(c) Springer-Verlag 1989

A note on Schubert varieties in $\boldsymbol{G} / \boldsymbol{B}$

V. B. Mehta and V. Srinivas
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Introduction

Let G be a semi-simple simply connected algebraic group over an algebraically closed field of characteristic $p>0$. Let $T \subset G$ be a maximal torus, $B \supset T$ a Borel subgroup of $G, W=N(T) / T$ the Weyl group and $Q \supset B$ a parabolic subgroup of G. The Schubert varieties in G / Q are defined to be the closures of the B-orbits in G / Q. It was proved by Hochster, Kempf, Laksov and Musili that Schubert varieties in Grassmannians are Cohen-Macaulay (cf. [3, 5, 7, 10]). Seshadri and Musili proved that Schubert varieties in $S L(n) / B$ are Cohen-Macaulay [11], see also [1, 4, 6]. Finally Ramanathan proved the result in general $[12,13]$. His methods made use of the ideas of Frobenius-splitting and compatible splitting introduced in [8]. The other ingredients were the calculations of the canonical bundle of the standard resolutions of Schubert varieties introduced by Kempf, as well as the fact that there is a canonical splitting of G / B which compatibly splits all the Schubert varieties in G / B. He also needed the fact that if X is a union of a finite collection of Schubert varieties in G / B and L is any ample line bundle on G / B, then $H^{i}(X, L)=0 \forall i>0$ and $H^{0}(G / B, L) \rightarrow H^{0}(X, L)$ is surjective.

In this note we want to give a short proof that Schubert varieties in G / B are Cohen-Macaulay. Our proof is similar in spirit to the proof of normality of Schubert varieties given by us in [9]. We also make use of two simple lemmas. The first states that if $\pi: X \rightarrow Y$ is a birational map with a) X Frobenius-split and b) $H^{i}\left(X_{y}, \mathcal{O}_{X_{y}}\right)=0 \forall i>0 \forall y \in Y$, then $R^{i} \pi_{*} \mathcal{O}_{X}=0 \forall i>0$ (here X_{y} denotes the schemetheoretic fibre over $y \in Y$). The second one states that if $\pi: X \rightarrow Y$ is a morphism of Frobenius-split schemes, with a) π surjective with connected fibres and b) each component of Y is birationally dominated by some component of X, then $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$. This is very similar to Lemma 1 of [9]. Finally, we make use of the calculation of the canonical bundles of the standard resolutions of Schubert varieties as carried out in [12]. In Sect. I we recall these results and in Sect. 11 we prove the main result.

Let G, B and W be as in the introduction and let $w \in W$. Let $l(w)=i$ and write w as a product of reflections associated to the simple roots, $w=s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{i}}$. Let $X_{i}=\overline{B w B} / B$ be the corresponding Schubert variety in G / B. Put $P_{i}=B \cup B s_{\alpha_{1}} B$ and let $g_{i}: G / B \rightarrow G / P_{i}$ be the corresponding \mathbb{P}^{1}-fibration. Put $w^{\prime}=s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{i-1}}$, and $X_{i-1}=\overline{B w^{\prime} B} / B$, a Schubert variety of codim 1 in X_{i}. Assume, by induction, that a surjective birational morphism $\pi_{i-1}: Z_{i-1} \rightarrow X_{i-1}$ has been constructed with

1) Z_{i-1} smooth projective
2) $\exists i-1$ smooth subvarieties of Z_{i-1}, intersecting transversally, whose union is denoted by ∂Z_{i-1}, s.t. $\pi_{i-1}\left(\partial Z_{i-1}\right)=\partial X_{i-1}$, where ∂X_{i-1} is the union of the codimension 1 Schubert subvarieties of X_{i-1}. Further, $\partial Z_{i-1}=\pi_{i-1}^{-1}\left(\partial X_{i-1}\right)$.

Then the standard resolution Z_{i} of X_{i} is defined by the following Cartesian diagram

where $M_{i} \rightarrow X_{i-1}$ is the base-change of $g_{i}: X_{i} \rightarrow g_{i}\left(X_{i}\right)$ and $Z_{i} \rightarrow Z_{i-1}$ is the basechange of $M_{i} \rightarrow X_{i-1}$. It is known (cf $[5,12]$) that

