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Introduction 

Let X be a nonsingular projective variety of dimension n over an algebraically 
closed field k. Let H be a very ample line bundle on X. If V is a torsion free 
coherent sheaf on X we define deg V to be cl(V), c~(H)"- ~ and/~(V) = deg V/rk V. 
We call V sernistable (resp. stable) if for all proper subsheaves W of V we have 
#(W) < #(V) [resp. #(W) < #(V)] (cf. [7, 14]). 

In this paper we prove that if V is semistable on X then its restriction to a 
general complete intersection curve of sufficiently high degree is semistable 
(Theorem 6.1). 

To give an idea of the proof assume X is a surface and V a vector bundle of 
rank 2. The restriction of V to a general curve C" of degree m is not semistable if 
and only if it is not semistable on the generic curve Ym defined over the function 
field of IPH~ H"). Let/S," be the line bundle on Y,, contradicting the semistability 
of VI Y,, (cf. Sects. 4.1 and 4.2). First we show that L,, extends uniquely to a line 
bundle L m on X (Proposition 2.1). If we can get L"  as a subbundle of V we are 
through, for then L"  would contradict the semistability of V. So we would like the 
restriction map H~ Hom(Lm, V))~H~ Hom(L m, V)) to be surjective. Now 
for fixed L it follows from the lemma of Enriques-Severi (Proposition 3.2; [6, 
Corollary 7.8]) that H~ Horn(L, V))~H~ Horn(L, V)) is surjective for large 
m. Therefore it is enough if the L"  remain the same line bundle L for infinitely 
many m. 

To prove that L,, = L we construct a degenerating family of curves D f ~S, 
X x S 3 D  p ~X, such that the generic fibre is a curve Ct"+ 1) of degree 2 "+ 1 and the 
special fibre is a reduced curve with two nonsingular components CI") of degree 2" 
(cf. Sect. 5). Let (m) denote 2". Extending the subbundle Lt,,+~)[Ct"+~) to a 
subsheaf of p*(V) on D and restricting the extension to CI") gives a lower bound for 
the maximal degree of a line subbundle of V[CIm ) in terms of that for V[Ctm+I ) 
(Proposition 4.3). This implies that degL,, is bounded (Lemma 6.5.1) so that for an 
infinite subsequence of m, degL,, is constant. If degLtm + r)= degLt,,) by refining the 
above argument with the degenerating family one can prove that Lt"+,)[ CI") 
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= L(m~lC~,~) (Lemma 6.5.2). Therefore L~m + r)[ Y(,,) = L~,,)[ Yr so that L~,, + ~) = L~,,) 
(by Proposition 2.1). 

When X is of higher dimension and V is a torsion free sheaf of arbitrary rank 
the pattern of the proof is the same but the details get a bit more technical. 

We have made essential use of an unpublished manuscript of Mumford. 

1. Families of Complete Intersection Subvarieties 

Let X be a projective nonsingular algebraic variety of dimension n => 2 over an 
algebraically closed field k. Let H be a given very ample line bundle on X 
corresponding to a projectively normal embedding X C 1P N. 

For a positive integer m let S,, denote the projective space of lines in the vector 
space H~ H"). For a sequence of positive integers m = (ml, ..., m~), 1 -< t-< n -  1, 
let S m be the product Smi • ... • S,, c We have the following diagram 

X X S m ) Z m  q" >S,, 

1.l. I p" 

X 

where Z,, is the correspondence variety: 

Z m = {(x, s 1 . . . . .  s t )6X  x S• I si(x ) = O, 1 <= i <= t} 

and PM and qm are the projections. 

1.2. The fibre of qm over (s 1 . . . . .  st)e Sm is embedded in X via Pm as the subscheme 
of X defined by the ideal generated by s 1, ...,s t in the homogeneous coordinate 
ring of X. So we always think of the fibres ofqm as subschemes of X. The projection 
p= is a fibration with the fibre over x 6 X  being identified by qm with the product of 
hyperplanes H 1 x ... x Ht, H~= {seSm,]s(x)=O}.  Therefore Z m is nonsingular. 

1.3. Let K,, be the function field of Sin. Let Y,, be the generic fibre of qm, given by 
the fibre product 

o~i m ~ S m[ 

Ym ~ Spec K m 

By Bertini's theorem (cf. [17, Theorem 1.6.3]) Ym is an absolutely irreducible 
nonsingular variety and there is a nonempty open subset of S,, over which the 
geometric fibres of '  qn, are irreducible and nonsingular (cf. EGAIV/3, 
Theorem 12.2.4 (viii), p. 183 and [6, Theorem 8.18]). 

