houd, Institut Pasteur, Teheran. The cytogenetic character- 
ization of the animals studied here has recently been re- 
ported elsewhere (Djalali et al. 1986). 

Fibroblast cultures were established and maintained as de- 
scribed (Wolf 1974). These were used for somatic cell genet- 
ics, cytogenetics, and for preparation of DNA. 

Somatic cell hybrids were derived in hypoxanthine, aminop- 
terin, thymine, glycine (HAT) medium (Szybalski et al. 
1962) by fusing an established mouse line (RAG) deficient 
in hypoxanthine phosphoribosyl transferase (HPRT) to 
normal fibroblasts from a male E. lutescens. The RAG cells 
were pretreated with thioguanine to remove HPRT-positive 
revertants. After cell fusion mediated by polyethylene glycol 
(Pontecorvo 1976) the cells were plated into 75 cm 2 tissue 
culture flasks (ca. 1.5 x ] 0  6 cells per flask). After mainte- 
nance in HAT medium a number of clones were isolated 
within 2 months and grown in the same medium for several 
further months with E. lutescens chromosomes slowly segre- 
gating. To select true hybrid clones cellulose acetate gel 
electrophoresis of  glucose-6-phosphate dehydrogenase 
(G6PD) isoenzymes was done according to standard meth- 
ods. After electrophoretic separation the enzyme was 
stained with thiazolyl blue (MTT). 

For cytogenetic evaluation the hybrid clones were har- 
vested and prepared as usual. The slides were stained with 
25 gg/ml Hoechst 33258 to allow for a clear discrimination 
of mouse chromosomes showing brightly fluorescing C- 
bands and E. lutescens chromosomes showing Q-bands but 
no C-bands. 

D N A  preparation from E. lutescens fibroblasts and gel elec- 
trophoresis procedures were performed essentially accord- 
ing to Maniatis et al. (1982). The DNAs of the different 
E. lutescens specimens were digested with several restriction 
enzymes (AluI, HaeIII,  MboI, TaqI, HpaII)  using the con- 
ditions recommended by the supplier. DNA samples were 
electrophoresed in 0.8% agarose gels, photographed after 
ethidium bromide staining under UV and dry-blotted (Tsao 
et al. 1983). The (GATA)4 and (GACA)4 oligonucleotides 
were radiolabelled using 32p-ATP and T4 polynucleotide 
kinase as described by Miyada et al. (1985). Hybridization 
and washing were carried out according to Sch/ifer et al. 
(1986). The hybridized gels were exposed for 12 h without 
intensifier screen. 

In situ hybridization. Chromosomes of the different E. lutes- 
cens specimens were obtained from fibroblast cultures by 
standard techniques (Wolf 1974). Slides were treated with 
100 lag/ml RNase A (Boehringer) for 1 h at 37 ~ C, rinsed 
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Fig. 1. Glucose-6-phosphate dehydrogenase (G6PD) patterns on 
a cellulose acetate gel. Lane 1, RAG; Lanes 2-5, hybrid (RAG 
x Ellobius) clones t2, 13, 14, and 16 showing the heteropolymer 
pattern; lane 6, fibroblasts of E. lutescens 

in 2 x SSC and dried in an ethanol series. After DNA dena- 
turation (70% formamide, 2 x SSC at 70 ~ C for 2 rain), hy- 
bridization was carried out in situ under coverslips in 
5 x SSPE, 0.5% SDS, 50 ~tg/ml Escherichia coli DNA and 
2.5 • ] 0  6 cpm/ml of the (GATA)4 probe for 3 h at 35 ~ C. 
Slides were washed 3 times for at least 15 rain each in 
6 x SSC on ice and 1 min at the hybridization temperature 
and subsequently dried. Slides were coated with NTB3 
emulsion (Kodak) and exposed for 4 to 8 days at - 7 0  ~ C. 
Individual metaphases were photographed after G-banding 
according to standard procedures (Nesbitt and Francke 
1973). As a control for the hybridization specificity of the 
(GATA)4 probe, the length-matched oligonucleotide 5'- 
AATTCCGTATCGATGC was used. This sequence is not 
present in the genomes of the mouse and E. luteseens. Hy- 
bridization, washing and exposure were carried out as out- 
lined above except that the hybridization temperature was 
41 ~ C for the latter probe because of the differing base com- 
position. 

