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1. Introduction

Inthis paper we study the variety of circular complexes (see Theorem 4.1 for
the definition) in positive characteristic. Our methods are similar to those
used to study the variety of complexes, in our earlier paper [MT]. However,
we will make use of new Frobenius splittings, obtained using the methods
of [MVr] and [LT].

Let Vo andV; be finite dimensional vector spaces over an algebraically
closed fieldk of characteristicp > 0. Let

L = Hom(Vy, V1) x Hom(Vy, Vo), and let

H= GL(Vo) X GL(V]_) = GO X G]_,

Recall that ecircular complexis an elementf = (f,, f;) € L such that

fio f, = fo 0 f; = 0. Given a circular compleX € L, we consider

the orbit closureO; := H(f) C L, where the action oH on L is given

by g- f = (91 f105" Gofeg; ) for g = (go. 1) € H. Each Oy is an
irreducible closed subset of the variety of circular complexes, and the variety
of circular complexes is the union of su€y. The Cohen-Macaulay and
normality properties for each component of this variety was first proved
by Strickland [St], using Hodge algebras. There also seems to be some
overlap between the results in the present paper and those in [F]. Here we
give generators of the ideal @; C L (see Theorem 4.1), using a result

of [MuSe], but our main result in this paper is the following.

Theorem 1.1. For a circular complexf e L, the orbit closureO; is
normal, Cohen-Macaulay with rational singularities (with respect to the
natural resolution given by the mapdefined in Section 3).

Remark The case dinvyg = dimV; = 2 was proved by Cowsik ([Se],
Chapter 8, Theorem 30).
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2. Preliminaries

We recall some basic facts abdtrsplitting, compatiblg=-splitting, the re-
lation betweerf-splitting and normality, and the Grauert-Riemenschneider
vanishing theorem in characteristit For complete proofs and more de-
tailed discussion we refer to notes by Ramanathan [R] and references given
there.

Let X be a variety (reduced but not necessarily irreducible) over an
algebraically closed field of characterisfic> 0 and letF : X — X be
the Frobenius morphism. We say th&is Frobenius-splitor just F-split if
there exists a splitting : F.Ox —> O of the sequence

0— (9)( — F*@X — F*@x/(gx — 0.

Let Y be a closed subvariety ok with ideal sheafly. If there exists
a splitting sectiorv : F,O0Ox — Ox of X such thato(F,1y) C 1y, then
we say thaly is compatibly split inX. In this caser induces a splitting, say
o : F.Oy — Oy, of the sequence

0— Oy — F.(Oy) — F.(Oy)/0Oy — 0,

where we denote the Frobenius mapYohy the same letteF.
Remarks.

1. More generally, one can defiresplitting for any scheme of finite type
over k, but existence of such a splitting implies thétis reduced. If
Y1, Y, € X are compatiblyF-split by the same splitting theno gives
compatible splitting ofY; N'Y,, Y; U Y, and any irreducible component
of these. In particular, iTy, and Iy, € Ox denote the ideal sheaves
of Y; andY, respectively, then the scheme theoretic idea¥ph Y5,
namelyly, + Iy, is reduced.

2. Restriction of a splitting section of to any open sdt) gives a splitting
section ofU, hence ifX is F-split then so is any open subset.

3. Forany smooth (or Gorenstein) variefyk there exists an isomorphism

[ ]X . HO <X, w%l_p) —> Horn(9x (F*@Xa (9)() ’

obtained using duality for finite flat maps. A divisor in the linear system
|w§’l_p| which is associated to a splitting section F,0x — Ox is
calleda splitting divisoron X.

4. If Y is compatibly split inX, then for any ample line bundle on X, the
restriction mapH®(X, L) — HO(Y, L |v) is surjective.

Example.For a connected semisimple simply-connected algebraic group
overk and a Borel grouB, there exists arr-splitting o of G/B which
simultaneously compatibly splits every Schubert subvariety and every op-
posite Schubert subvariety @&/ B. This splitting corresponds to the divisor
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(p—1(D+ D), whereD andD respectively denote the union of codimen-
sion 1 Schubert varieties, and the union of codimension 1 opposite Schubert
varieties, inG/B.

Lemma 2.1. [MS;3] Letw : X — Y be a projective birational map, such
that (a) X is F-split, and (b) for ally € Y, we haveH'(Xy, Ox,) = 0
for all i > O, for some choice of scheme structure on the fikgr Then
Rr.0x =0foralli > 0.

