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Abstract. Extensive and meticulous observations of the rotation curves of 
galaxies show that they are either flat or gently going up, but rarely 
decreasing, at large galactocentric distances. Here we show that the gravi- 
tational potential which would lead to such rotation curves arises naturally 
when the visible matter modelled as a collisionless Maxwellian gas is 
embedded in a dark halo of collisionless particles with a much higher 
dispersion in velocities. 
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1. Introduction 
 
Important insights into the structure and dynamics of galaxies have come from 
systematic and extensive observations of their rotation curves (Rubin 1979; Rubin, 
Ford & Thonnard 1980, 1982; Bosma 1978 and references therein). Even though the 
rotation curves in the central regions show great diversity and individuality in different 
galaxies, they exhibit a remarkable universality at larger galactocentric distances. 
Almost all the curves observed so far are either sensibly flat or faintly rising up to the 
largest observed distances. Indeed Rubin (1979) remarks ‘ . . . it is almost impossible to 
identify a galaxy with a falling optical rotation curve . . . nearly constant velocities and 
significant mass at large r are the rule . . . ’. For the bright spirals the velocities increase 
rapidly with the radial distance from the centre, go through a maximum, fall initially 
and slowly increase to values ∼ 150–300 km s–1 at large distances. Over this general 
pattern, velocity undulations of amplitude <  20 km s-1 are seen coincident with the
positions of spiral arms. 

These features are usually understood in terms of a three-component empirical 
model, the components being a disc, a nuclear bulge and a halo or corona. The density 
distributions of these components are adjusted to reproduce the observed rotation 
curve (Einasto 1970; Ostriker & Caldwell 1979; Bahcall, Schmidt & Soneira 1982), 
which is obtained from the condition that the centrifugal force in a circular orbit equals 
the galactocentric force derived from the total potential Ψ due to these distributions, 
i.e., 
 

(1) 
 
Here Vr. is the (circular) rotation velocity and r is the galactocentric distance. At large 
distances, the observations cited above demand that ∂Ψ/∂r  r–α, with α  <  1. By
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analyzing a sample of 21 Sc galaxies (Burstein et al. 1982) and 23 Sb galaxies (Rubin, 
Ford & Thonnard 1982), Rubin and her co-workers have shown that α = 0.7–0.8, so 
that Vr ∼ r0.1–0.15. 

The purpose of this paper is to show that such a potential arises naturally when the 
visible matter in the galaxy is embedded in a dark halo of collisionless gas whose 
velocity dispersion and spatial extent are much larger than those of the visible matter. In 
Section 2, we model the visible matter consisting predominantly of stars as a 
Maxwellian gas and calculate its self-consistent density profile; the rotation curves and 
the profiles of luminosity thus calculated reproduce the observations remarkably well. 
In Section 3 we investigate the nature of the constituents of the extended cloud of dark 
matter and comment on the suitability of neutrinos as the dark matter (Cowsik & 
McClelland 1973). 
 

2. The model 
 
We model the visible matter in the galaxies as a Maxwellian gas embedded in an 
extended cloud of collisionless particles with a much larger dispersion in their velocities. 
Binney (1982a, b) has shown that a Maxwellian distribution describes the luminosity 
profiles of elliptical galaxies well. The same is true for spiral galaxies, as we show below 
(see Section 2.3). A basic reason for the ubiquity of such a distribution is discussed in 
Cowsik (1984). 

The equilibrium state of such a system is described by the Poisson equation, which, 
because of linearity, splits into 
 

(2a; b) 
 
Since the dominant constituents of the visible matter are stars, the frequency of 
collision is very small (Chandrasekhar 1942), the phase-space distribution functions of 
both the visible and background gases are the solutions of the respective Liouville 
equations. Qualitatively, the spatial variations in the densities of the two gases will be 
defined by the characteristic length-scales
 

(3) 
 
and we assume that lb  lv so that in discussing the spatial variations in ρv the 
background density ρ b may be treated as constant. 