Meiotic studies. One male of E. lutescens was used for 
meiotic preparations according to Dresser and Moses 
(1980). The silver staining of synaptonemal complexes (SCs) 
was performed according to Howell and Black (1980). For 
electron microscopy analysis a Philips EM301 was used. 

Results 

Somatic cell genetics 

Under the conditions used the electrophoretic mobility of 
the E. lutescens G6PD is slightly faster than that of the 
mouse G6PD (Fig. 1). Among 16 isolated clones examined 
there were 11 showing the interspecific heteropolymer 
G6PD band (Fig. 1), whereas 5 clones had apparently lost 
the E. lutescens G6PD. Cytogenetic analysis of the 11 prov- 
en hybrid clones (Fig. 2) revealed the panel shown in Ta- 
ble 1, (5 clones deficient for E. Iutescens G6PD were ex- 
cluded from cytogenetic analysis). Chromosome 9 was the 
only one retained in all hybrid clones accompanied by dif- 
ferent other chromosomes of E. lutescens, most frequently 
chromosome 3. This was absent only from clones l0 and 
19. The hybrids had been maintained in HAT medium and 
the mouse parent was deficient for HPRT. Therefore, an 
active gene for HPRT required for survival of the hybrid 
cells - is located on chromosome 9 of E. lutescens. 

After cytogenetic evaluation the hybrid clones l l, 13, 
14, 16, and 19 were grown for one to three further passages 
and again tested for G6PD by gel electrophoresis. The pres- 
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Fig. 2. Partial metaphases of RAG x Ellobius lutescens hybrid cells stained by Hoeehst 33258. Note the bright fluorescence of the 
mouse C-bands and clear banding patterns on Ellobius chromosomes. Bar represents 10 ~tm 

T a b l e  1. Hybrid clone panel: Ellobius chromosomes retained in 
Ellobius x RAG hybrid clones showing activity of Ellobius HPRT 
and G6PD 

Hybrid Ellobius chromosomes 
done 
no. 3 4 5 7 8 9 mar 

6 + + -- - + + - -  

8 + . . . .  + - -  

9 + . . . .  + + 
10 - + - - - + - 
11 + . . . .  + - 
13 + - - - + + - 
14 + . . . .  + - 
15 + . . . .  + - 
16 + . . . .  + + 
19 - + + + - + - 

The presence of Ellobius G6PD was tested again after cytogenetic 
evaluation in clones l l ,  13, 14, 16, and 19. Only chromosome 
9 was retained in all hybrid clones. Chromosomes 1, 2 and 6 were 
not observed in any of the clones, mar unidentified marker chromo- 
s o m e  

ence of E. Iutescens G6PD at the time of the cytogenetic 
analysis was confirmed. Therefore, in E. lutescens not  only 
the gene for HPRT but  also the G6PD gene is linked to 
chromosome 9. 

Gel hybridization with the oligonucleotide probes ( G A T A )  4 
and (GACA)4  

The D N A  of three male and four female specimens was 
probed with the (GATA)4 and (GACA)4 oligonucleotides. 
In general, the patterns showed several distinct bands in 
the high molecular weight range and a background smear 
towards smaller fragment sizes (Fig. 3). Some bands varied 
considerably between individual specimens indicating poly- 
morphism of the length of restriction fragments detectable 
by the (GATA)4 and (GACA)4 oligonucleotides. Neither 

the presence of bands, however, nor  their position allowed 
the detection of any sex specificity. The comparison of the 
patterns from a mother with those of her son and her 
daughter did not  reveal sex-specific bands (data not  shown). 

Hybridization in situ 

The distribution of (GATA)4 elements or multiples thereof 
on the chromosomes of E. lutescens was analysed by hy- 
bridization in situ. A survey of more than 50 metaphases 
each from a male and a female animal clearly showed that 
there is no outstanding signal on any of the chromosomes 
(Fig. 4). A closer analysis after photography revealed a 
nearly even distribution of the grains over the whole chro- 
mosome set with the exception of chromosome 9 (Fig. 5). 
The evident reduction of grains on this chromosome indi- 
cates that this singular chromosome carries fewer (GATA)4 
sequences than the other pairs of chromosomes. 