1.4. Definition. We call Y,~ the generic complete intersection subvariety of type m. 
In particular when t = n -  1 we call Y,, the generic curve of type m. 

1.4.l. Remark .  When a property holds for q~, X(s) for s in a nonempty open subset 
of S,, we say that it holds for a oeneral s. 
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1.5. Proposition. Let S~, = {se S m ]dimq,~ t(s)= n - t } .  Let F be a coherent sheaf on 
X. For s=(s 1 . . . .  ,st)eS' m let Xr be the subscheme of X defined by the ideal I r 
generated by s t . . . . .  s~ for l <_r<t and Xo=X.  Let O~I,--*(fx,_ -*(fx ~O be the 
natural exact sequence. Let S~ = {s~ S m ] O~ I r | F ~  (fix,_~ |  is exact}. Then 

i) S'~ is a nonempty open subset of S,, and 

q~ x(S'~) is flat over S'~. 

ii) S m is a nonempty open subset of S'~ and 

p* F is flat over S~. 

Proof. i) It follows from (EGAIV/3, Theorem 12.2.4) that S~, is open and by 
Bertini's theorem it is nonempty. If dimq~ ~(s)= n - t  then its Hilbert polynomial 
(w.r.t. the given polarisation H on X) depends only on m as can be seen easily from 
the cohomology sequence corresponding to the exact sequence 
O--*Ir~(gx, - ~ ( f x ~ O  tensored with H ~, using induction on r. Therefore the fibres 
of qm over S~ have the same Hilbert polynomial and hence q~ ~(S~,) is flat over S" 
[6, Theorem 9.9]. 

ii) We use induction on t. Assume ii) holds for t -  1. Let l=(m~, ...,m,_ 0 and 
T=(S'~' x S~)c~S'~CS,.. Note that S~,C T and T is open in S,, by the induction 
assumption. We have the diagram 

" * 3 ' 

P~ 

tt 
T ~ ~ S ! 

where n is the projection and ' -1 . . . . . . .  Z~=q~ (S,,) and Z,.=q, ,  I(T). Note that Z m sits in 
~*(Z'~) as the natural correspondence variety. 

By the induction assumption p~(F) on Z'~ is flat over S'~'. Therefore rc*p~(F) on 
n*(Z' 0 is flat over T and moreover, since TCS'~, Z~, is flat over T. In this situation 
one can deduce from the openness of flatness that S~ is open in T [for example, by 
taking for the ~ '  of Corollary 11.1.2 in EGA IV/3, the sheaf IQn*p*(F) where I is 
the ideal sheaf of Z~, in rc*(Z~) and using the properness of n*(Z~)~ T]. That S,~ is 
not empty follows by noting that for the sequence 

O~lr| ~ |  ~(fx,.| 

to be exact it is sufficient that s r is not in any of the associated primes of (fx._l @F 
in the homogeneous coordinate ring of X,_ a. 

Once we have the exact sequences 

O~Ir |174174 l < r < t ,  

it follows from the exact cohomology sequences, using induction on r, that the 
Hilbert polynomial of F restricted to q~, a(s) is independent of sES'~. Therefore 
p*(F) is flat over S" (cf. [10, Lectures 7 and 8] and [6, Theorem 9.9]). 
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2. Picard Group of the Generic Curve 

For  any scheme S we denote by Pie(S) the (abstract) group ofinvert ible sheaves on 
S. We then have the following proposi t ion (cf. 1-16]). 

2.1. Proposition. Let d i m X = n > _ 2 .  For m = ( m  l . . . .  , mr), 1 <t<_n-  1 with each 
m~> 3 the natural map Pic(X)~PiC(Ym), induced by Y , , ~ , Z ~ V ' , X  (cf. 1.3), is a 
bijection. 

2.l.l. Remark. In fact one can show that  if dim Y,, ____ 2, then Pic(X)--}PiC(Ym) is 
bijective for all m with m i > 1 and if dim Ym = 1 then Pic(X)~PiC(Ym) is bijective if 
just one of the m~'s is > 3  (see Remark2 .1 .4  below). If X is a surface then 
Pic(X)--*Pic(Ym) need not be injective for m =  1 as shown by the example of  the 
quadric IP 1 x ]p1 C]l)3. 

