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RESTRICTION THEOREMS FOR HOMOGENEOUS BUNDLES

V.B. MEHTA AND V. TRIVEDI

Abstract. We prove that for an irreducible representation τ : GL(n) →
GL(W ), the associated homogeneous P

n

k
-vector bundle Wτ is strongly semistable

when restricted to any smooth quadric or to any smooth cubic in P
n

k
, where k

is an algebraically closed field of characteristic 6= 2, 3 respectively. In particular
Wτ is semistable when restricted to general hypersurfaces of degree ≥ 2 and
is strongly semistable when restricted to the k-generic hypersurface of degree
≥ 2.

1. Introduction

In this paper we study the semistable restriction theorem for the homogeneous
vector bundles on Pn

k which come from irreducible GL(n)-representations.
In general suppose G is a reductive algebraic group over an algebraically closed

field k and P ⊂ G is a parabolic group. Then there is an equivalence be-
tween the category of homogeneous G-bundles over G/P and the category of
P -representations, where a P -representation ρ : P → GL(V ) on a k-vector space
V induces a homogeneous G-bundle Vρ on G/P given by

Vρ =
G × V

P
=

G × V

{(g, v) ∼= (gh, h−1v) | g ∈ G, v ∈ V, h ∈ P}
.

Now for the rest of the paper we fix the following

Notation 1.1. The field k is an algebraically closed field and G = SL(n + 1, k),
and P is the maximal parabolic subgroup of G given by

P =

{[
g11 ∗
0 A

]
∈ SL(n + 1), where A ∈ GL(n)

}

and G/P ≃ Pn
k is a canonical isomorphism.

Now, if σ : GL(n) → GL(V ) is an irreducible GL(n)-representation then it
induces an irreducible P -representation ρ : P → GL(V ) given by

(1.1)

[
g11 ∗
0 A

]
7→ σ(A),

which gives a G-homogeneous bundle on G/P = Pn
k . Conversely, any G-homogeneous

bundle V, given by an irreducible P -representation ρ : P → GL(V ), is in fact
induced by an irreducible GL(n)-representation (upto tensoring by OP

n
k
(r), for

some r).
In this paper we prove the following
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2 V.B. MEHTA AND V. TRIVEDI

Theorem 1.2. Let τ : GL(n) → GL(W ) be an irreducible GL(n)-representation,
where W is a k-vector space. Let Wτ be the associated G-homogeneous bundle on
G/P = Pn

k . Let

(1) X = smooth quadric, if char k 6= 2, or
(2) X = smooth cubic, if char k 6= 3,

Then the bundle Wτ |X is strongly semistable.

We note that Theorem 1.2 implies Wτ itself is semistable on Pn
k . However this

result, in much more general form, has been proved in [R], [U], [MR1] and [B].
Theorem 1.2 implies (see Corollory 5.4) that, provided char k 6= 2, 3, the bundle

Wτ |H is semistable, for a general hypersurface H of degree ≥ 2 in Pn
k , and Wτ |H0

is strongly semistable for generic hypersurface H0 of degree d ≥ 2. This is equiv-
alent to the statement that, given s ≥ 0, the sth Frobenius pull back F s∗Wτ |H
is semistable for a general hypersurface H of degree ≥ 2 in Pn

k . Moreover when
the bundle Wτ comes from the standard representation, i.e., Wτ is the tangent
bundle (upto a twist by a line bundle) of Pn

k , where n ≥ 4, then we can prove a
stronger statement, by replacing the word ‘semistable’ by ‘stable’ everywhere in
Theorem 1.2 and Corollory 5.4.

In this context we recall that, Mehta-Ramanathan [MR2] have proved that if
E is a semistable sheaf on a smooth projective variety (over a field of arbitrary
characteristic) then E restricted to a general hypersurface of degree a (where a
is any sufficiently large integer) is semistable. On the other hand, Flenner [F]
proved this assertion, where the degree a of the hypersurface depends only on the
rank of E and degree of the variety X, provided the characteristic is 0.

The paper is organised as follows: In Section 2, we recall some general facts
about smooth quadrics. Then we discuss the vector bundle Vσ = TP

n
k
(−1) asso-

ciated to the standard representation σ : GL(n) −→ GL(V ) and its restriction
to smooth quadrics. In particular, for a smooth quadric Q ⊂ Pn

k , we show that
Vσ |Q has a unique SO(n + 1)-homogeneous proper subbundle, if n ≥ 4, (see
remark 3.4 for details).

In Section 3, we prove that if char k 6= 2 then TP
n
k
|Q is strongly stable if n ≥ 3,

and is strongly semistable if n = 2. Moreover the tangent bundle TQ of Q is
semistable and is of positive slope.

In Section 4 we prove that, if char k 6= 3 and X ⊂ Pn
k is an arbitrary smooth

cubic hypersurface then TP
n
k
|X is strongly stable if n ≥ 4 and strongly semistable

if n = 2 or n = 3. Moreover the tangent bundle TX of X is either stable if n 6= 3,
or µmin(TX) ≥ 0 if n = 3. In fact, we show that the argument given in [PW], to
prove stablity of TX , for a smooth hypersurface of deg d ≥ 3, n ≥ 4 and k = C,
can be modified so as to work over any algebraically closed field of characteristic
coprime to d (this hypothesis is needed so that the cup product with c1(OP

n
k
(d))

is an injective map).
Finally in Section 5, we show (see Theorem 1.2) that, if Vσ |X is semistable and

µmin(Vσ |X) ≥ 0, where X is a smooth hypersurface in Pn
k then the bundle Wτ |X

is strongly semistable for any irreducible representation τ : GL(n) −→ GL(W ).
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2. Some general facts about quadrics

2.1. Embedding of quadrics in Pn
k. Let V be a vector-space of dimension

n + 1 over k (characteristic k 6= 2). Let us choose a basis {e1, . . . , en+1} of V .
Represent a point v ∈ V by

v = (x1, . . . , xn/2, z, y1, . . . , yn/2), if n is even,

v = (x1, . . . , x(n+1)/2, y1, . . . , y(n+1)/2), if n is odd,

with respect to the basis {e1, . . . , en+1}. Without loss of generality, one can
assume that any fixed smooth quadric Q ⊂ Pn

k is given by the quadratic form

Q̃(v) = z2 + 2(x1yn/2 + · · ·+ xn/2y1), if n is even and

Q̃(v) = x1y(n+1)/2 + · · ·+ x(n+1)/2y1), if n is odd.

