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1 Introduction 

In [6], there is a construction of  a line bundle on a complex projective nonsingular 
variety which is ample on every proper subvariety but which is nonample on the 
ambient variety. The example is obtained as the projective bundle associated to 

a "general" stable vector bundle of degree zero on a compact Riemann surface 
of genus 9 -> 2. The proof in [6] constructs the vector bundle using a unitary 
representation of the fundamental group with the required property (of denseness). 
Here, we give an algebraic argument which is characteristic free, to show the 
existence of a variety of dimension < 3 with a line bundle as above (see Theorem 
(3.1) and Remark (3.2)). 

2 The vector bundle on the curve 

Let C be a complete nonsingular curve defined over an uncountable algebraically 
closed field (of any characteristic). Let Mr ~ denote the moduli  space of stable 
bundles of  rank r and degree zero on C and M; ~' the moduli  of  semistable bundles 
of rank r and degree zero. We further assume that the curve C is ordinary. We 
first show 

Proposition 2.1 Let the characteristic of  the ground field be positive and F the 
Frobenius morphism on C. There is a proper closed subset of Mr ~ such that for 
any stable bundle V in the complement of this closed set, F*V is also stable. 

Proof We prove this Proposition in a sequence of Lemmas:  

Lemma A M s is non-empty, irreducible, and non-singular and dim Mr ~ = r2(9 - 
1)+1 
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Proof  This follows from the computations made in [7, Sec. 5]. Those compu- 
tations were made for vector bundles with parabolic structure, but they also go 
through for bundles without any extra structure. 

Let L be a fixed line bundle of sufficiently large degree such that for all 
semistable bundles V on C of rank r and degree 0, H~  V | L) generates 
V | L and H 1 (C, V @ L) = 0. Consider the quotient scheme Q of  quotients 

H ~  V o | 1 7 4  * --* V ~ 0 

where V0 is a fixed semistable vector bundle of rank r and degree 0. Let R" 
denote the open subset of points q E Q such that a) the corresponding bundle 
Vq is semistable, b) H ~  Vo | L) --, H ~  Vq| is an isomorphism and 
c) H I ( c ,  Vq | L) = 0. We observe that R 's is irreducible and non-singular [8, 
Remark 5.51. 

L e m m a  B The Frobenius map F : C -~ C defines a rational map R ~'~ -~ R"L 

Proof  If qo c Q corresponds to the trivial bundle ~ ,e r  = Vqo, then clearly 
F#(Vqo) is semistable. Hence there exists a nonempty open subset , say ~Z, of 
R ss such that if q E ~Z, then F#(Vq) is also semistable, as qo C R s'. This defines 
a rational map R ss --~ R ss whose domain of  definition is ~Z" and sends q0 to 
itself. Call this rational map f .  

L e m m a  C There exists a point ql E <J~Z such that the corresponding bundle Vql 
is stable. 

Proof  Let ~ ' l  denote the subset of R ss consisting of  stable bundles, Clearly, 
'~gl is open and non-empty since Mr ~ is non-empty, by Lemma A. Therefore 
~Z A s~Z 1 is non-empty as R ss is irreducible and we can choose ql c ?Z N ?ZI. 

L e m m a  D There exists a simple bundle V C ~ such that F#(V)  is also simple 

Proof  We consider a stable bundle V in Q at which f is defined. Since V is a 
stable bundle, it is also a simple bundle. Let V be the universal quotient bundle 
on C x Q. Let 

O---~ ~ c  --~ F . ~ c  .--+ B 1 ---+0 

be the exact sequence of vector bundles on C induced by the Frobenius F on C. 
Since the curve C is ordinary, H~  B 1) = 0, and therefore for the trivial bundle 
~ e r 2 , H ~  | ~ er2) = 0. The universal bundle V gives a family End(Vi 
on C • Q and at a point p c Q, corresponding to the trivial bundle ~ e r ,  wu 
have H~ x p , B  1 | End (V) I C x p ) =  0. It follows by semicontinuity thz~ 
H ~  1 | End (V)) = 0 for the general (Zariski open set) semistable bundle 
V of  rank r and degree zero. From the sequence 

0 --* End (V) -* End (V) | F . ~  -+ End(V) | B l ~ 0 

we obtain 
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H~ End (V)) = H~ End ( V ) Q F . O c )  
= H~ End F ' V ) )  

where the first equality is true for the general semistable bundle V in Q. This 
shows that for the general simple bundle V in Q , F * V  also is simple. 