Proof of Proposition 2.1. First we prove the surjectivity of the map.  Any 
subscheme of Ym (defined over Kin) can be extended to an open set q~, ~(U), U open 
in S,, (by inverting the finitely many  elements which occur in the denomina tor  in a 
set of  generators of the ideal defining the subscheme). Therefore if LEPiC(Ym) 
corresponds to the divisor D in Ym we can extend the divisor to an open subset of 
Z m and hence to the whole of Z m. Thus L can be extended to a line bundle on Z m 
i.e. PiC(Zm)-+Pic(Ym) is surjective. Now we claim that  

Pic (Zm) = p*(Pic (X)) �9 q*(Pic (S,,)). 

Since q*(Pic(Sm) ) is in the kernel of PiC(Zm)~PiC(Ym) it would then follow that  
Pic(X)--'PiC(Ym) is surjective. To  prove the above direct sum decomposi t ion we 
have only to note that  since the fibres of  Pm are products  of projective spaces 
embedded in S m by qm (Sect. 1.2), given a line bundle L on Z m we can find a unique 
line bundle M on Sm such that  L|  is trivial on one and hence all the fibres of 
Pm SO that  it comes from X (cf. L e m m a  2.1.2 below). 

For  proving injectivity we need the following lemmas. 

2.1.2. Lemma.  Let q : Z---}S be a proper flat morphism of irreducible varieties with 
fibres integral. Let LePic(Z) .  Then the following are equivalent: 

a) L is trivial on the generic fibre of q. 
b) L is trivial on all geometric fibres of q over a nonempty open subset of S. 
c) L is trivial on all the geometric fibres of q. 
d) L~q*(M),  MePic(S),  

Proof. This is a consequence of semicontinuity and the remark  that  a line bundle 
L on an integral complete scheme F is trivial if and only if 
H~ L) ~ 0  ~= H~ L -  1) (see [11, Corol lary 6]). 

2.1.3. Lemma.  Let d i m X > 2 .  
i) For any point P e X  and m >= 3 the rational map given by the linear system 

V = {se H~ Hr")ls = 0 passes through P and is singular at P} gives an isomorphism 
of X - P  onto its image. 

ii) For a nonempty open set of points s~ V the divisor s = 0  is integral (and is 
singular at P). 

iii) Let A = {seSm[q~ l(s) is not integral}. Then A is a closed set and if m > 3, A 
has codimension >2 in Sin, as does q~, I(A) in Z,,. 
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Proof. i) It is easy to see that if i) holds for X and H then it holds for Y, H/Y  for 
any nonsingular subvariety Y of X. Therefore to prove i) we can assume X = IP N 
and H=C(1).  Let P #QeIP  N. We can find a linear form l such t h a t / ( P ) = 0  and 
l(Q)#O. Then lm~ Vso that P is the only base point of V. I f Q # R  are two points of 
IP N different from P (and v a tangent at Q) we can find a nonsingular quadric f = 0  
passing through P and Q and not passing through R (or not having v as a tangent 
at Q). Choose a linear form I such that l(P) =0  and l(Q)~=O# l(R) [or/(v) #0] .  Then 
1 m- 2 . fE  V showing that V separates points and infinitesmally separates points. 
This proves i). 

ii) This follows from Bertini's theorem as in [17, Theorem 1.6.3] supplemented 
in characteristic p by [17, Proposition 1.6.4] whose condition for pe__ 1 is satisfied 
because of i). 

iii) That A is a closed set follows from [EGA IV/3 Theorem 12.2.4 (viii)]. 
From [6, Proof  of Theorem8.18] the closed set B={sESm[q~l(s) has a 
singularity} is irreducible and is not the whole of Sm. Now ACB, and hence to 
show that codimA >__ 2 it is enough to show that for m >= 3 A ~ B, i.e. there is at least 
one point in S,, such that q,~ ~(s) is integral and singular. But that is ii). Since qm is 
equidimensional codimq,~ I(A) is then __> 2. 

Now we return to the proof of the injectivity of Pic(X)~PiC(Ym). We use 
induction on t. First assume that t = 1 so that m is the single integer m__> 3. Let 
L~ Pie(X) be such that its image q~,~pmL in Pic(Y,~) is trivial. Then by Lemmas 2.1.2 
and 2.1.3iii), on an open subset of Z m whose complement has codimension ~2,  

* M  p*(L) is isomorphic to qm( ), M~Pic(S,).  But then p*(L)~ q*(M) on the whole of 
Z m. As we have seen Pic(Zm) = p*(Pic(X))Gq*(Pic(S,,)). Therefore p*(L) ~ q*(M) 
implies p*L is trivial on Z,, and hence L is trivial (since p* is injective). 