Now, by Jeans’ theorem (Jeans 1915; Lynden-Bell 1962), the distribution function for 
the visible gas can be expressed as any function of E =  mvv2 + mv (Ψv + Ψb), the total 
energy of a constituent particle. There is evidence that f is Maxwellian (see above): 
 

(4) 
and 
 

(5) 
 
We substitute Equation (5) in Equation (2b) and make the resulting equation 
dimensionless with φ = mv Ψv/kTv, φb= mv Ψb/kTv and ξ = r/lv. Here 
lv = (kTv/4πGρomv)1/2. With ρb constant, the potential due to the background gas
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which satisfies the boundary conditions φ b(0) = 0 is 
 

(6) 
 
The potential generated by the visible gas is given by
 

(7) 
 
for a spherically symmetric configuration. It is interesting to note that an identical 
equation obtains even for the collisional constituents of visible matter (Chandrasekhar 
1939; Cowsik 1984). 

The solutions of Equation (7) are obtained by a method described by Emden (1907)
and Chandrasekhar (1939). The solutions of interest have finite, nonzero densities at the 
centre; hence the appropriate boundary conditions at ξ = 0 are φ = 0 and dφ)/dξ = 0, 
which identifies the constant    in Equation (5) as the central density of visible matter.
The numerical computation assumes the starting solution near the origin as the 
series φ = aξ 2+bξ 4 + cξ 6 + ... whose coefficients are found to be a = 1/6, 
b = – (1+ρb/ρo)/120, and c = (1+5ρb1ρ0) (1+5ρb/8ρ )/1890. The potential φ for 
larger values ζ of are obtained by standard numerical methods of integration o
Equation (7). 

The rotation curves derived from this potential are shown in Fig. 1(a), for various 
values of ρ /ρb. The curves are drawn in terms of dimensionless variables
 

 
Figure 1(a). Model rotation curves in dimensionless variables (see text). Upper panel: For 
spherically symmetric distribution of visible gas. Solid lines are rotation curves, each labelled by 
its value of (ρ /ρb). Chain-dotted lines are isodensity contours, each labelled by its value of
(ρv/ρb). The very central parts of the rotation curves are obvious and not shown. Lower panel: 
for disc distribution of visible gas. Dashed lines are rotation curves, each labelled by its value of 
(σ /σb). 
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v =Vr/(2kTv/mv)1/2 and ξ Flat and gently rising rotation curves arise naturally in this 
model. This can be seen qualitatively by noting that when the background gas is absent 
the visible matter has an Emden distribution, i.e. ρv ∼ r-–2,∂Ψv/∂r ∼ r-–1 and 
r(∂ψv/∂r) constant; i.e. an exactly flat rotation curve results. The effect of the 
background is felt through its contribution to the potential ψb ∼ r2 which cuts ρv off 
sharply for larger, so that ∂ψv/∂r drops faster than r–1, and the visible matter no longer 
produces a flat rotation curve by itself. But the sum of the gradients of the two 
potentials, one falling faster than r–1 and the other rising as r+1, yields the requisite 
gently rising behaviour for the rotation curves. The rotation curves do not rise 
indefinitely, of course. For r >  lb, the density of dark matter falls and consequently the 
rotation curve begins to fall gently. For typical velocity dispersion vb ∼ 1500 km s–1 

and ρb ∼ 10–25 g cm–3 (see Section 3) lb turns out to be ∼ 150 kpc. 
In order to show that the basic features of the rotation curves are independent of the 

detailed three-dimensional shape of the visible matter distribution, we have derived 
rotation curves also for disc distributions which are obtained by allowing the visible 
matter to collapse on to a plane perpendicular to the rotation axis. The projected 
surface density σ(ϖ) as a function of the radial distance ϖ on the disc is simply
 

(8) 
 
The potential of such a disc can be expressed in the computationally useful form 
 

(9) 
 
Here ϖ> (ϖ<) is the larger (smaller) of ϖ and ϖ', and K is the complete elliptic integral 
of the first kind. The rotation curves due to the potential of the disc are also shown in 
Fig. 1(a), (for various values of σ  /σb, where σb = 6ρblv). It is seen that these are 
almost identical to those for a spherical distribution of visible matter.
 