Let

SO(n + 1) = {A ∈ SL(n + 1) | Q̃(Av) = Q̃(v) for all v ∈ V }
= {A ∈ SL(n + 1) | AtJA = J}

,

where

J =




0 · · · 1

0
·

·
·

0

1 · · · 0



∈ GL(n + 1).

Notation 2.1. Let P1 = P ∩ SO(n + 1) denote the maximal parabolic group in
SO(n + 1) such that









a11 0 0
0 A 0
0 0 a−1

11


 , where A ∈ SO(n − 1), a11 ∈ k∗




 ⊆ P1, and

P1 ⊆









a11 ∗ ∗
0 A ∗
0 0 a−1

11


 , where A ∈ SO(n − 1), a11 ∈ k∗




.

Then we have the canonical identification

Pn
k ≃ SL(n + 1)/P
↑ ↑
Q ≃ SO(n + 1)/P1.
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2.2. Standard representation of GL(n). Consider the canonical short exact
sequence of sheaves of OP

n
k
-modules

0 −→ Ω1
P

n
k
(1) −→ H0(Pn

k ,OP
n
k
) ⊗OP

n
k
−→ OP

n
k
(1) −→ 0.

The dual sequence is

(2.1) 0 −→ OP
n
k
(−1) −→ H0(Pn

k ,OP
n
k
) ⊗OP

n
k
−→ TP

n
k
(−1) −→ 0,

where TP
n
k

is the tangent sheaf of Pn
k . Now this sequence is also a short exact

sequence of G-homogeneous bundles on G/P = Pn
k (see 1.1). Hence there exists

a corresponding short exact sequence of P -modules

0 −→ V2
f

−→ V1
η

−→ V −→ 0,

where the P -module structure is given as follows.
Let V1, V and V2 be n + 1, n and 1 dimensional k-vector spaces respectively,

with fixed bases. Let f : (c) 7→ (c, 0, . . . , 0) and let

η : (a1, . . . , an+1) 7→ (0, a2, . . . , an+1).

Now representing the elements of the vector spaces as coloumn vectors and
expressing any g ∈ P as

g =

[
g11 ∗
0 B

]
, where B ∈ GL(n),

we define the representations as follows:
The representation ρ1 : P −→ GL(V1) is given by

ρ1(g)




a1
...

an+1


 = [g]




a1
...

an+1


 .

The representation ρ2 : P −→ GL(V2) is given by

ρ2(g)[c] = [g11][c]

and the representation σ : P −→ GL(V ) is given by

σ(g)




b1
...
bn


 = [B]




b1
...
bn




which is the standard representation σ : GL(n) −→ GL(V ). Thus

TP
n
k
(−1) = Vσ

is the homogeneous bundle on G/P associated to the standard representation σ.
One can easily check that the maps f and η are compatible with the P -module
structure of V2, V1 and V .

We write the sequence (2.1) as

0 −→ Vρ2
−→ Vρ1

−→ Vσ −→ 0.
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2.3. Restriction of Vσ to the quadric Q ⊂ Pn
k . The bundle Vσ = TP

n
k
(−1),

when restricted to Q, fits into an extension

(2.2) 0 −→ TQ(−1) −→ TP
n
k
(−1) ⊗OPn

k

OQ −→ NQ/Pn
k
(−1) −→ 0,

where TQ and NQ/Pn
k

denote the tangent sheaf and the normal sheaf of Q ⊂ Pn
k .

Note that this is also a short exact sequence of SO(n + 1)-homogeneous bundles
on Q = SO(n + 1)/P1 (see 2.1), hence there exists the corresponding short exact
sequence of P1-modules

(2.3) 0 −→ U1
f̃

−→ V
g̃

−→ U3 −→ 0,

where U1 and U3 are k-vector spaces of dimensions n − 1 and 1 respectively. We
define

f̃ : (b1, . . . , bn−1) → (b1, . . . , bn−1, 0)

and
g̃ : (a1, . . . , an) → (an).

Now any g ∈ P1 can be written as

g =




a11 ∗ ∗
0 A ∗
0 0 a−1

11




where A ∈ SO(n− 1) and a11 ∈ k \ {0}. The representation σ̃ : P1 −→ GL(V )
is given by

(2.4) σ̃(g)




b1
...
bn


 =

[
A ∗
0 a−1

11

]


b1
...
bn




The representation ρ3 : P1 −→ GL(U3) is given by

ρ3(g)[x] = [a−1
11 ][x]

and the representation σ1 : P1 −→ GL(U1) is given by

(2.5) σ1(g)




c1
...
cn−1


 = [A]




c1
...
cn−1




We write the sequence (2.3) as

0 −→ U1 −→ Vσ̃ −→ U3 −→ 0.

Remark 2.2. Note that σ1 : P1 −→ GL(U1) factors through the standard rep-
resentation σ̃1 : SO(n − 1) −→ GL(U1) and hence is irreducible, for n 6= 3. This
implies that the tangent bundle TQ is semistable. For n = 3, the representa-
tion σ1 is not irreducible and U1 is a direct sum of two P1-submodules, namely
k(1, 0, 0) ⊂ V and k(0, 1, 0) ⊂ V respectively. In fact one can check easily that
the only P1-submodules of V are given by k(1, 0, 0), k(0, 1, 0), U1 and V itself.
In particular, all the homogeneous subbundles of Vσ̃ are given by these four P1-
submodules.
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A smooth quadric Q ⊂ P3
k is isomorphic to P1

k ×P1
k and therefore the tangent

bundle TQ is a direct sum of line bundles of same degree. Hence the tangent
bundle TQ is always a semistable vector bundle for a smooth quadric Q. Moreover,
by (2.2), one can compute that µ(TQ) > 0, if n ≥ 2.