Now let m = (m 1 . . . .  , mr). Assume injectivity for ! = (m 1 . . . . .  mr- 1). Let LePic(X) 
* * I1,,. By Lemma 2.1.2a)=~c) it follows that L is be such that ~p,,p,.(L) is trivial on 

trivial on q~, l(s) whenever q~, l(s) is smooth. For  a general s'e S I, L being trivial on 
all the smooth q~ l(s) contained in q~-t(s'), by Lemma 2.1.2b)=~a) and the above 
case t = 1 applied to the smooth variety q~- l(s') it follows that L is trivial on q~- l(s'). 
Again by Lemma 2.1.2b)=~a) and the inductive assumption, L is trivial on X. 

2.I.4. Remark. If d i m X > 3  Weil proves Lemma2.1.3iii) for all m > l  [16, 
Lemmas 3 and 4]. Assuming this fact the above proof then gives the result in the 
sharper form as in Remark 2.1.1 (cf. [16, No. 12, Theorem 2]). 

3. A General Form of the Lemma of Enriques-Severi 

A coherent sheaf F on X is called reflexive if the natural map F-*F** of F into its 
double dual is an isomorphism. 

3.1. Lemma. Let F be a coherent sheaf on X. The following are equivalent. 
a) F is reflexive. 
b) Locally, i.e. on each of the open sets U of some covering of X,  there is an 

exact sequence 
0-~FJ U -* F 1 -~ T-~ O 

with F 1 free and T torsion free. 
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c) Locally there is an exact sequence 

O-o FJ U ~ F~-~ Fo ~ Q - o O ,  

where F l, F o are free, i.e. F is a 2nd syzygy. 

3.1.1. Corollary.  Let  F be reflexive. Then 
i) it satisfies the condition S 2 (cf. [1, Definition 2.1]), 

ii) its restriction to q~, t(s) is reflexive for a general s~S~,. 

Proof. b ) ~ c ) :  Any torsion free module  over a domain  is a submodule of a free 
module.  

c ) ~ b )  : Trivial. 
b ) ~ a ) :  Follows from [2, Sect. 4, Theo rem 7ii)]. 
a):~b):  Write F* as a quotient  of a free module  : 

O ~  K-~  F1--. F* ~ O .  

Taking duals and using F =  F** we get sequences as in b). 
Par t  i) of the corollary follows from c). 
Par t  ii) follows by noting that  the restriction of the sequence in b) to any 

hyperplane section which does not  pass through any of the associated primes of T 
remains exact. 

3.2. Proposition (General  Enriques-Severi  Lemma,  cf. [6, Corol lary 7.8]). Let 
X C lP N be a nonsingular projective variety of  dimension n > 2. Let  F be a coherent 
reflexive sheaf on X.  Then there is an m o such that i f  m = (m 1 . . . . .  mr), 1 < t < n -  1, 
with each m i>mo, then there is a nonempty open subset U of  Sm such that for 
s = ( s  1 . . . . .  st)e U the restriction map H~ F)--* H~ (X ~, F /X  s) is surjective where 
X s = q ~  , l(s) is the subscheme of  X defined by the ideal generated by s l, ..., s t. 

Proof.  It is enough to find an m o, depending only on F, such that  Hl(Xs, F ( -  l ) )=0  
for 1 > m 0 for a general se  S m for all m = (mi, ..., mr) with m~ > 1 and all t < n -  1. For,  
then from the exact sequence 

O-o Ir |  F-oCOxr - , | F-o(_gxr| F ~ O  

on Xr_ 1 corresponding to a general s (cf. Proposi t ion  1.5), not ing that  
I ,  = (_gF,,(- m,)| ,, it follows-that 

H~ ,, F I X  r_ I ) ~ H~ FIX,) 
is surjective for m, > m o. 

By duali ty H ' ( X , , F ( - l ) ) *  , .~Ext" ' - l (F ( - l ) ,  co) where co is the canonical line 
bundle of  X,  and n' = dimX~ [1, Sect. I, 1.3, p. 5 ; Corol lary IV, 5.6, p. 81]. We have 
a spectral sequence HP(gxlq(F( - 1), co))=>Ext p+ q ( F ( -  l), co) (cf. [1, 
Proposi t ion 2.4]). Since e x t ' ( F (  - / ) ,  co) = r  co)@O(l), the spectral sequence 
degenerates for la rge / ' (depending  on s). Then  

Ext" ' -  ~ (F( -  l), co) = H ~  " ' -  ~(F, co)| 0(/)). 