2.1 Comparison with Observed Rotation Curves 
 
Optically observed rotation curves of spiral galaxies are usually displayed in terms of 
radii expressed as fractions of the isophotal radius, R25 (= radius where surface 
brightness is 25 mag arcsec–2). The analogous coordinate in our model is the fraction 
of the isodensity radius Rρv which can be read off from the isodensity contours in 
Fig. 1(a). Fig. 1(b) shows the model rotation curves in terms of R  .25 (radius where
ρv/ρb = 0.25), for different values of (ρ /ρb). Figs 1(c) and (d) show the optical
rotation curves for Sb and Sc galaxies respectively, for different luminosities in each 
class (Rubin, Ford & Thonnard 1980, 1982). Galaxies with higher ρ  have higher
luminosities: hence we arrange the galaxies by central density in the model curves and 
by luminosity in the observed ones. No attempt at fitting has been made; the only 
scaling done was that necessary to obtain the absolute velocity scale for the model 
rotation curves. 

The similarity between theory and observation is clear, and becomes remarkable 
when individual peculiarities of galaxies are averaged out. as in the ‘synthetic’ rotation 
curves given by Rubin (1983), reproduced in Fig. 1(e). The dominant correlation 
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Figure 1(b). Model rotation curves in physical variables, arranged in order of increasing visible 
matter density. Each curve is labelled by its value of (ρ  /ρb). The isodensity radius used is R  .25 
where (ρv/ρb)= 0.25. 
 
 
 

 
Figure 1(c). Observed rotation curves for Sb galaxies, arranged in order of increasing 
luminosity (after Rubin, Ford & Thonnard. 1982). The isophotal radius used is R25, where the 
surface brightness is 25 mag arcsec–2. Data not available in dashed parts of the curves.
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Figure 1(d). Observed rotation curves for Sc galaxies, arranged in the order of increasing 
luminosity (after Rubin, Ford & Thonnard 1980). Isophotal radius as before. In chain-dotted 
parts, wiggles containing regions of (unphysical) faster-than-Keplerian fall have been smoothed 
according to the prescription given by Rubin, Ford & Thonnard (1980).
 
 
 
 

 
Figure 1(e). ‘Synthetic’ observed rotation curves for Sb galaxies, arranged in order of 
increasing luminosity, reproduced from Rubin (1983). The systematic progression in the form of 
the rotation curve with luminosity is remarkably similar to that in Fig. 1(b).
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Figure 1(f). HI rotation curves for (a) NGC 2841 and (b) NGC 7331 (from Bosma 1981), 
compared with model rotation curves. Each model curve is labelled by its value of (ρ  /ρb). 0
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between the luminosity of the galaxy and the form of its rotation curve, so strong as to 
be proposed as a method of measuring luminosity (Rubin 1983), is almost identical in 
Figs 1(b) and (e), namely, that with increasing ρ   and luminosity, rotation velocities rise
rapidly at a smaller fractional radius, attain higher maxima, and have a longer, nearly flat 
portion (Rubin, Ford & Thonnard 1982; Rubin 1983).

Hi rotation curves for spirals are often observed well beyond the optical radius, 
sometimes upto 2–5 times R25 (Bosma 1981; Wevers 1984). Our model curves agree 
with these observations. Two examples (NGC 2841 and 7331), using Bosma’s (1981) 
observations, are shown in Fig. 1(f). Note that the values of the parameter (ρ    /ρb) used 
in these fits are exactly the same as those inferred from fitting the luminosity profiles of 
these two spirals (see below). This underscores the self-consistency of our model.

A preliminary study of the rotation curves of elliptical galaxies also shows agreement 
with our model. Detailed results will be presented elsewhere.
 

2.2 Luminosity Profiles of Spirals 
 
A considerable body of data on the luminosity profiles of spiral galaxies has been 
collected (Kormendy 1977; van der Kruit 1979; Burstein 1979; Boroson 1981; van der 
Kruit & Searle 1981, 1982). These profiles are usually analyzed in terms of exponential 
 

 

 
Figure 2. Observed luminosity profiles of spirals compared with model profiles. Triangles are 
data points for (a) NGC 2841 (from Boroson 1981), (b) NGC 7331 (from Boroson 1981), and 
(c) NGC 4565 (from Hama be et al. 1980). Solid lines are model profiles, each labelled by its value 
Of log10

 (ρ  /ρb). 
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Figure 2.    Continued. 
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discs and r1/4 bulges, although it is known that neither functional form has a basis in 
physics (Boroson 1981; Seiden, Schulman & Elmegreen 1984). We find that our model 
gives an adequate description of these profiles. Three examples (NGC 2841, 7331 and 
4565) of spirals of various sizes and bulge/disc ratios are shown in Fig. 2; more will be 
given elsewhere (Cowsik & Ghosh 1984). This agreement provides evidence that the 
distribution of visible matter in spirals is well-approximated by a Maxwellian (see 
above), and thus provides a physical basis for understanding the shape of luminosity 
profiles. 
 