3. Stablity of TP
n
k
|smooth quadric

Proposition 3.1. Let σ : GL(n) −→ GL(V ) be the standard representation (i.e.,
σ(g) = g). Let Vσ be the associated G-homogeneous bundle on G/P = Pn

k . Then
for characteristic k 6= 2, the restriction of the bundle Vσ = TP

n
k
(−1) to any smooth

quadric Q ⊂ Pn
k is semistable.

Remark This result in characteristic 0 is proved by [F]. In fact later we prove a
stronger version of the above proposition (see Proposition 3.6).

For the proof of the proposition we need the following two lemmas.

Lemma 3.2. Let U1 and Vσ̃ denote the SO(n+1)-homogeneous bundles, associ-
ated to the σ1 and σ̃ respectively (as given in Section 2), on Q = SO(n + 1)/P1.
Then

µ(U1) < µ(Vσ̃).

Proof. We are given that

Vσ̃ = Vσ |Q = TP
n
k
(−1) ⊗OPn

k

OQ

and U1 = TQ(−1). Now

deg TPn
k
(−1)⊗OPn

k

OQ = 2 deg TPn
k
(−1) = 2(deg H0(Pn

k ,OPn
k
)⊗OPn

k
−deg OPn

k
(−1)) = 2,

where the second last equality follows from (2.1). As

NQ/Pn
k
≃ (I/I2)∨ = OP

n
k
(−2)∨ |Q= OP

n
k
(2) |Q,

where I is the ideal sheaf of Q ⊂ Pn
k , we have

deg NQ/Pn
k
(−1) = deg OP

n
k
(1) |Q= 2.

Therefore

deg U1 = deg TQ(−1) = deg TP
n
k
(−1) − deg NQ/Pn

k
(−1) = 0.

Hence µ(U1) = 0 < µ(Vσ̃) = 2/n. This proves the lemma. �

Lemma 3.3. The sequence (2.3)

0 −→ U1
f̃

−→ V
g̃

−→ U3 −→ 0,

defined as above, of P1-representations does not split.

Proof. It is enough to prove that the short exact sequence (2.2) does not split as
sheaves of OQ-modules. Suppose it does, then so does

0 −→ TQ(−2) −→ TP
n
k
(−2) ⊗OPn

k

OQ −→ NQ/Pn
k
(−2) −→ 0,
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where we know that NQ/Pn
k
(−2) ≃ OQ. This implies that H0(Q, TP

n
k
(−2) ⊗OP

n
k

OQ) 6= 0. However we have

(3.1) 0 −→ TP
n
k
(−4) −→ TP

n
k
(−2) −→ TP

n
k
(−2) ⊗OPn

k

OQ −→ 0,

where the first map is multiplication by the quadratic equation defining Q ⊂ Pn
k .

If we assume the following
Claim. H0(Pn

k , TP
n
k
(−2)) = 0 = H1(Pn

k , TP
n
k
(−4)).

Then (3.1) implies that H0(Q, TP
n
k
(−2) ⊗OPn

k

OQ) = 0, which contradicts the

hypothesis. Now we give the
Proof of the claim. Consider the following short exact sequence (which is derived
from (2.1))

0 −→ OP
n
k
(−2) −→ OP

n
k
(−1)n+1 −→ TP

n
k
(−2) −→ 0.

As n ≥ 2, we have H1(Pn
k ,OP

n
k
(−2)) = H0(Pn

k ,OP
n
k
(−1)) = 0, which implies

H0(Pn
k , TP

n
k
(−2)) = 0. The above sequence also gives the long exact sequence

−→ ⊕n+1H1(Pn
k ,OP

n
k
(−3)) −→ H1(Pn

k , TP
n
k
(−4)) −→ H2(Pn

k ,OP
n
k
(−4)) −→

−→ ⊕n+1H2(Pn
k ,OP

n
k
(−3)) −→

(1) If n ≥ 3 then H1(Pn
k ,OP

n
k
(−3)) = H2(Pn

k ,OP
n
k
(−4)) = 0, which implies

H1(Pn
k , TP

n
k
(−4)) = 0.

(2) If n = 2 then H1(P2
k,OP2

k
(−3)) = 0. Moreover the map

H2(P2
k,OP

2
k
(−4)) −→ ⊕3H2(P2

k,OP
2
k
(−3))

is dual to

⊕3H0(P2
k,OP

2
k
) −→ H0(P2

k,OP
2
k
(1))

which is an isomorphism as it comes from the evaluation map

H0(P2
k,OP2

k
(1)) ⊗OP2

k
−→ OP2

k
(1).

This implies H1(Pn
k , TP

n
k
(−4)) = 0.

This proves the claim and hence the lemma. �

Proof of Proposition 3.1. Now suppose the SO(n + 1)-homogeneous bundle Vσ̃

on Q is not semistable. Then it has a Harder-Narasimhan filtration

0 ⊂ V1 ⊂ · · · ⊂ Vk = Vσ̃

where µ(V1) > µ(Vσ̃). Now the uniqueness of the HN filtration implies that V1 is
a SO(n+1)-homogeneous subbundle of Vσ̃. Therefore there exists a corresponding

P1-representation, say, ρ4 : P1 −→ GL(Ṽ1) and an inclusion of P1-modules Ṽ1 →֒
V corresponding to the inclusion V1 →֒ Vσ̃.
Claim. U1 ⊂ Ṽ1, where σ1 : P1 → GL(U1) is the P1-representation as defined in
(2.5).

We assume the claim for the moment. Since V/U1 is an irreducible P1-module,

we have either Ṽ1 = U1 or Ṽ1 = V , i.e., V1 = U1 or V1 = Vσ̃. By Lemma 3.2,
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in both the cases µ(V1) ≤ µ(Vσ̃), which contradicts the fact that V1 is a term of
the HN filtration of Vσ̃. Hence we conclude that the Vσ̃ is semistable.