But since F is S 2 on X,  (Corol lary 3.1.1) r  ~(F, co)= 0 (cf. [ 1, Theorem 5.19 and 
Proposi t ion 5.20]). Therefore  we can find an m o (depending only on F) such that  
Hi(X,,  F ( -  l) = 0 for l > mo for a general s = (Sl,. . . ,  st) in St~ ..... 1) (i.e. degs~ = 1, for 
every i) for all t < n -  1. 
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N o w  suppose H I ( X , , F ( - I ) ) = O  for l>=m o for a general s e S  m with 
m = ( m  1 . . . .  ,mr, 1 . . . . .  1). We will p rove  that  HI(X~ , ,F ( - I ) )=O for l > m  o for a 
general s'eSn,, where m ' = ( m ~  . . . .  ,m,,d,  1, ..., 1). [When  r = 0  m = ( 1  . . . . .  1) and the 
assumpt ion  is true by the choice of  m o so we can s tar t  the induction.]  It  is easy to 
see that  a pe rmuta t ion  of the sequence m'  does not  affect anything relevant.  So we 
rewrite m'  as (m 1 . . . .  ,m r, 1 . . . .  ,1,d). For  s=(s  1 . . . .  , s t )eS m denote  by s' the point  
(s 1 . . . . .  st ~) of Sm,. Let  Y be the subscheme of X defined by s I . . . . .  s t -  1. Let Xs (resp. 
X~,) be the subscheme of Y defined by s x . . . .  ,s t (resp. s 1 . . . .  , stY). On  Y we have the 
exact sequence (cf. Propos i t ion  1.5) 

O---r I ~ C r ~ C x s ~ O  , 

where I ~ 6 ~ N ( - 1 ) I Y  is the ideal genera ted  by s t in (gr. F o r  a general  s the 
above  sequence tensored with F remains  exact  (Propos i t ion  1.5) and hence 
T o r ~ ( F ,  Cr/1)=O. Therefore  Tor l  (F,(9r/I~)=O and hence O~Id~(Pr~(9x~ ,~O 
tensored with F remains exact. Therefore  by Propos i t ion  1.5 p*,(F) is flat over  s' 
(for a general s). On X~, we have the exact sequence O ~ I / I ~ C x ~ , ~ ( g x ~ O .  Since 
T o r ~ ( F ,  ( g x ) =  0 tensoring this with F ( - l )  gives an exact sequence: 

0--, F( - 1) | (I / I  a) ~ F( - l)/X ~, ~ F( - l)/X ~ ~ O . 

For  l > m  o H ~ ( X , , F ( - / ) ) = 0  by induct ion assumpt ion.  F r o m  the exact sequence 
0 ~ i  d-1/In~I/Id__.I/ ld-l__,O using induct ion on d one can see that  
H a ( X , , F ( - I ) |  for l>mo. Therefore  HI(X , , ,F ( -1 ) )=O for l > m  o. But 
p*,(F) is flat at s' and hence by semicont inui ty  H I ( X , , F ( - / ) ) = 0  for l > m  o for a 
general u~Sm,. Thus  the p roof  of  the propos i t ion  is complete.  

Remark. If  F is locally free the p roo f  is much  simpler. For,  in that  case 
Hi(X ,F( -1 ) )~H"- i (X ,F* |  O<-i<-n - 1 for l>=m o. Then for any hyper-  
plane section Y of X tensoring the exact sequence 0--*(9(-1)-- , (gx~(gr-- ,0  with 
F( - l) gives H I ( K  F( - l)) = 0 for l > m 0. 

4. Vector Bundles on Families of Curves 

4.l. Let V be a vector  bundle on a nonsingular  projective curve C over  a field K. If  
V is not semistable there is a unique proper  subbundle  V 1 of V such tha t  

1) #(VO>=#(W ) for all suhbundles  W of V. 
2) If  #(W)=#(V1)  then r k W = < r k V  1. 
We call V 1 the /%subbundle  of  V (cf. [7, 5]). Because of the uniqueness the ~- 

subbundle  is defined over  the base field K even when it is not  algebraically closed 
U]. 