Therefore we can consider a stable bundle V in Q at which f is defined 
such that F*V is also simple. We observe that by Artin's theorem (see [1], 
Th.5.2) there is a local moduli space (as an algebraic scheme) of simple bundles 
at any simple bundle of rank r and degree zero. Letting $1 and $2 denote the 
local moduli spaces of simple bundles at V and F*V respectively, we see that 
W ~ F*W defines a morphism in the 6tale topology from $I to $2 (i.e., there 
are &ale neighborhoods N1 of  V in Sl and N2 of F*V in $2 and a morphism 
f, : N1 ~ N2 induced by W ~ F ' W ) .  We now observe that the tangent space 
to $2 (and hence N1) at V is H1(C, End V) and the tangent space to $2 at F*V 
is H1(C, End (F 'V) ) .  The differential of the morphism f~ : N1 --~ N2 at V is 
the natural map Hi(C ,  End V) -+ H I ( C , E n d  F ' V ) .  We have the sequence 

0 ~ End V --+ End V | F .  r  ---* End V G B 1 - -~  0 

and the induced maps 

H~ End V |  1) ~ H i ( c ,  End V) ~ Hi (C ,  End V |  

By the observation made earlier, since C is an ordinary curve, H~ End V N 
B 1) = 0 for general V, so we have an injection 

0-- ,  H i (C ,  End V ) ~  Hi (C ,  End V | F . C c ) =  HI(C,  End F ' V )  

and this is also the differential of the morphism f~ : N1 ~ N2 at V. Since the 
dimensions of the tangent spaces are the same (both V and F*V are simple) 
we find that fs is differentially isomorphic at V and hence fs : N1 ~ N2 is an 
&ale morphism (after shrinking N1 and N2 if necessary). Since the local moduli 
scheme at a simple bundle contains stable bundles, it follows from f~ being etale 
and hence dominant, that there is a stable bundle W (in a "neighborhood" of V) 
such that F*W is also stable. From the openness of stability in any family of 
bundles, the proposition follows. Q.E.D. 

We can now prove 

Corollary 2.1.1 Let C be an ordinary curve. Then the rational map f : Mr ~s 
M ss induced by the Frobenius F " C --* C, is etale on an open set, and in 
particular, dominant. 

Proof As seen in the proof of (2.1), there is an open set (nonempty) of Mr ~' such 
that HO(c, End V | B 1) = 0 for V in this open set. Also, by Proposition (2.1), 
there is an open subset of M[ such that for V in this open set F*V is stable. So 
we can consider a stable bundle V such t h a t f  is defined at V , F * V  is stable, 
and H0(C, End V | B l) = 0. It follows that there is an injection 
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0 - ~  H1(C, End V ) - - ~ H I ( C ,  End V |  End ( F ' V ) )  

The tangent spaces at V and F*V to M s are Hi (C ,  End V) 
and H1(C, End F ' V )  respectively, and the above cohomology map is the dif- 
ferential of f at V. This shows that f is differentially injectively and hence a 
differential isomorphism (since dim Hi(C ,  End V) = dim HI (C ,End  F ' V ) )  at 
V. Therefore f is etale at V and hence etale on an open set in M; ~. In particular, 
f is dominant. Q.E.D. 

Corollary 2.1.2 Let C be an ordinary curve. For any positive integer k, there is 
a nonempty open subset of MSr such that for V in this open set, Fm*(V) is stable 
f o r l  < _ m < k .  