Now we give

Proof of the claim. Suppose Ṽ1 ∩ U1 = 0. Then the composition map

Ṽ1 =
Ṽ1

Ṽ1 ∩ U1

→֒
V

U1
→֒ U3,

gives an isomorphism Ṽ1 −→ U3, which implies that (2.3) splits as a sequence of
P1-modules; by Lemma 3.3, this is a contradiction.

Hence Ṽ1 ∩ U1 6= 0. If n 6= 3 then U1 is an irreducible P1-module (see Re-

mark 2.2), which implies that U1 ⊂ Ṽ1. Let n = 3 and U1 6⊂ Ṽ1. Then
Remark 2.2 implies that V1 ⊂ U1 as a P1-submodule of rank 1 and therefore

µ(V1) = µ(U1) < µ(Vσ̃), which is a contradiction. Therefore U1 ⊆ Ṽ1. Hence the
claim. This proves the proposition. 2

Remark 3.4. The argument in the above proposition implies that the only
SO(n + 1)-homogeneous subbundle of TP

n
k
(−1) |Q = Vσ̃ is either U1 or Vσ̃ it-

self, if n 6= 3. If n = 3 then the homogeneous subbundle of Vσ̃ is one of the two
homogeneous line subbundles of U1 (as given in Remark 2.2) or U1 or Vσ̃ itself.

Remark 3.5. For n = 3, we can give another proof of the stability of Vσ̃ by
reversing the role of cubic and quadric in the proof of Lemma 4.5.

Now we can strengthen Proposition 3.1 as follows.

Proposition 3.6. With the notations as in Proposition 3.1, for n ≥ 3, the re-
striction of the Pn

k-bundle, Vσ to any smooth quadric Q ⊂ Pn
k is stable. If n = 2

then Vσ |Q is a direct sum of two copies of a line bundle on Q.

Before coming to the proof of this proposition we need the following lemma
(which, perhaps, is already known to the experts). For this we recall some general
facts. Let H be a reductive algebraic group over k and P ′ ⊂ H be a parabolic
group. Let Vρ be a homogeneous H-bundle on X = H/P ′ induced by a P ′-
representation ρ : P ′ −→ GL(V ) on a k-vector space V . Let the H action on Vρ

be given by the map L : H × Vρ −→ Vρ, where we write L(g, v) = Lg(v), for
g ∈ H and v ∈ Vρ. This induces the canonical H-action on the dual of Vρ, which
makes V∨

ρ and Vρ ⊗ V∨
ρ into H-homogeneous bundles such that the map

EndOX
(Vρ) ⊗ EndOX

(Vρ) −→ EndOX
(Vρ)

↓≃ ↓≃
(Vρ ⊗OX

V∨
ρ ) ⊗OX

(Vρ ⊗OX
V∨

ρ ) −→ (Vρ ⊗OX
V∨

ρ ).

given by

(v1 ⊗ φ1) ⊗ (v2 ⊗ φ2) 7→ φ1(v2)(v1 ⊗ φ2).

is H-equivariant. Hence End OX
(Vρ) = H0(X, EndOX

(Vρ)) is a H-module such
that H respects the algebra structure on it. This gives the homomorphism

L̄ : H −→ Aut(End OX
(Vρ)),



RESTRICTION THEOREMS FOR HOMOGENEOUS BUNDLES 9

given by L̄(g)(φ) = Lg · φ · Lg−1 , where

Aut(End OX
(Vρ)) = the set of ring automorphism on End OX

(Vρ).

Lemma 3.7. With the above notations, assume that the map L̄, defined as above,
is the trivial map. Then any subbundle of Vρ on X, which is also a direct sum-
mand of Vρ, is H-homogeneous vector subbundle.

Proof. Now let Vρ = U1 ⊕ U2 be the direct sum of subbundles U1 and U2. Let
φ ∈ End OX

(Vρ) be given by

φ |U1
= Id and φ |U2

= 0.

Now, since L̄ is trivial, we have

L̄(g)(φ) = φ for all g ∈ G.

i.e.,

(3.2) Lg · φ · Lg−1 = φ.

Let (Vρ)x be the fiber of Vρ over x ∈ X. Then, by (3.2), we have the following
commutative diagram

(Vρ)x

L
g−1

−→ (Vρ)g−1x

↓φ ↓φ
g−1

(Vρ)x

L
g−1

−→ (Vρ)g−1x,

for each x ∈ X. This may be written as

U1
x ⊕ U2

x

L
g−1

−→ U1
g−1x ⊕ U2

g−1x

↓φx
↓φ

g−1x

U1
x ⊕ U2

x

L
g−1

−→ U1
g−1x ⊕ U2

g−1x.

Now

U
2
x ⊆ ker φx =⇒ U

2
x ⊆ ker(Lg · φg−1x · Lg−1) = ker(φg−1x · Lg−1).

This implies
Lg−1(U2

x) ⊆ ker φg−1x = U
2
g−1x.

Hence Lg−1(U2) ⊆ U
2, i.e., U

2 is a H-homogeneous subbundle of Vρ. This proves
the lemma. �

Proof of Proposition 3.6. By Proposition 3.1, for a quadric Q ⊂ Pn
k , the bundle

Vσ |Q≃ Vσ̃ is semistable. Hence there exists a nontrivial socle F ⊆ Vσ̃ such that
µ(F) = µ(Vσ̃) and F is the maximal polystable subsheaf. Hence, by the unique-
ness of maximal polystable sheaf, it follows that it is an SO(n+ 1)-homogeneous
subbundle of Vσ̃. Therefore, by Remark 3.4, either F = U1 or F = Vσ̃. But
µ(F) = µ(Vσ̃) > µ(U1), which implies F = Vσ̃. Therefore we can write

Vσ̃ = F1 ⊕ F2 ⊕ · · · ⊕ Fr,

where Fi is a direct sum of isomorphic stable sheaves, and the stable summands
of distinct Fi are non-isomorphic. But each Fi is an SO(n + 1)-homogeneous
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subbundle of Vσ̃ and is of the same slope as of Vσ̃. Hence r = 1 and Vσ̃ is a
direct sum of isomorphic stable sub-bundles, i.e.