4.2. Let f : D ~ S  be a fiat family of  nonsingular  projective curves over  an integral 
scheme S. Let V be a vectorbundle  over  D. Then {sES] V s is semistable on D~} is an 
open subset of  S [12, 8]. When  all the V s are not  semistable, or equivalently when 
Vso is not  semistable for s o the generic point  of  S, we have the ~-subbundle  Wso of 
V~o defined over  K~o the function field of  S. Then  W~o gives a section of  the 
corresponding quot  scheme over  the generic point  and hence gives a section over  
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an open subset U' CS. Thus we have a subbundle W of V / f - ~ ( U ' )  extending Wso. 
By semicontinuity Ws remains the/%subbundle of V, for s in an open subset U of 
U'. 

4.3. Proposition. Let  A be a discrete valuation ring with quotient field K and 
�9 residue field k. Let S = SpecA. Let f :  D ~ S  be a f iat  family of  projective curves such 

that D and D K, the generic fibre, are nonsingular and the special fibre Dk is reduced 
with nonsingular components D~, . . . ,D" k. Let  V be a vector bundle on D. Let  PK 
=max{/~(W)lW subbundle o f  V K ~ D r }  and p~=max{/~(W)lW subbundle of  

V/Dk ~ Dk}. Then #r  <= #~. 
i=1 

Proof. Let W K be a subbundle of V r with #(WK)=#~. By the completeness of the 
Quot scheme the exact sequence 0 ~  WK--* Vr-~QK-~O can be extended to an exact 
sequence on D : 0 ~ W a ~ V ~ Q A ~ 0  with QA torsion free [3, Lemma 3.7]. By 
Lemma 3.1 W A is reflexive and is S 2 (Corollary 3.1.1). Therefore D being non- 
singular of dimension2, W A is locally free (as follows for e.g. from [1, 

Theorem 5.19]). Let i_  WA[D ki and i s W~- V~ = V[ D~. We then have deg W k -~- deg W~ 
i=1 

and rk Wk=rk W~. (Where deg W k is computed on the reducible curve D k and 

deg W~ on the irreducible curve D~.) Similarly deg V k = ~ deg V~ and rk V k = rk V~. 
i= l  

Since Qa is not locally free only at finitely many points of D, W~ is a subsheaf of 
l/~. It is easy to see that this implies i i #(W~)<#k [13, Sect. 4]. By flatness degW~ 
= deg W k and rk W K = rk W k. Therefore 

i = 1  i = 1  

4.3.1. Corollary. I f  VID~ is semistable for  all i, then Vx is semistable. 

Proof. Let W x be a subbundle of V x. Since V~ are semistable i /tk<P(V~). By the 

proposition #(Wr)< ~ #~'i=1 But i=l~(Vk'=(~degVk)/rkV=#(Vk)=p(Vr)'i=~ 

Therefore #t~ </z(Vr) proving the semistability of V~. 

5. A Degenerating Family of Curve~ 

5.l. Notation. We fix a sequence (~1, ..-, ~,-1) of integers with each ~i>2. We let 
e - - e l - . . . . e , _1 .  For a positive integer m we denote by (m) the sequence 

m 
(~7 . . . .  , ~ . -  1)- 

5.2. Proposition. Let  ! = m + r, r > O. Let  U m C S~m ) and U~ C So) be nonempty open 
subsets. Then there is a point se  Sc~ ) and a nonsingular curve C in S,) passing through 
s such that 

i) C -  {s} c uz. 
ii) q~)l(C) is nonsingular and q(7)I(C)--*C is fiat. 

iii) The fibre q~)~(s) is a reduced curve with c( nonsingular components C~, C 2 . . . .  
which intersect transversally and at most two o f  which pass through any point o f  X ,  
with each C i a fibre o f  qr over a point o f  Um. 
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Proof. Let si =(s~,,i,,) ~r and S = S  1 x ... x S"-1. Let ni : S i~S , l  be the multiplication 
map  sending (sl, s z . . . .  ) to s 1 . s2 . . . . .  Let n :S--*Stt ) be the product n~ x ... x n,_ 1. 
Let ul, u 2 . . . .  be the e '  projections S~S~m) corresponding to different choices of one 
factor (from among eT) from each Si(i = 1 . . . . .  n - 1). 