Synaptonemal gomplexes 

The structure and localization of chromosome 9 (the small- 
est one) was studied in 68 pachytene figures. Measurements 
showed that the mean length of this chromosome was about  
two-thirds that of the smallest bivalent. It was surrounded 
by condensed material (Fig. 6) as is the sex vesicle in other 
species. The axial core of this chromosome appeared thick- 
ened and more heavily stained than the other SC's (Fig. 7). 
In many cells this axial element formed hairpin loops 
(Figs. 6 and 8 a). There were up to four loops which seemed 
to occur in fixed positions. 

An at tachment of chromosome 9 to an autosomal biva- 
lent was observed in 2 out of 68 pachytene figures. In  both 
instances the axial element was attached to the lateral ele- 
ment  for a short distance but formed neither an SC nor  
the typical structure of a trivalent (Fig. 8 a, b). Furthermore,  
the respective autosomal bivalents were different as well 
as the points of at tachment on chromosome 9. A terminal 
association of the sex vesicle to different autosomal biva- 
lents was seen in six plates, but  always without connection 
to the lateral and axial element. In the remaining spreads 
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Fig. 4. Example of a metaphase of a male Ellobius lutescens speci- 
men with autoradiographic detection of (GATA)4 sequences after 
hybridization in situ. For details see text. Bar represents 10 lain 

i. 

i 
2 3 4. 

Fig. 3a, b. Gel hybridization of male (m) and female (/0 Ellobius 
lutescens DNA with a the (GATA)4 and b the (GACA)4 oligonuc- 
leotides. Restriction enzymes are indicated at the bottom: A AluI; 
H HaeIII; Hi HinfI; M MboI; T TaqI; Hp HpaII. Four details 
see Materials and methods 

the sex vesicle was separated and localized in the per iphery 
of  the pachytene figures. 

Discussion 

There are manifold  problems with the pecul iar  chromosome 
complement  o f  E. lutescens, predominant ly  the lack of  de- 
tectable chromosomal  sex determinat ion  and the unbal-  
anced offspring expected in consequence o f  the odd number  
o f  chromosomes.  The unpaired chromosome has always 
been assumed to represent the X chromosome (e.g., see 
Mat they  1953; Castro-Sierra  and W o l f  1967). The main 

11 ' li Liil 
5 6 7 8 9 

Fig. 5. Cumulative grain distribution from 28 metaphases of Ello- 
bius lutescens after hybridization in situ with the (GATA)4 oligo- 
nucleotide and autoradiography 

purpose  of  this study was to obtain support ing evidence 
for this view. There were several hints indicating that  a 
pair  of  autosomes is involved in sex determinat ion (Castro-  
Sierra and Wol f  1968), possibly no. 1 (De la Maza  and 
Sawyer 1976; Wol f  et al. 1979). These indications encour- 
aged us to restudy male meiosis employing AgNoa  staining 
and electron m~croscopy. Bkm D N A  shows sex-specific hy- 
br idizat ion pat terns  in the heterogametic  sex of  several ro- 
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Fig. 6. Spread pachytene cell 
containing an entire complement of 
synaptonemal complexes (SC). The 
eight autosomal SCs are numbered 
according to their ranked lengths. 
The axis of chromosome 9 has a 
distinctive morphology at pachytene 
and is thus clearly recognizable. Bar 
represents 10 ~tm 

Fig. 7 a, b. The synaptonemal complex (SC) of a bivalent is shown; 
the lateral elements appear as thin threads consisting of two parallel 
filamentous subunits, b In contrast the axial element of chromo- 
some 9 is thickened and shows four plaited fibrils. Bars represent 
1 gm 

Fig, 8a, b. In two pachytene figures an association of the axial 
core of chromosome 9 with an autosomal bivalent was seen. In 
a the at tachment point lies in the area of a hairpin loop near 
the end while the other (b) is near the centre of chromosome 9. 
Bars represent 1 pm 
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dent species. I t  appeared  worthwhile,  therefore, to hybridize 
E. lutescens D N A  with these probes.  