1) $t_{i-1}: X_{i-1} \rightarrow g_{i}\left(X_{i}\right)$ is birational with fibres either \mathbb{P}^{1} or a single point.
2) \exists a section $\sigma_{i}: Z_{i-1} \rightarrow Z_{i}$ such that $f_{i}^{-1}\left(\partial Z_{i-1}\right) \cup \sigma_{i}\left(Z_{i-1}\right)$ is a collection of i smooth divisors in Z_{i} intersecting transversally.
3) Put $\beta_{i}: M_{i} \rightarrow X_{i}$ and $\alpha_{i}: Z_{i} \rightarrow M_{i}$ and $\pi_{i}=\beta_{i} \circ \alpha_{i}$. Then $K_{Z_{i}}$ $=\mathcal{O}_{Z_{i}}\left(-\partial Z_{i}\right) \otimes \pi_{0}^{*}$, where L_{0} is the line bundle on G / B associated to the character $=1 / 2$ sum of positive roots, and $\partial Z_{i}=f_{i}^{-1}\left(\partial Z_{i-1}\right) \cup \sigma_{i}\left(Z_{i-1}\right)$. Note that L_{Q} is an ample line bundle on G / B. From this description of $K_{Z_{i}}$ it follows that Z_{i} is Frobenius-split and any sub-intersection of the divisors in ∂Z_{i} is compatibly split in Z_{i} (cf. [8]).

II

We begin by proving the two Lemmas alluded to in the Introduction.
Lemma 1. Let $\pi: X \rightarrow Y$ be a projective birational map such that
a) X is Frobenius-split.
b) $H^{i}\left(X_{y}, \mathcal{O}_{X_{y}}{ }^{\prime}=0 \forall i>0 \forall y \in Y\right.$, where X_{y} is the scheme-theoretic fibre over $y \in Y$. Then $R^{i} \pi_{*} \mathcal{O}_{X}=0 \forall i>0$.

Proof. Fix $i>0$. As the question is local on Y, we may assume that $Y=\operatorname{Spec} A$, where A is a Noetherian local ring and $R^{i} \pi_{*} \mathcal{O}_{X}$ is concentrated at the closed point $\underline{m} \in \operatorname{Spec} A$, where m is the maximal ideal of A. Then $R^{i} \pi_{*} \mathcal{O}_{X}=H^{i}\left(X, \mathcal{O}_{X}\right)$ is a A-module of finite length, call it M. Then by the theorem on formal functions, $M \simeq \lim _{\underset{n}{ }} H^{i}\left(X_{n}, \mathcal{O}_{X_{n}}\right)$, where $X_{n}=X \otimes_{A} A / \underline{m}^{n}$ for $n>0$. The canonical map $H^{i}\left(X, \mathcal{O}_{X}\right)$
$\rightarrow H^{i}\left(X_{n}, \mathcal{O}_{X_{n}}\right)$ is injective for $n \geqslant 0$. To see this, put $K_{n}=\operatorname{ker} H^{i}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{i}\left(X_{n}, \mathcal{O}_{X_{n}}\right)$. Then K_{n} is a decreasing sequence of submodules of the Artinian A-module M, hence ultimately stationary. Hence $K_{n}=0 \forall n \geqslant 0$, as M is isomorphic to $\underset{n}{\underset{n}{4}} H^{i}\left(X_{n}, \mathcal{O}_{X_{n}}\right)$. Fix $n \gg 0$ such that $K_{n}=0$. Then $\exists t \geqslant 0$, such that F^{t}, the t-iterate of the Frobenius map $F: X \rightarrow X$, has a factorization:

But F^{t} is injective on $H^{i}\left(X, \mathcal{O}_{X}\right)$ as X is Frobenius-split and $H^{i}\left(X_{1}, \mathcal{O}_{X_{1}}\right)=0$ by hypothesis, hence $R^{i} \pi_{*} \mathcal{O}_{X}=H^{i}\left(X, \mathcal{O}_{X}\right)=0$.

Lemma 2. Let $\pi: X \rightarrow Y$ be a morphism between Frobenius-split schemes such that
a) π is proper and surjective with connected fibres
b) \forall components T of Y, \exists a component S of X such that $\left.\pi\right|_{S}: S \rightarrow T$ is birational. Then $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{\mathbf{Y}}$.
Proof. By Stein-factorization, \exists a commutative diagram

with $f_{*} \mathscr{O}_{X}=\mathscr{O}_{Z}$ and g finite. This implies that Z is Frobenius-split and that g is a bijection. Hence Z and Y have the same number of components. Further, it follows from the hypothesis that each component of Z is birational to the corresponding component of Y. Since Y, Z are Frobenius split, we get g is an isomorphism, hence $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$.