The connection between the normality of a varigtand theF-splitting
of X is illustrated by the following (sepMS;]):

Theorem 2.2. Let f : Y — X be a proper surjective morphism between
varieties in charp. Assume that 1Y is normal, 2) the fibres off are
connected and 3X is F-split. ThenX is also normal.

Definition (Kempf). LetX be a variety and : Z — X a birational proper
morphism withZ nonsingular. We defind : Z — X to bea rational
resolutionif

1. f.0z =0y and . .

2. fori > 0, one haRR f,0z = 0 andR f,wz = 0.

Kempf has proved, using duality, that X admits a rational reso-
lution then X is Cohen-Macaulay. Condition 2 is known as the Grauert-
Riemenschneider theorem. The Grauert-Riemenschneider theorem for var-
ieties over fields of characteristit; in case a suitable-splitting is available,
can be obtained using the following result.

Theorem 2.3. [MVK] Let = : X — Y be a projective morphism of
varieties over an algebraically closed fidtdof char p > 0. Let D be

a closed subscheme HKfwith ideal sheal and letE be a closed subscheme
of Y and leti > 0. Assume that

1. D containst ~1(E) set theoretically,
2. Rx.(1) vanishes offg,
3. Xis F-split, compatibly withD.
ThenR 7,(1) = 0.
Let X/k be a smooth variety and C X be a reduced effective Cartier
divisor with ideal sheaty € @x. Consider the following diagram

H (X, 07'7) L . Homg, (F,Ox, O)

>~

o
A

H* (X, 0x((1 = pY) @ o' ")

¢

~

H (¥, &™) ——=—> Homo, (F.0y, Oy)
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whereq is induced by the canonical map @#-modules
Ox (1-pY) RS P i P

and ¢ is the residue mapinduced by adjunction formula. Let
o e HOX, wiﬂ—p) vanish to order at leasp — 1 alongy (i.e, o €
HO(X, Ox((1— P)Y) ® w3 P)). Then (sedMS,], Lemma 3)

1. [olx(F.Iy) € Iy and therefore it induces @y-linear map say’ :
F.Oy —> Oy canonically. Moreoveli¢(o)ly = o/, i.e, the following
diagram is commutative
FOx 2 o
\! \A

[p(0)]
F.0oy %Y o, .

2. In particular, ifX is also a projective variety thdia]x is an F-splitting
for X if and only if [¢(0)]y is anF-splitting of Y.

3. Proof of the Main Theorem

We introduce some notations. RIx= (Jo, J1), whereJ; C V; are subspaces
such that dimJp = dim ker f;, dim J; = dimker f,. Let

dimJy = ko and dimJ; = k;.
DefineW = W(J) to be
W={a=(a,a) elL|ima C J; Ckeray,ima, C Jy C kera,}.
Therefore
W = Hom(Vp/ Jo, J1) x Hom(V1/J1, Jp) € L.
Let

~

P= PO X P1 - H,
whereP, is the stablizer of], in GL(V;). ThenW is a P-stable subspace
of L. We have the following commutative diagram

HxPW—=HxPLZ(H/P)xL
\l
L,

where the mapp is given by ¢(ho, hy, ty, 1) = (hitihy?, hotohyt), for
(ho, hl) e H and(tl, tz) e W

Remark. The following facts are easy to check.
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1. The image of : H xPW — Lis Oy,
2. H xP W is smooth, and ~
3. the mapp is proper, hence the image Hf x” W in L is closed.

Lemma 3.1. For every f = (f;, ) € Oy, there is an isomorphism of
varieties

o~ ker T, ker f
oY )zG(k —d,~—>xG(ko—d,~—),
T TV * T

whered; = rankf; andG(k, V) denotes the Grassmanniarkelimensional
subspaces of the vector spa¢eand where the left hand side is given the
reduced scheme structure.

Proof. This follows using the same argument as for Lemma 2 of [MT.

We now introduce the following further notation.

no = dim(Vp), ny=dim(Vy)
G =GL(ng+ ny 4+ ng)
lo =no, It =no+n1, andl; =ng+ny+ng

Jo *
Q=[|:091 *:|€GL(|2)
0 0o

0o, 92 € GL(Vo), 01 € GL(Vl)} .