Vσ̃ = ⊕t
U, where µ(U) = µ(Vσ̃).

By Equation (2.1), we have

2 = deg Vσ̃ = t · deg U.

Hence t = 1 or t = 2.
Suppose n = 2. Then Q ≃ P1

k, hence Vσ̃ being rank 2 vector bundle on Q
splits as a direct sum of two line bundles. Therefore in this case t = 2.

Suppose n ≥ 3. If t = 1 then we are done. Let t = 2. Let

L̄ : SO(n + 1) −→ Aut(H0(Q, End(Vσ̃)))

be the induced map. We are given that Vσ̃ = U ⊕ U, where U is a stable bundle
on Q. But End Q(U) consists of scalars, and so

End Q(Vσ̃) ≃ M(2, k) is the algebra of 2 × 2 matrices.

Hence Aut(H0(Q, End(Vσ̃))) ≃ SO(3). So, we have the map

L̄ : SO(n + 1) −→ SO(3).

But SO(n + 1) is an almost simple group, which implies, that

either dim Im L̄ = 0 or dim SO(n + 1) = dim Im L̄ ≤ dim SO(3).

Hence, for n ≥ 3, dim Im L̄ = 0, which means L̄ is trivial. Therefore, by
Lemma 3.7, the bundle U is homogeneous.

However, by Remark 3.4 and Lemma 3.2, the only G-homogeneous subbundle
of Vσ̃, of the same slope as Vσ̃, is Vσ̃ itself. Hence we conclude that Vσ̃ = U is
stable, if n ≥ 3. This proves the proposition. 2

Corollary 3.8. If Q ⊂ Pn
k is a smooth quadric such that k is an algebraically

closed field of char 6= 2 then

(1) ΩP
n
k
|Q is strongly semistable if n = 2 and

(2) ΩP
n
k
|Q is strongly stable if n ≥ 3.

Proof. If n = 2 then the corollory follows from Proposition 3.6. Suppose n ≥ 3.
Then, by Proposition 3.6, the bundle ΩP

n
k
|Q is stable. Moreover, by Remark 2.2,

the tangent bundle TQ of Q is semistable and µ(TQ) > 0. Hence, by Theorem 2.1
of [MR1], the bundle ΩP

n
k
|Q is strongly stable. This proves the corollory. �

4. Stablity of TP
n
k
|smooth cubic

We recall the Bott vanishing theorem for (Pn
k , Ω

q
P

n
k
(t)), where k an arbitrary

field of arbitrary characteristic.

H0(Pn
k , Ωq

P
n
k
(t)) 6= 0, if 0 ≤ q ≤ n, and t > q

Hn(Pn
k , Ω

q
P

n
k
(t)) 6= 0 if 0 ≤ q ≤ n, and t < q − n

Hp(Pn
k , Ω

p
P

n
k
) = k, if 0 ≤ p ≤ n

Hp(Pn
k , Ω

q
P

n
k
(t)) = 0 otherwise.
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Now throughout this section we fix a smooth hypersurface X of degree d ≥ 3
in Y = Pn, (d, char k) = 1. We have the following short exact sequences

(4.1) 0 −→ Ωq
Y (t) −→ Ωq

Y (t + d) −→ Ωq
Y (t + d) |X−→ 0

(4.2) 0 −→ Ωq
X(t) −→ Ωq+1

Y (t + d) |X−→ Ωq+1
X (t + d) −→ 0

(1) If p + q < dim X and p, q ≥ 0 then from Bott vanishing and the short
exact sequences (4.1) and (4.2), it follows that Hp(X, Ωq

X(t)) = 0 for t < 0.
(2) If p + q < dim X then

Hp(X, Ωq
X) ≃ Hp(Y, Ωq

Y ).

(3) Consider the following commutative diagram of natural maps

Hp(Y, Ωq
Y ) −→ Hp+1(Y, Ωq+1

Y )
↓ ↓

Hp(X, Ωq
X) −→ Hp+1(X, Ωq+1

X ),

where the horizontal maps are given by the cup product with c1(OY (d)) =
d · c1(OY (1)) and c1(OX(d)) respectively. Since (char k, d) = 1, the map
Hp(Y, Ωq

Y ) −→ Hp+1(Y, Ωq+1
Y ) is an isomorphism for every p, q with p, q ≥

0 and p + 1 ≤ dim Y . In particular, the induced composite map

(4.3) ηp,q : Hp(X, Ωq
X) −→ Hp+1(Y, Ωq+1

Y )

is an isomorphism if p, q ≥ 0 and p + q < dim X.

We prove the following Lemma 4.1 and Corollory 4.2 along the same line of
arguements, as given for the case k = C, in [PW].

Lemma 4.1. Let X ⊆ Pn
k be a hypersurface of deg d ≥ 3. Let n ≥ 2 and

(char k, d) = 1. If p, q ≥ 0 and p + q < dim X and t ≤ q(n + 1− d)/(n− 1) then

(1) Hp(X, Ωq
X(t)) = 0, if t 6= 0 and

(2) Hp(X, Ωq
X) ≃ Hp(Y, Ωq

Y ).

Proof. As discussed above, (a) for t < 0, the statement (1) holds, i.e., for t < 0,
we have Hp(X, Ωq

X(t)) = 0, and (b) the statement (2) always holds.
Suppose t = d. In particular q ≥ 2. Now (4.2) gives the long exact sequence

Hp(Ωq−1
X )

fp,q−1

−→ Hp(Ωq
Y (d) |X) −→ Hp(Ωq

X(d)) −→ Hp+1(Ωq−1
X )

fp+1,q−1

−→ Hp+1(Ωq
Y (d) |X).

Hence to prove that Hp(X, Ωq
X(d)) = 0, it is enough to prove the following

Claim: The map fp,q is an isomorphism, if p, q ≥ 0 and p + q < dim X.