S 

S(m) S(I) 

For  a general s i S  the curve q~)l(n(s)) has the er nonsingular irreducible com- 
ponents q(m~(Uj(S)). We claim that there is a nonempty open subset T of S such that 
if s t  T then q~T)l(n(s)) is a reduced curve in X satisfying the conditions of iii). For, 
the condition that q(,,~(uj(s)) is nonsingular is a nonempty open condition on s as 
are the conditions that for the families * ' -1 ' uj (Ztm)) [-which are flat over uj (St,,)), el. 
Proposition 1.5], q~,,~(uj(s)) intersect transversally [-EGA IV/4, Remark 17.13.4(ii)] 
and at most two pass through a point [,EGA IV/3, Theorem 12.2.4(vi)] as j varies. 
When these conditions are satisfied q~)~(r~(s)) is Cohen-Macaulay and generically 
reduced and hence reduced [1, Lemma 2.3]. To satisfy the last condition of iii) we 
have only to intersect with the open sets u}-1(Um). 

Let s t  T. By Proposition 1.5 qt~) is flat at r~(s). Therefore on the fibre over s, qtz) 
fails to be smooth only at the singular points of the fibre [1, Theorem 1.8]. At these 
singular points because of the conditions in iii) the differential of q(t) has a two 
dimensional kernel. Therefore for a general curve C through s defined by regular 
parameters at s, q~)l(C) is nonsingular. Therefore we can find a C satisfying the 
conditions of the proposition. 

6. Restriction to Curves 

In this section we will prove the following theorem. 

6.1. Theorem. Let V be a semistable torsion free sheaf on X (with respect to the 
polarisation H) .  Let  Ytm) be the generic curve of  type (m) (Sects. 1.4 and 5.1). Then 
there is an m o such that for m R m  o the restriction of V to Ytm) (i.e. * * q~(,~)Pt,~) V, 
Sects. 1.1 and 1.3) is semistable, or equivalently for m > m o and for s in a nonempty 
open subset of  St,,), V[q~-m~(s) is semistable. 

6.2. Remark. Conversely if VIq~m~(s) is semistable then V is semistable as follows 
from the fact that the degree of a sheaf on X is determined by its restriction to 
q~m~(s). Therefore from the abov~ theorem it follows that V restricted to a general 
complete intersection subvariety of type (~]', ..., ~'),  1 < t < n -  1 with m > m o is also 
semistable (with respect to the induced polarisation). 

6.3. Since V is a torsion free sheaf there is an open subset U of X with 
c o d i m ( X -  U ) > 2  such that V/U is a vector bundle. Therefore V/Yo,,) (i.e. * * %,)Pt,,) V) 
is a vector bundle. 
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6.4. Proposition. I f  V/Ytm ) is semistable then V/Y(I ) is semistable for any l>m. 

Proof As V/Y~m~ is semistable there is an open set U,, of St,,) such that 
V/q~m~(s ) is a semistable vector bundle for seU,,  (cf. Sect. 4.2). Apply 
Proposition 5.2 with this Um and U s-- S't't) to get a degenerating family qtT)~(C)-~C. 
The lemma now follows from Corollary 4.3.1 applied to the vector bundle p~)(V) 
on q~)l(C). 

6.5. Proposition. I f  V/Yt,,) is not semistable for every m then V is not semistable. 

Proof. If VI Yt,,) is not semistable we can find a nonempty open subset U,, of S't" ) 
such that (i) p(m)q~,,~(U,,)CU so that p*(V)lq~(Um) is a vector bundle, (ii) for 
s~Um, Vlq(m~(s) is not semistable, and (iii) there is a subbundle W m of 

* - 1  p,,(V)lqtm)(U,,) such that for s~Um, Wmlq~,a(S) is the fl-subbundle of VIq~m~(s) 
(Sects. 4.1 and 4.2). 

Let r , , = r k W  m and flm=#(W,,Iq~,l(S)), s6U,,. By Proposition 2.1 there is a 
unique line bundle L,, on X such that L,,I Y(,,) i.e. (Ptm)Ptm)L m *  * is isomorphic to 
(det Wm) l Ytm)" Let d,, = degree of L m on X. We then have the following lemma. 

6.5.1. Lemma. As a function of m, d~ is bounded. 

Proof. By Proposition 5.2 we have a degenerating family of curves q(-, 1+ 1)(C)_~C 
with all components of the singular fibre in U,,. Applying Proposition 4.3 to this 
family we get flm+ l <~'flm" But fl,,=d,,~m/r,,. Therefore d,,+ i/r,.+ l <dm/r m. Since 
1 < r~ < rk V this shows that d,, remains bounded above. Since W,, contradicts the 
semistability of Vi Yt~) we have d,~/r,, >degV/rk  V which proves d~ is bounded 
below. 