Proof We apply Proposition (2.1) and Corollary (2.1.1) successively. Q.E.D. 

We now show 

Proposition 2.2 Let 7r : C -~ C be a finite Galois morphism of  smooth curves. If 
V is a stable bundle on C such that Fk*V is semistablefor all positive integers 
k, and 7r*V is not stable, then there exists a etale morphism p " C1 ---+ C and a 
factoring 

~ c 
\ . / p  

Cl 

such that p*(V) is not stable. 

Proof We first observe that 7r*(V) is semistable (otherwise the 3-subbundle of 
7r*V is invariant under Galois automorphisms and descends to a subbundle of 
V). Suppose lr*V is not stable. Let S be the socle of 7r*V (see [5]). Then S is 
also invariant under Galois automorphisms and descends to a subbundle of V. 
Since V is stable, this shows that S = 7r*V and therefore 7r*V is a direct sum 
of stable bundles. Thus 7r*V not being stable is equivalent to 7r*V not being 
simple. 

Let 
O ~ c ~ , ~ w ~ o  

be the exact sequence of bundles on C induced by 7r and we consider 

0 ---* End (V) --* End (V) | 7r. ~(7~ ---. End (V) | W ---* 0. 

This gives 

O ~ H ~  End V) ~ H ~  End V |176  End V |  

since H~ End V | ~-~) = H~ End (7r*V)), 7r*V not being simple implie~ 

that H~ End V | W) 5/0. Let End V --+ W be a nonzero homomorphisn~ 
induced by a nonzero section of End V | W. Let $1 = Image (End V ---* W) and 

be the inverse image of $1 in 7r.U~. Let S be the sheaf of algebras generate~ 
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by Sl in 7r.(7-~. Then deg S _< 0. On the other hand, since S is a quotient of 
the tensor algebra of End (V), and End(V) is semistable, we have deg S _> 0. 
Therefore, deg S = 0. We now consider the curve C1 = Spec (S) and the induced 

morphism p " Cl -~ C. Since deg S = 0, the morphism p is etale. Further, from 

0 -* ~ c  ~ :r ~/:, = S -~ Sl ~ 0 

we get 

0 ~  E n d V - +  E n d V |  ~ E n d V |  ~ 0  

and 

0 ~ H ~  End V) --~ H ~  End V |  ~ H ~  End V |  

and the nonzero section of End V | $1 lifts to a section of  End V | S by 
construction. This shows that p*V is not simple on CI. Q.E.D.  

Lemma 2.3 Let p : C1 -* C be a Galois etale morphism o f  smooth curves, and 
V a stable vector bundle on C. Then p*V is stable i f f p*V  is simple. 

Proof The bundle p*V  is semistable (otherwise the/3-subbundle of  p*V is in- 
variant under Galois automorphisms and descends to a subbundle of V). Suppose 
p*V is not stable. Let S be the socle o f p * V  (see [5]). Then S is also invariant 
under Galois automorphisms and descends to a subbundle of  V. Since V is sta- 
ble, this shows that S = p* V and therefore p* V is a direct sum of stable bundles. 
Thus p*V not being stable is equivalent to p*V not being simple. Q.E .D .  

We now have 

Proposi t ion 2.4 Given a finite etale morphism p : C1 ~ C, there exists a proper 

closed subset o f  M~ such that any vector bundle in the complement o f  this closed 
set remains stable on C1. 