Proof of the claim. Note that we have the following commutative diagram

Hp(X, Ωq
X)

fp,q

−→ Hp(Y, Ωq+1
Y (d) |X)

ցηp,q ↓gp,q+1

Hp+1(Y, Ωq+1
Y ),

where, by (4.3) the map ηp,q is an isomorphism. Hence the map gp,q+1 is surjective,
in this case. Moreover, by (4.1) we also have the exact sequence
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Hp(Y, Ωq+1
Y (d)) −→ Hp(X, Ωq+1

Y (d) |X)
gp,q+1

−→ Hp+1(Y, Ωq+1
Y ),

where Hp(Y, Ωq+1
Y (d)) = 0, by Bott vanishing. Therefore the map gp,q+1 is an

isomorphism. This implies that fp,q is an isomorphism. This proves the claim.
Hence Hp(X, Ωq

X(d)) = 0 if p, q ≥ 0 and p + q < dim X

By induction on t, we can assume that for m < t and m 6= 0, we have

H i(X, Ωj
X(m)) = 0, where i, j ≥ 0, i + j < dim X and m ≤

j(n + 1 − d)

n − 1
,

Now, to prove the proposition, it remains to show that,

t ≤
q(n + 1 − d)

(n − 1)
, t 6∈ {0, d}, p, q ≥ 0, p + q < dim X =⇒ Hp(X, Ωq

X(t)) = 0.

Note that the hypothesis that

t ≤
q(n + 1 − d)

n − 1
=⇒ t ≤ q.

Consider the following long exact sequence (obtained from (4.2))

Hp(X, Ωq
Y (t) |X) −→ Hp(X, Ωq

X(t)) −→ Hp+1(X, Ωq−1
X (t − d))

If q − 1 < 0 then the last term is 0. If q − 1 ≥ 0 then as

t ≤
q(n + 1 − d)

n − 1
=⇒ t − d ≤

(q − 1)(n + 1 − d)

n − 1
,

by induction hypothesis on t, the last term of the sequence is 0. Consider the
exact sequence (obtained from (4.1))

Hp(Y, Ωq
Y (t)) −→ Hp(X, Ωq

Y (t) |X) −→ Hp+1(Y, Ωq
Y (t − d))

then, by Bott vanishing, the first and the last term of the sequence are 0. This
implies that Hp(X, Ωq

Y (t) |X) = 0. Hence Hp(X, Ωq
X(t)) = 0. This completes the

proof of the proposition. �

Corollary 4.2. Let X ⊂ Pn
k be a smooth hypersurface of degree d ≥ 3. Let n ≥ 4

and g.c.d.(char k, d) = 1. Then ΩX is stable.

Proof. Suppose ΩX is not stable then there exists a subbundle W ⊂ ΩX of rank
q ≤ n−2, such that µ(W ) ≥ µ(ΩX). Then ∧qW →֒ ∧qΩX . Since ∧qW ∈ Pic (X),
we have ∧qW = OP

n
K
(−t) |X , as n ≥ 4 implies that the map Pic (Pn

K) → Pic (X)

is an isomorphism. This implies that H0(X, ΩX(t)) 6= 0. Hence to prove that the
bundle ΩX is stable, it is enough to prove that

H0(X, Ωq
X) = 0, for t ≤

q(n + 1 − d)

n − 1
,

which immediately follows by Lemma 4.1. Hence ΩX is stable. �

Lemma 4.3. Let X ⊂ P3
k be a smooth hypersurface of degree d = 3. Then

µmin(TX) ≥ 0.
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Proof. Let H ⊂ P3
k be a general hyperplane such that C = X∩H is a nonsingular

complete intersection on P3
k. In particular C is an elliptic curve. This gives the

canonical short exact sequence

0 −→ TC −→ TX |C−→ NC/X −→ 0,

which is equivalent to

0 −→ OC
f1−→ TX |C

f2−→ OC(1) −→ 0.

If TX is semistable then µmin(TX) = µ(TX) = 1/2 > 0. We can assume that TX

is not semistable. Let L ⊂ TX be the Harder-Narasimhan filtration of TX , which
gives a short exact sequence of coherent sheaves (where L is a line bundle on X),

0 −→ L
g1−→ TX

g2−→ M −→ 0.

By definition, µmin(TX) = deg M, therefore it is enough to prove that deg M > 0,
which is same as to prove that deg M |C= M · H > 0. Consider the composite
map

OC
f1

−→ TX |C
g2|C
−→ M |C .

Case 1. If g2 |C ◦f1 = 0 then the induced map OC(1) −→ M |C is surjective.
This implies that deg M |C> 0. Case 2. If g2 |C ◦f1 6= 0 then there exists a
nonzero map OC −→ M |C, which implies that deg M |C≥ 0. This proves the
lemma. �

Lemma 4.4. Let X ⊂ Pn
k be a smooth hypersurface of degree d ≥ 3. Let n ≥ 4

and g.c.d.(char k, d) = 1. Then ΩP
n
k
|X is stable.

Proof. As argued in Corollory 4.2, it is enough to prove that

H0(X, Ωq
P

n
k
(t) |X) = 0, for t ≤ q(n + 1)/n and 1 ≤ q ≤ n − 1.

Now, consider
0 −→ OP

n
k
(−d) −→ OP

n
k
−→ OX −→ 0,

which gives

0 −→ Ωq
P

n
k
(t − d) −→ Ωq

P
n
k
(t) −→ Ωq

P
n
k
(t) |X−→ 0.

Since t ≤ q(n + 1)/n =⇒ t ≤ q, by Bott vanishing we have

H0(Pn
k , Ω

q
P

n
k
(t)) = 0, for t ≤ q(n + 1)/n,

and
H1(Pn

k , Ωq
P

n
k
(t − d)) = 0, if t 6= d or q 6= 1.

Therefore the exact sequence

H0(Pn
k , Ω

q
Pn

k
(t)) −→ H0(Pn

k , Ω
q
Pn

k
(t) |X) −→ H1(Pn

k , Ω
q
Pn

k
(t − d))

implies that for t ≤ q(n + 1)/n

H0(Pn
k , Ωq

Pn
k
(t) |X) = 0, if t 6= d or q 6= 1.