B = the Borel subgroup consisting of upper triangular matrices.iCon-
sider the map

GL(no) o GL(ny) N Q

Bo B; B’
given by
Jo 00
(9oBo, 91B1) — |: 00 0} (mod B),
00 Jo

whereB; € GL(n;) is the group of upper triangular matrices@wL (n;).
Let Y denote image of this map.

Following notation is meant only for Lemma 3.2, given below. Get
be a semisimple simply connected algebraic group over an algebraically

closed fieldk of char p> 0 with a Borel subgrougB. Let p stand for the

sum of fundamental weights. L&t = H%(G/B, L((p — 1)p)) denote the
Steinberg Module, with highest weighp — 1)p. Let () : St x St — k

be theG-invariant bilinear nondegenerate form 84 (see [MVr]).

Lemma 3.2. For any non-zerof € St = H%(G/B, L((p — 1)p)), there
existsh € H%(G/B, L(p)) such that(f, hP~1) = 0.
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Proof. Given f € St, there exists € St such that( f, s) # 0. We have to
show thats can be taken to be of the forth~, wheret € HO(G/B, L(p)).
Choose a non-zere € H(G/B, L(p)) and consider th&-span ofoP~1
in S, that isW = {3, «igi(6P ™) | ¢ € k andg, € G}. Itis clear that
W is a nonzerds-submodule oSt and hence, by [MVr]W = St. Hence
one can find an element= ), «igi (o P-1) such that( f, ) # 0. But then

there exists somiesuch that{ f, o;gi(cP~1)) # 0. One can také = g (0),
asgi (aP 1) = (gi(0))PL. Hence the lemma. 0

Lemma 3.3. There exists arr-splitting onQ/B x G/B which simultan-
eously compatiblyF-splits Y x G/B and Q xB D, whereD denotes the
union of all codimension 1 Schubert varietiesGiiB.

Proof. For an arbitrary reductive connected algebraic gr@ypvith Borel
subgroupB, we letL (pg) denote the line bundle o0&/ B such that

L(2pe) = L(pe)® = wgyg.
We letL (npg) denotel (pg)®". One then has an identification
Hom(F.Oc/8, Oc/8) = HY(G/B, L(2(p — 1)pg)).

To prove the lemma, we construct a splitting divisor®fB x G/B (i.e.,

a divisor which is the divisor of zeroes of a splitting sectiolQgB x G/B),

as follows. By abuse of notation we use the same notation for a section of
a line bundle and its divisor of zeroes. Consider the isomorphism

Go/Bg x G1/B1 x Go/By — Q/B

given by
G 00

(%, 01, ) — |: 0090 :| (mod B)
00w

HereGg = GL(ng) andG; = GL(n;). Define
L(pq) := L(pcy) X L(pc,) X L(pcy)-

We note thatl (pq) = L(pg) |g/s- Let Do and D; denote the unions of
codimension one Schubert varietiesdg/ By andG1/ B, respectively. Let

G G
E1 = Pia(Go x® D) 4 [ == x Dy x — | € H° Q L(po) | .
Bo Bo B

where

P13 : Go/Bo x G1/B1 x Gg/Bg —> Go/Bp x Go/Bo
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is the canonical projection map. Now, by the above lemma and Theorem 2.3
of [LT], there existsE; € H°(Q/B, L(pg)) such that

(p— 1)(E1 + E1) € H(Q/B, L(2(p— 1)pq))

is a splitting divisor forQ/B which compatibly splitsE;. SinceQ/B is
a Schubert variety i/ B, it compatibly splits inG/B. Therefore, a& (pg)
is an ample line bundle o8/ B, the canonical map

H°(G/B, L(ps)) — H%(Q/B, L(pg))

is surjective. Hence one can lif; to a section, saf € H%(G/B, L(pg)).
Consider

o= (p—1(Q xB® D+ piE; + p;E)
€ H°(Q/B x G/B, L(2(p— Dpo) K L(2(p — Dpg)).

wherep; : Q/BxG/B — Q/Bandp,: Q/Bx G/B — G/Bare the
canonical projection maps. Now we prove tlaats the required splitting
divisor. By the result ofMS,] (given at the end of Section 2 here), since
vanishes to ordep— 1 along the divisoRQ x & D, to show thatr compatibly
splits Q xB D in Q/B x G/B, it is sufficient to show that”, the residue
of o on Q xB D, is a splitting ofQ x& D. _