Proof We first suppose that p : C1 ~ C is Galois etale. Then by Lemma (2.3) 
above, a stable bundle V on C becomes unstable on Cl if and only i f p * V  is not 
simple. The condition that p*V  is not simple is H~ End p ' V )  _> 2 which 
is a closed condition by semicontinuity (even though there may be no universal 
bundle on M[,  we can prove this by considering the universal bundle on the quot 
scheme Q). Therefore the set of semistable bundles on C which remain simple 

on C~ is an open subset (possibly empty) of M y .  We show that this open set is 
nonempty as follows. Let 

O ---+ L---~ V ---~ C ---+ O 

be a nonsplit extension of  ~ by a nontrivial line bundle L of degree zero such 
that p*L is also a nontrivial line bundle on CI. From 

0 4 5"c ~ p , ( c ,  -~ W 4 0 
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we get 

O ~ L---~ L Q p . ~ c ~  ---~ L Q  W ---*0. 

We observe that there are only finitely many line bundles of  degree zero with 

a nonzero homomorphism to the given bundle W since #max(W) <_ 0 (this can 
be seen by considering a stable filtration of W). Hence for a general choice of 
L, H ~  L Q W )  = 0. Therefore, there is an injection in the cohomology sequence 

0 --~ H1(C,L)  ~ H I ( C , L |  = HI(CI ,p*L) .  

The extension 

O--~ p*L ~ p *V ~ (~'cl -~ 0 

is therefore nonsplit. Since any nonsplit extension V of the form 

O ~ L - - - ~ V  ~ ~ O  

with L a nontrivial line bundle of degree zero is a simple bundle, we see that 
p*V is a simple bundle. 

This proves the proposition when the rank r = 2. We now assume the state- 
ment of the proposition for rank (r - 1). For a stable bundle S of  rank (r - 1) 
and degree zero such that p*S is also stable, we consider a nonsplit extension 

O ~ S - - - ~  V ~ " - - - + O  

(which exists since h I ( C , S )  = (r - 1)(9 - 1) > 0). We consider the exact 
sequence 

O---'S ~ S |  ~ S |  4 0  

and since there are only finitely many stable bundles of rank (r  - l)  and degree 
zero with a nonzero homomorphism to W (consider a stable filtration of  W), we 
can assume for a general choice of S that H ~  | W) = 0. For such an S, the 
cohomology sequence gives an injection 

0 --~ H I ( C , S )  ~ H I ( C , S  |  = HI(CI ,p*S ) ,  

the sequence 

~ p * S  ~ p * V  ~ ~C~ --' 0 

is also nonsplit. Any nonsplit extension V, 

O --~ S ---~ V --~ ~ --~ O 

with S stable of degree zero, is a simple bundle. Therefore p*V is a simple 

bundle of rank r. This completes the proof  when p is Galois. When p : C1 ~ 
is only given to be etale, it can be reduced to the case when p is Galois etal~- 
(by taking a further extension which is Galois). Q.E.D 

We have the following proposition for symmetric powers. 
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Proposition 2.5 For a fixed positive integer k, there is a nonempty open subset 
of M[ such that for any stable bundle V in this open set, there is no non-zero 
homomorphism from a line bundle of degree zero to Sk(V). 

Proof We first consider the case when rank r -- 2. Given a nonzero homomor- 

phism 

L -~ Sk(V)  

with L a line bundle of degree zero, we have the section 

--~ Sk(V) | L*. 

This defines a curve C C P(V), with C a section of (Tp(v)(k) | 7r*(L*) where 
7r " P(V) ~ C is the projection. If we consider the restriction 

~-*(v) I c ~ r~p(v)(1) I c ~ o 

then deg (~i,(v)(1) I C) = deg (L*) = O. The morphism 7rl : C ~ C is of degree 
k and factors as 

-~ C 

C 

where ~ : C -+ C is a Galois morphism of degree _< k and F m : C -+ C is 

a power of the Frobenius on C with m < k. By Corollary (2.1.2), there is a 
nonempty open subset of MS such that for any stable bundle V in this open set 
Fm*(v) is stable for m <_ k. We can assume that Fm*(v) is stable for m _< k 
and End (V) is semistable for V in this open set. Then if W = Fm*(V), ~*(W) 
becomes unstable on C. Let ~-' : C' --~ C be a morphism such that (~ o ~') : 
C' -~ C is a finite Ga]ois morphism, and (~ o ~')*(W) is unstable on C', so 