Now d,. being bounded we can find a subsequence Q of the sequence of natural 
numbers such that dq = d and rq = r are constants for q~ Q. Then fit = a t -""  ft,, for all 
l>m l,m~Q. 

6.5.2. Lemma. The line bundles Lq, qeQ, are all isomorphic on X. 

Proof. Let m, IeQ with l>m. Using Proposition 5.2 we can construct a degenerat- 
ing family of curves D~SpecA,  A a discrete valuation ring with quotient field K, 
with all the components of the special fibre D k in U m and the generic fibre D K in U r 
Extend the fl-subbundle WtlD K of p~)(V)BD r to a subsheaf (with torsion free 

l m quotient) 17r of p~)~V)OD (as in the proof of Proposition 4.3). Then since fl~ = ~ - fl,, 
the restriction of W~ to any component of D k is the fl-subbundle there. Therefore 
det 17Vl, which is isomorphic to L z on Dr, is isomorphic to L,, on each component of 
D k. Thus the two line bundles det W Z and L~ on D are isomorphic on D K and have 
the same degree (since /3~ =e~-"/3,,) on each component of D k and hence are 
isomorphic on D. Therefore L t and L,, are isomorphic on the components of D k 

and thus on q~,,~(s) for a general s~Stm ). Therefore Lz[Y(~)~Lm[Y(m ) and hence 
L t ~ L,, by Proposition 2.1. 

6.5.3. Lemma. When meQ is sufficiently large, for a general s ~ U  m there is a 
subsheaf ~V of  V (which depends on s) such that Wtq~-m~(s) = Wm[q~,,~(s). 
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Proof. Let L be the c o m m o n  line fundle Lq, q~ Q. Let U, with c o d i m ( X -  U ) >  2, be 
r 

the open subset on which V is a vector bundle (Sect. 6.3). Extend A ( V I  U) on U to 

a reflexive sheaf F on X. Consider the reflexive sheaf Hom(L,F)=L*| The 
Grassmann  bundle of  r dimensional subspaces of  the fibres of  VI U is embedded in ) , 

IP (VIU) =IP L * |  (VIU) . Let  SCL*|  ) be the cone over it. Fo r  

(oe H~ L* | let 22(~b)= {xe U tq$(x)s 22}. As ~b varies over the finite dimensional 
space H~ L*NF) the corresponding 22(~b) form a bounded family of  subvarieties 
of  U. Then it is easy to see that there is an N o such that if N(~b) 4= U, then 22(q$) does 
not  contain any q(-m~(S) for m > N o. By Proposi t ion 3.2 there is an N 1 such that for 
re>N1, H~174176174 ) is surjective for a general s. Let meQ 
with m>=max(No, N1)=mo. Let 2pEH~174 correspond to the 
fl-subbundle Wmlq~m~(s ) and ~b its lift in H~ L*| Then 22(~b)= U and on the 
open set U' where ~b is nonzero  ~b gives a subbundle W of V extending Wmlq~,~(s). 
Extend W on U' to I?VC V on X. 

To complete the p roof  of  Propos i t ion  6.5 we have only to note that  U'D q~m~(S) 
and since W Iq~r,~(S) contradicts the semistability of  g lq~m~(s), W contradicts the 
semistability of  V. 

N o w  Proposi t ions  6.4 and 6.5 together  immediately imply Theorem 6.1. 

6.6. Remarks. i) In our  p r o o f m  o depends on V. I fm  o can be chosen to depend only 
on the Chern classes of  V boundedness of the family of  semistable bundles with 
fixed Chern classes would follow. 

ii) If  m o works for a V, clearly it would do for any small deformation of  V. 
Therefore it follows that  for any bounded  family of  sheaves there is a single curve 
C on which all of  them are semistable. 

iii) If  c h a r k = 0  it follows from the result of  [13] relating unitary repre- 
sentations of  Fuchsian groups and semistable vector bundles on the corresponding 
curves that on  a curve X if V is semistable then any associated bundle (for e.g. the 
exterior powers, symmetric  powers etc.) is also semistable. When cha rk - -0 ,  from 
this and Theorem 6.1 (and Remark  6.2) it follows immediately that the same result 
holds for higher dimensional X as well. This result has also been proved in [9]  and 
[15] by other methods.  
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