Buto’ onQ x B Diis precisely(p—1)(p; E1+ p5E) |oxep- TO prove that
o' is anF-splitting of Q xB D, it is sufficient to prove that”, the (iterated)
residue ofo’ on Q xB eB (eBis the intersection of all Schubert divisors
of G/B, wheree is the identity element of the group), is a splitting of
Q xBeB= Q/Bimbedded inQ/B x G/B diagonally. Butz" is precisely
(p = D(E1 + Ey), which is a splitting section oQ/B, by the choice
of E1. Hence, by{MS,], we conclude that compatibly splitsQ xB D in
Q/BxG/B. _

To see thalY x G/B is compatibly splits byr, we argue as follows:

denote the components B by {Dgi}¥ ;. Then
Y x G/B = Nk, pipis (Go x® Doi) .

By construction each divisop; p;5(Go x ® Doi) is compatibly splits in
Q/B x G/B by o. Hence their intersectiory, x G/B is also compatibly
split by o. Hence the lemma. O

Lemma 3.4. Let

ldyy O O
0 (8 Jio x
Dp|0<91>klxk2={[ A’ 14y, 0 MA:[O{E‘”% “|.a ek} cz,

0 0 Idn
ld, O O
0 {bj }t,
Dp|1(92)t1xtz={|: 0 Idn, O :HB [0{ ”}61 t2],bij ek}gb

0 B Idy
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be Schubert cells ifts/R, and G/R, with Schubert closurér; and Y,

respectively, wherg,; and Z, denote opposite big cells &f/ P, andG/ R,

respectively. Ifp; : G/Q — G/B, andp, : G/Q — G/BR, denote the
canonical projection maps then the varieXy= p;*(Yy) N p,1(Yo) is an

intersection of Schubert varieties @&/ Q, and

O .. %
idpy, O O A:[O{a”}(k)l kZ}
XNZ= A 1d,0 ,
BA B Idy]|B— [8{bu }61“2}

whereZ denotes the opposite big cell G/ Q.

Proof. As argued in [MT] (see the proof of the Claim after Lemma 31

For any P-stable subspaceés, of L (recall the definition of® from the
beginning of the Section 3), consider the following diagram

HxPWy—=HxPL—>Hx?Z

% E

Zv

where the magbw, is given byg(ho, h, ty, t2) = (hitshgt, hotohs ), for
(ho, hy) € H and(ty, tp) € Wy, and where thé>-equivariant mag. — Z
is given by

ld,, O O
(t]_, tz) —> |: t]_ |dn1 0 :|
tz o tl tz |dn0

Corollary 3.5. LetW be aP-stable subspace &f such thaWp = XgN Z,
where Xo € G/Q is an intersection of some Schubert varietiessofQ.
Theng(H x PWp) (= ¢w, (H x P Wp)) is compatiblyF-splitin Z. Moreover,
one can choose a splitting section d@nwhich simultaneously compatibly
splits all such subvarietieg(H x P Wp).

Proof. Let Xo = p~1(Xo), wherep : G/B —> G/Qis the canonical map.

By Lemma 3.3, the closed subvarigly x G/B) N (Q x B Xp) is compatibly
F-splitin Q/B x G/B. Now, following the arguments of [MT] (especially

the discussion between Lemma 3 and Lemma 4), one can deduce that
d(H x P Wp) is compatiblyF-splitin Z. Moreover, the splitting section &
determined by Lemma 3.3 also implies that splitting section is independent
of the choice of\. O
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Proof of Theorem 1.1We recall the linear subspad®' defined in the
beginning of Section 3. We can identify with X N Z, where as given in
Lemma 3.4
X = p; (D, )y x(no—k0) N P2 (D, Okgre g —kp))-

and the overbar denotes the Schubert closure in the appropriate space. Then
the above corollary implies that(H x” W) = O is compatibly Frobenius
splitin Z.

Now we sketch the rest of the proof, as the arguments are very similar
to those given after Lemma 4 in [MT]. By Lemma 3.1, each fibegof
is connected, and hence using Theorem 2.2, we seeCthas normal.
Moreover, since each fiber is a product of Grassmannians, it has no higher
cohomology for the structure sheaf, and hence by Lemma 2.1, we have
R¢.0,,.s, =0foralli > 0.