However the case, when t = d and q = 1 and t ≤ q(n + 1)/n does not arise,
as these conditions imply that d = t ≤ 1 + (1/n) < 2. Hence we conclude that
H0(Pn

k , Ω
q
P

n
k
(t) |X) = 0 if t ≤ q(n + 1)/n. This proves the lemma. �
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Lemma 4.5. Let X ⊂ Pn
k be a smooth cubic hypersurface such that n = 2 or

n = 3. Then ΩP
n
k
|X is strongly semistable.

Proof. Suppose n = 2, then X is an elliptic curve. Hence ΩP
2
k
|X is an indecom-

posable rank 2 vector bundle on X (see the proof of Theorem 3.16 of [NT]) and is
of negative degree. Hence strong semistabilty follows from the facts that a vector
bundle of negative degree has no sections and a semistable bundle is strongly
semistable on an elliptic curve.

Suppose n = 3. Let Q ⊂ P3
k be a general smooth quadric such that C = Q∩X

is a smooth complete intersection nonsingular curve in P3
k. Then C is curve

of genus = 4 such that OP3
k
(1) |C= ωC and the restriction of the short exact

sequence

0 −→ ΩP
3
k
(1) −→ H0(P3

k,OP
3
k
(1)) ⊗OP

3
k
−→ OP

3
k
(1) −→ 0,

to C, is

0 −→ ΩP
3
k
(1) |C−→ H0(C, ωC) ⊗OC −→ ωC −→ 0.

Note that C is a non-hyperelliptic curve, hence by Corollory 3.5 of [PR] (the proof
given there for k = C works for any algebraically closed field k of arbitrary char-
acteristic), the bundle ΩP

3
k
(1) |C is stable. By Lemma 4.3, we have µmin(TX) ≥ 0.

Therefore Theorem 2.1 of [MR1] implies that ΩP
3
k
(1) |C is strongly semistable,

for general curve C ⊂ X, of degree 3. Hence ΩP
3
k
(1) |X is strongly semistable.

Hence the lemma. �

Corollary 4.6. If X ⊂ Pn
k is a smooth cubic such that k is an algebraically closed

field of characteristic 6= 3, then

(1) ΩP
n
k
|X is strongly semistable, if n = 2 or 3 and

(2) ΩP
n
k
|X is strongly stable, if n ≥ 4

Proof. The cases n = 2 and n = 3 follow from Lemma 4.5. Hence it is enough
to prove the corollory for n ≥ 4. Now, by Corollory 4.2, the tangent bundle
TX = Ω∨

X of X is semistable and is of positive slope. By Lemma 4.4, the bundle
ΩP

n
k
|X is stable. Hence, again, by Theorem 2.1 of [MR1], we deduce that ΩP

n
k
|X

is strongly stable. Hence the corollory. �

5. Main results

Notation 5.1. We recall the notion of ‘generic’ and ‘general’ as given in Section 1
of [MR2]. Let k be an algebraically closed field of arbitrary characteristic. Let
Sd = Proj(H0(Pn

k ,OP
n
k
)). Then we have

Pn
k × Sd ⊇ Zd

qd−→ Sd

↓pd

Pn
k ,

wherw Zd = {(x, s) ∈ Pn
k × Sd | s(x) = 0} and pd, qd are projections. The fiber

of qd over s ∈ Sd is the embedding in Pn
k via pd as the hypersurface of Pn

k defined
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by the ideal generated by s. Let Kd be the function field of Sd. Let Yd be the
generic fiber of qd given by the fiber product

Zd −→ Sd

↑qd ↑
Yd −→ Spec Kd,

where Yd is an absolutely irreducible, nonsingular hypersurface, and there is a
nonempty open subset of Sd over which the geometric fibres of qd are irreducible.

We call Yd the generic hypersurface of degree d. Whenever a property holds for
q−1
d (s) for s in a nonempty Zariski open subset of Sd, then we say it holds for a

general s.

Remark 5.2. For a torsion free sheaf V on a smooth projective variety (which is
Pn

k in our case), the restriction of V to the generic hypersurface Yd is semistable
(geometrically stable) if and only if the restriction of V to a general hypersurface
of degree d is semistable (geometrically stable): because, for any coherent torsion
free sheaf F of X, the sheaf p∗dF forms a flat family over a nonempty open subset
of Sd (see Proposition 1.5 of [MR2]), and the property of coherent sheaves being
semistable (geometrically stable) is open in flat families.

Remark 5.3. If

(1) X = smooth quadric, if char k 6= 2, or
(2) X = smooth cubic, if char k 6= 3

then, by Corollory 3.8 and Corollory 4.6, the bundle ΩP
n
k
|X is strongly semistable.

Moreover, by Remark 2.2, Corollory 4.2 and Lemma 4.3, we have µmin(TX) ≥ 0.
In particular, by Theorem 2.1 of [MR1] and Theorem 3.23 of [RR], any semistable
bundle on X remains semistable after applying the functors like Frobenius pull
backs, tensor powers, symmetric powers, and exterior powers on X.

Proof of Theorem 1.2. By Remark 5.3, it is enough to prove that Wτ is semistable
on X. By Proposition 2.4 of [J], given an irreducible representation

τ : GL(n) −→ GL(W ),

there exists λ ∈ χ(T ) (for a fixed torus T of GL(n)) such that

W = L(λ),

where following the notation of [J], the GL(n)-module L(λ) = socle of H0(λ).
Moreover, by corollory 2.5 of [J], the module dual to L(λ) is

L(λ)∨ = L(−w0λ).