The results obta ined by the four different techniques 
employed are fully compat ib le  with the assumpt ion that  
chromosome 9 of  E. lutescens represents the X chromo-  
some. Direct  evidence, however, emerged only from somatic 
cell genetics. Since H P R T  and G6PD can clearly be as- 
signed to chromosome 9, it is obvious that  this chromosome 
is the X chromosome.  There are no known exceptions to 
the localization o f  these genes of  the X chromosome in all 
mammal ian  species studied so far. 

The analysis of  SCs in pachytene figures revealed no 
discrepancy from the earlier studies with convent ional  stain- 
ing (Mat they  1958; Castro-Sierra  and W o l f  1968). The sin- 
gle element can now be identified as chromosome 9 by 
length measurements.  Whereas the eight pairs o f  autosomes 
show typical bivalents the axial element of  no. 9 corre- 
sponds to the X chromosome of  other mammals  in structure 
and localization. Hai rp in  loops like those observed here 
have been described in mouse and hamster  (Moses 1977; 
Pa thak  and Hsu 1979). Fur thermore ,  they have been ob- 
served in XO oocytes of  mouse and man (Speed 1986). 

In E. lutescens a frequent associat ion between the univa- 
lent and an au tosomal  bivalent  led to the assumption that  
this bivalent  might be involved in sex determinat ion  (Cas- 
t ro-Sierra and W o l f  1968). We also saw two such associa- 
tions, yet they were unspecific and no tr ivalent  was formed, 
F r o m  these observat ions we conclude, therefore, that  nei- 
ther an homologous  segment nor  pair ing and recombina-  
t ion between the X chromosome and an autosome is in- 
volved in the sex determinat ion  mechanism of  E. lutescens. 

G A T A / G A C A  sequences reveal sex-specific restriction 
pat terns  in several species (Epplen and Ohno 1987). There- 
fore, we analysed the five males and four females available 
with a series of  restr ict ion enzymes which are informative 
in other rodents.  The pat terns  varied without  any detectable 
sex specificity. 

Sex specificity with the aforement ioned oligonucleotide 
probes can easily be seen in the mouse (Singh et al. 1981 ; 
Epplen et al. 1983) and has been successfully used to char- 
acterize the murine Sxr and Sxr' genotypes (Epplen and 
McLaren  1987). In man  the (GATA)4 oligonucleotide does 
not  detect sex-related differences directly but  Y chromo-  
somal  genomic clones could be isolated by G A T A  se- 
quences (Arnemann et al. 1986). Yet another  si tuation oc- 
curs in the rodent  M. agrestis where G A T A  sequences are 
concentrated in the constitutive heterochromat in  of  the 
X chromosome (Nanda  et al., in press). Considering these 
heterogeneous findings in related species, it is not  surprising 
that  the oligonucleotides failed to detect sex-specific differ- 
ences in E. lutescens. There is indirect  evidence that  G A T A /  
G A C A  sequences spread through the eukaryot ic  genomes 
by a t ransposon-l ike  mechanism (Epplen et al. 1983). The 
relative deficiency of  G A T A  sequences on the X chromo-  
some can at  present be demonst ra ted  but  not  explained. 
This is the more astonishing since no specific excision mech- 
anisms are known for G A T A / G A C A  elements and other  
repetitive D N A  (Epplen and Studer 1987). 

The Y chromosomes  of  many  mammals  carry chromo-  
some-specific sequences. A m o n g  these sequences it is not  
easy to identify those which are responsible for p r imary  
sex determination.  E. lutescens evidently has developed a 
par t icular  sex determinat ion  mechanism and the Y chromo-  
some has disappeared cytogenetically. Nevertheless, the 

genes encoding the function of  p r imary  sex determinat ion 
must  be present somewhere in the genome o f  this species. 
Therefore, this species should be an ideal tool  for testing 
candidate  genes assumed to be involved in pr imary  sex de- 
termination.  
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