by Proposition (2.2), there is a Ga]ois etale morphism p : CI -~ C with degree 

p < k such that p*(W) is not stable. There are only finitely many Galois etale 
morphisms p - C1 --+ C with degree p <_ k, so by Proposition (2.4), there is a 

nonempty open subset of Mr ~" such that for V in this open set p*(V) is stable. 
Such aV would contradict the existence of a C as above. This completes the 

proof when r = 2. When r > 2, we consider a nonsplit extension 

O---~ W - - '  V--~ ~ ~ O 

where W is stable of degree zero and rank r - 1 such that s i ( w )  has no line 

subbundles of degree zero for 1 < i < k. Then Sk(V) has a filtration Pl C P2 C 
"" C PK C SkV with Pi/Pi_l ~ sk-i+l(w). The surjection of bundles 

V ~ O  

induces an inclusion of bundles 

0 - ~  ~,: --, V* 
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and this nowhere vanishing section of V* defines a composite of surjective 
contractions 

S k V  --~ S k - 1 V  ---, S k - z V  . . .  --~ V. 

Under the composite surjection S k V  ~ V,P~ = Ker (SkV  --~ ~ )  gets mapped 
onto W = ker (V --, ~ )  (in fact, at every stage, Ker (SkV  --+ C )  gets mapped 
onto Ker ( S k - 1 V  ~ ~ ) ) .  We thus have a diagram 

0 --* P~ --, S k V  ~ ~ --* 0 

0 ~ W ~ V -* ~ ~ 0 

0 0 

and the map H I ( C , P ~ )  ~ H~(C,  W )  sends the extension class of S k V  to the 
extension class of V. It follows that since V is a nonsplit extension, the extension 

O---~ P k ---+ S k V -+ ~ --+ 0 

is also nonsplit. Since Pk has a filtration (P1 C C  Pk) where subquotients are 
SJ(W),j 2> 0, there is no nonzero homomorphism from a line bundle of  degree 
zero to Pk. Since S k V  ~ ~ ~ 0 is nonsplit, there is no nonzero homomorphism 
from a line bundle of  degree zero to S k V  either. We have constructed a semistable 

bundle V of  rank r and degree zero such that S k ( V )  has no line subbundles of 
degree zero. On the other hand, the set of  bundles V such that there is no nonzero 
homomorphism from a line bundle of  degree zero to S k ( V )  is an open subset of 
M F .  (This can be seen as follows: if Q is the Quote scheme with universal bundle 
V and J the Jacobian of degree zero line bundles with Poincare bundle P ,  we 
are considering the condition H ~  x j  x q , P |  = 0 on C x J  x Q, which 

$S  is an open condition. This descends to an open set in M r ). Our construction has 
shown that this open set is nonempty. Q.E.D.  

We have finally 

Theorem 2.6 Let C be a nonsingular ordinary curve o f  genus > 2 over an un. 

countable algebraically closed field (o f  any characteristic). There is a dense subset 

o f  M 7 such that f o r  any stable bundle V in this dense set, we have 

1) Fk*(V)  is stable for  all k >_ 1. 

2) For any Galois finite morphism 7r : C --~ C,  7r*(V) is stable. 

3) There is no non-zero homomorphism from a line bundle o f  degree zero to the 

symmetric power S k ( V )  f o r  any k > 1, 

Proof  From Corollary (2.1.2), Proposition (2.2) and Proposition (2.4), and the 
fact that the set of etale coverings of  C is countable, we obtained a countablc 
union of proper closed subsets of M~ s such that for V in the complement of this 

union 1) and 2) above are satisfied. 
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From Proposition (2.5), we obtain a countable union of proper closed subsets 
of M /  such that for V in the complement of this union, H~ | V) = 0 for 
any line bundle L of degree zero. 