It remains to show thaR ¢.w,, s, = 0 for alli > 0. Let E be the
exceptional locus given by

E = O\ Of = {(hy, hp) € W | rankh; < rankf; orrankh, < rankfs,}.
Let

N =(¥xG/B)n(Qx®X)N(Q/Bx pi(2),

wherep : G/B — G/Q is the canonical map and = p~1(X). We have
the following commutative diagram:

N —">HxPw

Let D = ((Y x G/B)N Q x 5(X)) |y be the divisor onV, where
S(X) denotes the union of codimension 1 Schubert varietieX.iThen
D D nto¢p~1(E). By the proof of Lemma 3.3 there exists a splitting section
o =P of &, wherer € HO(W, w}'), which compatibly splitD. Then
I := t¥(wy) is the ideal sheaf oD, wheret" : wy — Oy is induced
by T € HO(W, w;vl). Using the fact thatr is a smooth proper fibre bundle
of relative dimensiord (say), a Leray spectral sequence argument gives
R+d(¢ o 7)oy = Ry 5, fOr everyi > 0. Now applying the result
of [MVK] stated earlier (Theorem 2.3), we obtain tiit9(¢ o 7),w, = 0
foralli > 0. . .

We conclude thap is a rational resolution oD ¢, and in particularO+
is Cohen-Macaulay. This completes the proof of Theorem 1.1. O

Remark We note that in cask has characteristic 0, the action Bf on

W is completely reducible. Therefore by the theorem of Kempf [K], one
can immediately conclude th&; is normal, Cohen-Macaulay anglis

a rational resolution foD+.
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4. Defining equations

Theorem 4.1. Let X = [Xj;] andY = [Y;;] denote matrices of indetermi-
nates of sizeg x Ny andny x ng respectively, then

1. the variety of circular complex&ped[ X, Y]/(XY, Y X) is F-split, and
in particular it is seminormal (her&[ X, Y] denotes the polynomial ring
in the entries ofX, Y and (XY, Y X) stands for the ideal generated by
the entries of the product matrice€Y andY X).

2. The ideal irk[ X, Y] of any orbit closureO; C L, wheref = (fq, f5)
is a circular complex, is given by

1(O1) = (XY, YX 115(X), 15,(Y)) S KX, Y1,

wherety = rankf; + 1, t; = rankf, 4+ 1, and I, (X) denotes the set of
to-minors of X (similarly 1, (Y)).

3. Forany ideall(lp, [1) := (XY, YX l1,+1(X), l;;+1(Y)), wherelg, |1 are
non negative integers with+1, < min{ng, n1}, theringk[ X, Y1/1 (o, |1)
is a normal Cohen-Macaulay domain with a rational resolution.

Remark Theorems 1.1 and 4.1 together give alternate proofs of the results
of [St] and [T].

Proof. Proof of (2} First we give generators for the ideal 6f; € L. We

assume that dim ke, = kg and dim kerf, = kq, andW is defined as in
the begining of Section 3. By Lemma 3.4, one can fud X5, which are
intersections of Schubert varieties@y Q such that

“ldn, 0 0 7| A= 1[0 {8 }nyxmo—to ]
XiNZ=W = ; A Idn1 0 B — {bij }ko><n1 ’

| BA B Id, | = 0

_Idno O O 7] A: -{aij}klxno-
XoNZ=W, = A Idnl 0 L 0 i

L 0 B 1t | B=0{bjlnoxm-k |

Now, by Corollary 3.5 the closed subvarieties- W := d(H xP W),
H- W = ¢(H xP Wy andH - W, := ¢(H x P Wh) are simultaneously
compatibly F-split (via the splitting section induced hy, as chosen in
Lemma 3.3) inZ.

By definition

ldy, O O
H-W1:[|: hy Idy, o}
h20h1 h2 |dn0

hy o hy, = 0, rankh, < kg
rankh; < ng — kg ’
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ldy, O O
H-W2={|: hy Idy, o}
hzohl h2 |dn0

ThereforeH - W C H-W; N H-W, C H-W. Hence, by Remark 1 of
Section 2,

I(H-W) = 1(H - W) + I(H - W)
= VXY, lig+1(Y), Tng—ko+1(X) + /(Y X, lig+1(X), Tny—tg+1(Y)).

BUL(XY, lig+1(Y), Inp-ig+1(X)) @nd(Y X, 1 41(X), In,—i+1(Y)) are prime
ideals, by [MuSe]. Therefore

h, ohy =0, rankh, < n; — kg
rankh; < kg )

1(Op) = I(H - W) = (XY, YX I5(X), 15,(Y))

is the ideal ofO+.