Now let $X_{i} \subset G / B$ be a Schubert variety of $\operatorname{dim} i, X_{i}=\overline{B w B} / B$ with $l(w)=i$. Let $\pi_{i}: Z_{i} \rightarrow X_{i}$ be the standard resolution of X_{i}. We have

Proposition 3. $R^{j} \pi_{i *} \mathcal{O}_{Z_{i}}=0 \forall j>0$.
Proof. We may assume, by induction on i, that the conclusion holds for smaller values of i. Hence $R^{j} \pi_{i-1 *} \mathcal{O}_{Z_{i-1}}=0 \forall j>0$. As the map $t_{i-1} \rightarrow g_{i}\left(X_{i}\right)$ has fibres either \mathbb{P}^{1} or a single point, we have $R^{j}\left(t_{i-1} \circ \pi_{i-1}\right)_{*} \mathcal{O}_{Z_{i-1}}=0 \forall j>0$. As $Z_{i} \rightarrow X_{i}$ is a flat base charge of $Z_{i-1} \rightarrow g_{i}\left(X_{i}\right)$, we get $R^{j} \pi_{i *} \mathcal{O}_{Z_{i}}=0 \forall j>0$.

Proposition 4. On ∂Z_{i}, we have $H^{j}\left(\partial Z_{i}, \pi_{i}^{*} L_{e}^{k}\right)=0 \forall j>0, \forall k>0$, where L_{Q} is the linebundle on $X_{i} \subset G / B$ associated to the half-sum of positive roots.

Proof. Put $\partial Z_{i}=R+S$, where $R=f_{i}^{-1}\left(\partial Z_{i-1}\right)$ and $S=\sigma_{i}\left(Z_{i-1}\right)$. We may assume, by induction, that $H^{j}\left(Z_{v}, \pi_{i}^{*} L_{Q}^{k}\right)=0 \forall j>0, V k>0$ and $\forall t \leqq i-1$. We prove the proposition in a series of claims:
Claim 1. $R^{j} \pi_{i-1 *} \mathcal{O}_{\partial Z_{i-1}}=0 \forall j>0$ and $\pi_{i-1} * \mathcal{O}_{\partial Z_{i-1}}=\mathcal{O}_{\partial X_{i-1}}$.
Proof. The first assertion follows from the Leray spectral sequence for the morphism $\pi_{i-1}: \partial Z_{i-1} \rightarrow \partial X_{i-1}$ along with the induction hypothesis. The second assertion follows from Lemma 2.

Now put $T=t_{i-1}\left(\partial X_{i-1}\right)$ and $\bar{T}=g_{i}^{-1}(T)$.
Claim 2. $R^{j} t_{i-1 *}\left(\mathcal{O}_{\partial X_{i-1}}\right)=0 \forall j>0$ and $t_{i-1 *}\left(\mathcal{O}_{\hat{i} x_{i-1}}\right)=\mathcal{O}_{T}$.
Proof. The first assertion follows from Lemma 1 and the second from Lemma 2.
Claim 3. $R^{j}\left(t_{i-1} \circ \pi_{i-1}\right)_{*} \mathcal{O}_{Z_{i-1}}=0 \forall j>0$ and $\left(t_{i-1} \circ \pi_{i-1}\right)_{*} \mathcal{O}_{Z_{i-1}}=\mathcal{O}_{T}$.
Proof. This follows from Claim 2 and the Leray spectral sequence for $t_{i-1} \circ \pi_{i-1}$.
Now the map $\pi_{i}: R \rightarrow \bar{T}$ is a flat base-change of $t_{i-1} \circ \pi_{i-1}: \partial Z_{i-1} \rightarrow T$, hence $R^{j}\left(\pi_{i} / R\right)_{*} \mathcal{O}_{R}=0 \forall j>0$ and $\pi_{i *} \mathcal{O}_{R}=\mathcal{O}_{\bar{T}}$. For $\pi_{i}: S \rightarrow X_{i-1}$, we already know $R^{j}\left(\pi_{i} / S\right)_{*} \mathcal{O}_{S}=0 \forall j>0$ and $\pi_{i *} \mathcal{O}_{S}=\mathcal{O}_{X_{i-1}}$. Hence we get $H^{j}\left(R, L_{\varphi}^{k}\right)$ $=H^{j}\left(S, L_{\varrho}^{k}\right)=0 \forall j>0, \forall k>0$. Consider the sequence

$$
\rightarrow \mathcal{O}_{\partial z_{i}} \rightarrow \mathcal{O}_{R} \oplus \mathcal{O}_{S} \rightarrow \mathcal{O}_{R \cap S}=\mathcal{O}_{\partial Z_{i-1}} \rightarrow .
$$

Tensoring with L_{0}^{k}, we get
$H^{j}\left(Z_{i}, L_{e}^{k}\right)=0 \forall j \geqq z, \forall k>0$. For $j=1$, we have $H^{0}\left(R \cup S, L_{\varrho}^{k}\right) \rightarrow H^{0}\left(\partial Z_{i-1}, L_{\varrho}^{k}\right)$ surjective, as $H^{0}\left(S, L_{e}^{k}\right) \rightarrow H^{0}\left(\partial Z_{i-1}, L_{e}^{k}\right)$ is already surjective $\forall k>0$. Hence $H^{1}\left(\partial Z_{i}, L_{\ell}^{k}\right)=0 \forall k>0$. This completes the proof of Proposition 4.