We therefore obtain a countable union of proper closed subset of M /  such 
that any bundle V in the complement satisfies 1), 2) and 3) of the Theorem. Over 
an uncountable algebraically closed field, the complement of a countable union 
of proper closed sets is nonempty and dense. Q.E.D. 

Remark 1) If  C is a smooth curve defined over a finite field (of characteristic p)  
then any continuous irreducible representation p : 7v~ lg (C)  ~ SL(r,Fp) of the 
algebraic fundamental group of C of rank r over the finite field defines a stable 
vector bundle V on C such that Fm*V ~ V for some m _> 1, (see [4]). For 
such a bundle V , F k ' ( V )  is stable for all k > 1. It is possible to construct such 
representations for any curve C of  genus _> 2 when r is coprime to p,  and for 
an ordinary curve C when p divides r. 

3 The line bundle 

Let C be a nonsingular ordinary curve of genus > 2, and V a stable vector bundle 
of rank 3 and degree zero on C satisfying the conditions of Theorem (2.6). Let 
7r : P(V) --~ C be the projective bundle associated to V and L = (~pw)(1) the 
universal line bundle on P(V). Then we have 

Theorem 3.1 The line bundle L is ample on every proper subvariety of P(V), but 
L is not ample on P(V). 

Proof Let C C P(V) be a reduced irreducible curve contained in a fibre of 
7r : P(V) --~ C. Then ~l,(v~(1) ] C-' is clearly of degree > 0. Let C surject 

onto C under lr. Then we have the surjection, ~-*V I C --~ ~i,(v)(1) I ~ -~ 0. 

From 1) and 2) of Theorem (2.6), 7r*V ] C is stable of degree zero, so de g 

(r ] C)  > 0. This shows that L ] C is positive for every integral curve C 
in P(V). 

Let D be an 

~P(v)(k ) | 7r*M 
we have 

irreducible divisor in P(V). Then D defines a section of 
for some integer k > 0 and a line bundle M on C. Then 

LZ.D = L2.(kL + Tr*M) 
= k L  3 + L2.Tr*M 

= deg (M) 

On the other hand, the effective divisor D defines a section of (:i,(v)(k) | 7r*M 
and hence of St (V)  |  since 

H~ (:1,(v)(k ) | 7r'M) = H~ C , S t (V )  | M ). 

Since deg (L I C) > 0 for every integral curve C in P(V) (i.e. L is nef), U .  Y _> 0 
for every integral subvariety Y of dimension s (see [3]). In particular, L 2 �9 D = 

deg M _> 0. If deg M = 0, then the section of  Sk(V) | M we obtained above 
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defines  a nonze r o  h o m o m o r p h i s m  M *  ~ S k ( V )  with deg M * = 0, cont rad ic t ing  

3) of  T h e o r e m  (2.6). Therefore ,  L 2. D = deg M > 0. This  shows  that  L is ample  

on d iv isors  in P ( V )  and  hence  on any proper  subvar ie ty  o f  P ( V ) .  Also,  L is not  

ample  on P ( V )  s ince  L 3 = deg V = 0 Q.E.D. 

Remark 3.2 The case  r = 2 is cove red  by the first part  of  the p r o o f  of  T h e o r e m  

(3.1). 

Remark 3.3 I f  r ank  V = r > 3, we can  still cons ider  L on P ( V )  as above.  It 

fo l lows that  L.C > 0 for  all in tegral  curves  C in P ( V )  and  L r-l.D > 0 for any 

in tegral  d iv i sor  D in P ( V ) .  This  shows,  by a theorem of  Fuj i ta  (see [2], Corol lary  

6.5) that  the  Koda i ra  d imens ion ,  ,~(D,L) ,  of  the l ine bund le  L on  the d iv isor  

D, is r - 1(= dimD). However ,  we d o n ' t  know if L is ample on D.  We will 

re turn  to this  ques t ion  in the future.  

Acknowledgement. We thank V. Srinivas, T.R. Ramadas and A. Ramanathan for discussions. 
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