3. Discussion 
 
This relatively simple model of a collisionless stellar distribution embedded in a 
background gas fits so many observations, such as the main features of the rotation 
curves of spirals (e.g. their ubiquitous flatness, gentle increase at large distances and 
characteristic change in shape with increasing luminosity) and ellipticals, and their 
luminosity profiles, that it seems worthwhile to consider the nature and composition of 
the invisible background gas. Quite some time ago, Ostriker & Peebles (1973) guessed 
at the existence of a massive halo around the Galaxy from the requirement of dynamical 
stability of the spirals. Many candidates, such as black holes, ‘Jupiters’, dust, massive 
neutrinos and exotic particles envisaged in GUTs and SUSYGUTs, have been 
suggested and their relative merits as the constituents of the ‘dark matter’ have been 
assessed (Peebles 1979). For example, the suggestion that ‘Jupiters’ are the constituent
would come into conflict with the distribution of the masses of stars, which shows a 
flattening even at 0.5 M

☼
, so that the initial mass function will have to be bimodal. 

Further, if the haloes are made of baryonic matter in any form, then the average baryonic 
matter density in the universe would exceed 10–30 g cm–3 and the observed 
abundances of 2D and 4He would be in conflict with the expected abundances from 
primordial nucleosynthesis. Therefore, it is natural that the explanation for the dark 
matter has been sought in terms of some weakly interacting non-baryonic relic from the 
big bang. 

The present study of the rotation curves places further constraints on the nature of 
the dark matter. There are two basic points: First, the density of the background needed 
to explain the observations is roughly equal to the density of clusters and groups 
estimated from dynamical considerations (Peebles 1979; Gott & Turner 1977). The 
large dispersion in velocities of galaxies in clusters ( ∼ 1500 km s–1) naturally fits in 
with the requirements of the model for the background gas. The minimum mass, m, of 
the particle which would condense on such a large scale can be estimated from the 
formula (Cowsik & McClelland 1973).
 

(10) 
 
Here, α is the fraction of the total available phase space up to the edge of the cluster that 
is occupied by the neutrinos. We estimate the filling fraction α ∝ (3vv/c)3/2   10–3 

Taking the typical mass of a cluster to be ∼ 3 × 1015 M
☼

 and a core radius of 
∼ 0.1 Mpc one finds m   10 eV. Second, the systematic progression in the form of the
rotation curves of the spirals with their luminosity demands that the density of 
background be sensibly independent of the size and mass of the spiral galaxy. It would 
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be difficult to accommodate this requirement in a scenario where more massive 
particles are involved, be they photinos or gravitinos (Cabbibo, Farrar & Maiani 1981; 
Pagels & Primack 1981) on the one hand, or black holes or Jupiters on the other, since 
these would tend to cluster on much smaller scales comparable to that of the underlying 
galaxies. 

In summary, the systematics of the rotation curves of the galaxies can be explained on 
the basis of a simple model in which a Maxwellian gas is embedded in a background gas 
with a much larger dispersion in velocities. On the basis of these systematics, it appears 
that collisionless particles with m ∼ 10 eV and MJmax ∼3 × 1015 M

☼
 (Bond, 

Efstathiou & Silk 1980; Wasserman 1981; Doroshkevich et al. 1980; Sato & Takahara 
1980), which condense typically on the dimensions of galactic clusters (Cowsik & 
McClelland 1973; Schramm & Steigman 1980) make up the background gas cloud 
needed in the model. Among the known particles, only the neutrinos could have the 
required mass and the weak interactions demanded of the constituents of the dark 
matter in the universe. 
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