Proof of (1} Now we prove that the variety of circular complexe§isplit.
For any 0< ko < ng and 0< k; < n; we takeW,, = W; andW, = W5 in
the above argument. Then, by [MuSe] we have

ﬂ I(H - W) = (XY) and ﬂ I(H - W) = (YX).

0<ko<no O<ki=<ng

But all H - W, and H - W, are simultanously compatiblf-split in Z,
therefore, by Remark 1 of Section 2,

() TH-We+ [ 1(H W) =(XY.YX

0<ko=<no O<ki<ng

is a radical ideal an&ped[ X, Y]/(XY, Y X) is F-split.

Proof of (3} Given non-negative integdis |, such thaty+1, <min{ng, n},
one can construct a circular complex (hy, hy) € L such thatankh; =I,
rankh, = |;. Now, by statement 2,

1o, 12) = (XY, YX lig42(X), li;41(Y)) = 1(On)

and therefore, by Theorem 1.1, the quotient Ky, Y]/1(lo, 1) isanormal
Cohen-Macaulay domain with a rational resolution. This completes the
proof of the theorem. O

Remark It follows from the proof of Theorem 1.1 that all the orbit closures
Oy, where f = (fy, f») € L denotes an arbitrary circular complex, are
simultaneously compatibli#-split in Z. SinceL = X' N Z, whereX’ is an
intersection of Schubert varieties@y Q (e.g, as described in Lemma 3.4,
one can takeéd P (61)n; xn, @and Dpll (02)nyxn,) the same section compatibly

splitsL in Z. Therefore all the orbit closuré3;, for circular complexed ,
are also compatibly-split in L itself.
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Remark It is easy to check that natural generalizations of all the results
stated here for the variety of circular compleXds<, Y]/(XY, YX) are
valid for the variety of circular complexes of arbitrary lengtle., for
Sped[ Xy, ..., Xnl/(X1 X2, X2X3, ..., Xy X1), Where Xj's are matrices

of indeterminates of compatible size.

References

[F]
(K]
[LT]
[MR]
[MS4]
[MS2]
[MS3]

[MuSe]

MT]
[MVK]
[Mvr]
[R]

[Se]
[St]

[T]

G. Faltings, Explicit resolution of local singularities of moduli-spaces, J. reine
angew. Math483(1997) 183-196

G. Kempf, Images of homogeneous vector bundles and variety of complexes,
Bull. Amer. Math. Soc81 No. 5, Sept. (1975) 900-901

N. Lauritzen, J.F. Thomsen, Frobenius splitting and hyperplane sections of flag
manifolds, Invent. mathl28(1997) 437—442

V.B. Mehta, A. Ramanathan, Schubert varietie&GB x G/B, Compos. Math.
67(1988) 355-358

V.B. Mehta, V. Srinivas, Normality of Schubert varieties, Amer. J. Ma@9
(1987) 987-989

V.B. Mehta, V. Srinivas, NormakF-pure surface singularities, J. Algebid3

No. 1 (1991) 130-143

V.B. Mehta, V. Srinivas, A note on Schubert varietiesGriB, Math. Ann.284
(1989) 1-5

C. Musili, C.S. Seshadri, Schubert varieties and the variety of complexes in
Arithmetic and Geometry, Vol. Il, Progress in MaB6, Birkhauser (1983), 329-
359

V.B. Mehta, V. Trivedi, Variety of complexes anéF-splitting, To appear in

J. Algebra

V.B. Mehta, W. van der Kallen, On a Grauert-Riemenschneider vanishing theorem
for Frobenius split varieties in cha, Invent. math108(1992) 11-13

V.B. Mehta, T.N. Venkataramana, A note on Steinberg modules and Frobenius
splitting, Invent. math123(1996) 467-469

A. Ramanathan, Frobenius Splitting and Schubert Varieties, Proc. Hyderabad
conf. on Alg. Groups, S. Ramanan (ed.), Manoj Prakashan (1991) 497-508

C.S. Seshadri, Fibres vectoriels sur les courbes algebriques, Ast&&Heé2

E. Strickland, On the conormal bundle of determinantal variety, J. Algébra
(1982) 523-537

V. Trivedi, The seminormality property of circular complexes, Proc. Indian Acad.
Sci.(Math Sci.)101, No. 3 (1991) 227-230