Proposition 5. X_{i} is Cohen-Macaulay.
Proof. From [2, III, 7.6], we only have to prove that $H^{i}\left(X_{i}, L_{e}^{-k}\right)=0 \forall j<i, \forall k \gg 0$. By the map $\pi_{i}: Z_{i} \rightarrow X_{i}$ and Proposition 3, we get $H^{j}\left(Z_{i}, \pi_{i}^{*} L_{e}^{-k}\right)=H^{j}\left(X_{i}, L_{e}^{-k}\right)$. But $H^{j}\left(Z_{i}, \pi_{i}^{*} L_{e}^{-k}\right)=H^{i-j}\left(Z_{i}, \mathcal{O}_{Z_{i}}\left(-\partial Z_{i}\right) \otimes L_{e}^{k-1}\right)$. Tensoring

$$
0 \rightarrow \mathcal{O}_{Z_{i}}\left(-\partial Z_{i}\right) \rightarrow \mathcal{O}_{Z_{i}} \rightarrow \mathcal{O}_{\partial Z_{i}} \rightarrow 0
$$

with L_{Q}^{k-1} and noting that $H^{0}\left(Z_{i}, L_{e}^{k-1}\right) \rightarrow H^{0}\left(\partial Z_{i}, L_{Q}^{k-1}\right)$ is onto $\forall k>0$, we get that $H^{i-j}\left(Z_{i}, \mathcal{O}_{Z_{i}}\left(-\partial Z_{i}\right) \otimes L_{0}^{k-1}\right)=0 \forall j<i . \quad$ Q.E.D.

Remark 1. Let $\pi: Z \rightarrow X$ be the standard resolution of a Schubert variety $X \subset G / B$. If one could prove that $H^{i}\left(X_{y}, \mathcal{O}_{x_{y}}\right)=0 \forall i>0 \forall y \in X$ (where X_{y} is the fibre over $y \in X$), then one could prove directly, along with Lemma 1, that X is Cohen-Macaulay.

Remark 2. More generally, if there was a geometrical proof of GrauertRiemannschneider vanishing for arbitrary smooth Frobenius-split varieties in char p, again it would follow that X is Cohen-Macaulay.

References

1. De Concini, C., Lakshmibai, V.: Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties. Am. J. Math. 103, 835-850 (1981)
2. Hartshorne, R.: Algebraic geometry. Graduate Texts in Math. Berlin Heidelberg New York: Springer 1977
3. Hochster, M.: Grassmannians and their Schubert varieties are arithmetically CohenMacaulay. J. Algebra 25, 40-57 (1976)
4. Huneke, C., Lakshmibai, V.: Cohen-Macaulayness and normality of the multicones over Schubert varieties in $S L(n) / B$. Preprint
5. Kempf, G.: Linear systems on homogeneous spaces. Ann. Math. 103, 557-591 (1976)
6. Lakshmibai, V., Seshadri, C.S.: Geometry of $G / P-V$. J. Algebra 100, 462-557 (1986)
7. Laksov, D.: The arithmetic Cohen-Macaulay character of Schubert schemes. Acta Math. 129, 1-9 (1972)
8. Mehta, V.B., Ramanathan, A.: Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. 122, 22-40 (1985)
9. Mehta, V.B., Srinivas, V.: Normality of Schubert varieties. Am. J. Math. 109, 987 -989 (1987)
10. Musili, C.: Postulational formula for Schubert varieties. J. Indian Math. Soc. 36, 143-171 (1972)
11. Musili, C., Seshadri, C.S.: Schubert varieties and the variety of complexes. In: Arithmetic and geometry. Volume dedicated to I.R. Shafarevitch 2, pp. 329-359. Boston: Birkhäuser 1983
12. Ramanathan, A.: Schubert varieties are arithmetically Cohen-Macaulay. Invent. Math. 80, 283-294 (1985)
13. Ramanathan, A.: Equations defining Schubert varieties and Frobenius splitting of the diagonal. Publ. IHES (to appear)

Received November 24, 1987