Let ǫi ∈ χ(T ) be given by ǫi(t1, t2, . . . , tn) = ti and let ωi = ǫ1 + · · · + ǫi. Then
any ν ∈ χ(T ) can be written as

ν =
∑

i

aiωi =
∑

i

νiǫi,

where νi ∈ Z and ν1 ≥ ν2 ≥ · · · ≥ νn.
Let H0(Lν) be the vector bundle on G/P = Pn

k corresponding to the GL(n)-
representation H0(Lν).
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Claim. The bundle H0(Lν) |X is semistable on X ⊂ Pn
k and

µ(H0(Lν) |X) = (
∑

i

νi)(µ(Vσ |X)),

Proof of the claim: Let us denote

S(a1, . . . , an, V ) = Sa1(V ) ⊗ Sa2(∧2V ) ⊗ · · · ⊗ San(∧nV ),

for a vector space V , and let us denote

S(a1, . . . , an, V) = Sa1(V) ⊗ Sa2(∧2
V) ⊗ · · · ⊗ San(∧n

V),

for a vector bundle V. By definition of H0(Lν), we have a surjection of GL(n)-
modules

(5.1) S(a1, . . . , an, V ) −→ H0(Lν),

where σ : GL(n) −→ GL(n) = GL(V ) is the standard representation. Hence we
have the surjection of G-homogeneous bundles on Pn

k

(5.2) S(a1, . . . , an, Vσ) −→ H
0(Lν),

where we recall that Vσ = TP
n
k
(−1) = (ΩP

n
k
(1))∨ is the vector bundle associated

to the representation σ. Therefore we have the surjection of bundles on X

(5.3) S(a1, . . . , an, Vσ |X) −→ H
0(Lν) |X .

By Theorem 1.1 (and Cor. 1.3), exposé XXV, Schémas en groupes III, [SGA-
3], GL(n)/B (B is a Borel group of GL(n)) can be lifted to characteristic zero.
Therefore the degree and rank of these vector bundles are independent of the
characteristic of the field. Now over a field of characteristic 0, sequence (5.1)
split, which implies that sequence (5.2) splits as bundles on Pn

k , defined over field
of characteristic 0. Now since S(a1, . . . , an, Vσ) is semistable vector bundle, we
have

µ(H0(Lν)) = µ(S(a1, . . . , an, Vσ))
= (a1 + 2a2 + · · ·+ nan)µ(Vσ)
= (

∑
i νi)µ(Vσ),

where the last inequality follows as νi = ai + · · ·an. Hence

(5.4) µ(H0(Lν) |X) = (
∑

i

νi)(µ(Vσ |X)).

By Remark 5.3, the bundle S(a1, . . . , an, Vσ |X) is semistable. Therefore, by
(5.3) and (5.4), the bundle H0(Lν) |X is semistable. Hence the claim.

Now, coming back to W = L(λ), let

λ =
∑

i

aiωi =
∑

i

λiǫi.

Then, as w0(ǫi) = ǫn+1−i, we have

−w0λ = an−1ω1 + · · ·+ a1ωn−1 + (−a1 + · · · − an)ωn = −
∑

i

(λn+1−i)ǫi.
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This implies that µ(H0(L−w0λ)) = −µ(H0(Lλ)), therefore

(5.5) µ(H0(L−w0λ) |X) = −µ(H0(Lλ) |X).

Moreover there exists the surjective map of vector bundles on X

(5.6)
S(a1, . . . , an, Vσ |X)⊗S(an−1, . . . , a1,−(a1+· · ·+an), Vσ |X) −→ (H0(Lλ)⊗H

0(L−w0λ)) |X ,

where the L.H.S. is a semistable vector bundle of slope = 0. Moreover, by (5.5),
the slope of R.H.S. is also = 0. Hence H

0(Lλ) |Q ⊗H
0(L−w0λ) |X is semistable of

slope 0. Now, consider the injective map

Wτ ⊗ W
∨
τ −→ H

0(Lλ) ⊗ H
0(L−w0λ),

which give the injective map

(5.7) Wτ |X ⊗W
∨
τ |X−→ H

0(Lλ) |X ⊗H
0(L−w0λ) |X

is injective, where the slope of L.H.S is = 0, which is same as the slope of R.H.S..
Hence Wτ |X ⊗W∨

τ |X is semistable. This implies that Wτ |X is semistable, which
proves the theorem. 2

Corollary 5.4. Let Wτ be the homogeneous bundle on Pn
k associated to an ir-

reducible representation τ : GL(n) −→ GL(W ). Let k be an algebraically closed
field of characteristic 6= 2, 3. Then

(1) for s ≥ 0, the sth Frobenius power F s∗Wτ |H is semistable, for general
hypersurface H of degree d ≥ 2 in Pn

k . In particular
(2) Wτ |H0

is strongly semistable, where H0 ⊂ Pn
Kd

is the k-generic hypersur-
face of degree d ≥ 2.

Moreover, if Wτ is the tangent bundle on Pn
k and n ≥ 4 then we can replace the

word ‘semistable’ by ‘stable’ everywhere in the above statement.

Proof. By Theorem 1.2, the bundle Wτ |X is strongly semistable, where X is
a smooth quadric or a smooth cubic in Pn

k . In other words, for s ≥ 0 and
for the sth iterated Frobenius pull back, F s∗Wτ of Wτ , the bundle F s∗Wτ |X
is semistable, where X is a smooth quadric or a smooth cubic. Hence, by the
proof of the restriction theorem of [MR2], it follows that F s∗Wτ |H is semistable
when restricted to a general hypersurface H ⊂ Pn

k of degree ≥ 2 (see also the
modified proof of the above mentioned restriction theorem given in [HL]). This
proves part (1) of the corollory.

Moreover this implies that, for any s ≥ 0 and for generic hypersurface H0 of
degree ≥ 2, the bundle F s∗Wτ |H0

is semistable (see Remark 5.2). In particular,
the bundle Wτ |H0

is strongly semistable. This proves the part (2) of the corollory.
Note that, for n ≥ 4, by Corollories 3.8 and 4.6, the bundle TP

n
k
|X is strongly

stable and hence geometrically strongly stable (as the underlying field k is alge-
braically closed). Now the similar arguments, as above, applied to the tangent
bundle TP

n
k
, prove the rest of the corollory. �
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Remark 5.5. By Proposition 3.6, the bundle TP
n
k

|Q is stable for a smooth
quadric Q ⊂ Pn

k , for n ≥ 3. One may ask the following: If τ : GL(n) −→ GL(W )
is an irreducible representation, then is the associated bundle Wτ stable on Q?
More generally if τ : GL(n) −→ H is any irreducible representation, with H
semisimple, then is the induced H bundle semistable on Q?
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