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Introduction

Let G be a semi-simple simply connected algebraic group over an algebraically
closed field of characteristic p>0. Let TCG be a maximal torus, B> T a Borel
subgroup of G, W= N(T)/T the Weyl group and Q D B a parabolic subgroup of G.
The Schubert varieties in G/Q are defined to be the closures of the B-orbits in G/Q.
It was proved by Hochster, Kempf, Laksov and Musili that Schubert varieties in
Grassmannians are Cohen-Macaulay (cf. [3, 5, 7, 10]). Seshadri and Musili proved
that Schubert varieties in SL(n)/B are Cohen-Macaulay [11], see also [1, 4, 6].
Finally Ramanathan proved the result in general [ 12, 13]. His methods made use of
the ideas of Frobenius-splitting and compatible splitting introduced in [8]. The
other ingredients were the calculations of the canonical bundle of the standard
resolutions of Schubert varieties introduced by Kempf, as well as the fact that there
is a canonical splitting of G/B which compatibly splits all the Schubert varieties in
G/B. He also needed the fact that if X is a union of a finite collection of Schubert
varieties in G/B and L is any ample line bundle on G/B, then H'(X, L)=0Vi>0and
H%G/B, L)~H%X, L) is surjective.

In this note we want to give a short proof that Schubert varieties in G/B are
Cohen-Macaulay. Our proof is similar in spirit to the proof of normality of
Schubert varieties given by us in [9]. We also make use of two simple lemmas. The
first states that if n: X— Y is a birational map with a) X Frobenius-split and b)
H(X,,0x )=0Vi>0 Vye, then R'n, Ox=0 ¥i>0 (here X, denotes the scheme-
theoretic fibre over y € Y). The second one states that if n: X —» Y is a morphism of
Frobenius-split schemes, with a) = surjective with connected fibres and b) each
component of Y is birationally dominated by some component of X, then
n, Ox=0y. This is very similar to Lemma 1 of [9]. Finally, we make use of the
calculation of the canonical bundles of the standard resolutions of Schubert
varieties as carried out in [12]. In Sect. I we recall these results and in Sect. IT we
prove the main result.
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Let G, Band W be as in the introduction and let we W. Let l(w) =i and write w as a
product of reflections associated to the simple roots, w=s,s,,...s,. Let
X;=BwB/B be the corresponding Schubert variety in G/B. Put P,=BUBs, B
and let g;: G/B—G/P; be the corresponding P'-fibration. Put w'=s, s, ...s,,_,,
and X;_, =BwB/B, a Schubert variety of codim 1 in X, Assume, by induction,
that a surjective birational morphism =;_,:Z;_,—X,_, has been constructed
with

1) Z;_, smooth projective

2) 3i—1 smooth subvarieties of Z;_ |, intersecting transversally, whose union
is denoted by 0Z;_, s.t. m;_,(6Z,_,)=0X,_,, where dX,_, is the union of the
codimension 1 Schubert subvarieties of X;_,. Further, 0Z;,_, ==} (0X;_,).

Then the standard resolution Z; of X, is defined by the following Cartesian
diagram

Z, -2 M, P Xx,c6/B
a,-”fi J lyi
Z; Xy ; g{X,)CG/P;,

Ti-1 i-1

where M;—X;_, is the base-change of g;: X;,—g(X,) and Z,—Z;_, is the base-
change of M;—>X;_,. It is known (cf [5, 12]) that

1) t;_: X;_,—g{X,) is birational with fibres either P! or a single point.

2) Jasection g,: Z;_,—Z; such that f;"Y(0Z,_,)uc(Z,_,) is a collection of i
smooth divisors in Z; intersecting transversally.

3) Put B:M;—»X, and «:Z->M; and m=fca. Then K
=0,(—0Z)®n}¥, where L, is the line bundle on G/B associated to the
character =1/2 sum of positiveroots,and 0Z;= f;” '(0Z;_ ;)uo(Z; ). Note that L,
is an ample line bundle on G/B. From this description of K, it follows that Z; is
Frobenius-split and any sub-intersection of the divisors in 8Z; is compatibly split
in Z; (cf. [8]).
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We begin by proving the two Lemmas alluded to in the Introduction.

Lemma 1. Let n: XY be a projective birational map such that

a) X is Frobenius-split.

b) H{(X,, Ox)=0Vi>0VyeY, where X, is the scheme-theoretic fibre over
yeY. Then R'n, 0x=0 Vi>0.

Proof. Fix i>0. As the question is local on Y, we may assume that Y=_SpecA,
where A is a Noetherian local ring and R'rn, 0y is concentrated at the closed point
meSpecA, where m is the maximal ideal of 4. Then Rin, Oy=HY(X,0y) is a
A-module of finite length, call it M. Then by the theorem on formal functions,
M=~ lim H (X, Ox,), where X, = X ® 4A/m" for n>0. The canonical map H{(X, 0y)
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—H(X,, 0y )is injective for n> 0. To see this, put K, =ker H(X, 05)—H(X ,, 0y,).
Then K, is a decreasing sequence of submodules of the Artinian A-module M,
hence ultimately stationary. Hence K,=0VYn>»0, as M is isomorphic to
li(_m HYX,, Oy ). Fix n>0such that K, =0. Then 3¢> 0, such that F", the t-iterate of

the Frobenius map F: X - X, has a factorization:

X,—X

|

Ft
X,

|

X,—X.

But F* is injective on H(X, 0,) as X is Frobenius-split and H'(X,, 0y )=0 by
hypothesis, hence Rin, 0y =H(X, 05)=0.

Lemma 2. Let n: X— Y be a morphism between Frobenius-split schemes such that
a) m is proper and surjective with connected fibres
b) V components T of Y, a component S of X such that n|g:S— T is birational.
Then n,0x=0y.

Proof. By Stein-factorization, 3 a commutative diagram

7. X—Y
4

with f, Oy= 0, and g finite. This implies that Z is Frobenius-split and that g is a
bijection. Hence Z and Y have the same number of components. Further, it follows
from the hypothesis that each component of Z is birational to the corresponding
component of Y. Since ¥, Z are Frobenius split, we get g is an isomorphism, hence
Ty Oy =0y. .

Now let X,;CG/B be a Schubert variety of dimi, X;=BwB/B with I(w)=i. Let
n;: Z;— X; be the standard resolution of X, We have

Proposition 3. R'z; 0, =0 Vj>0.

Proof- We may assume, by induction on i, that the conclusion holds for smaller
values of i. Hence Rim;_ 4 05, =0 Vj>0.Asthemapt;_, —»g,(X,) has fibres either
IP! or a single point, we have R/(t;_yom,_,)x 0, _,=0Vj>0. As Z,— X, is a flat
base charge of Z;_; —»g(X)), we get Riz; ,0,,=0 Vj>0.

Proposition 4. On 0Z,, we have H(0Z,, n}* Lt)=0 Vj >0, Vk>0, where L, is the line-
bundle on X;C G/B associated to the half~sum of positive roots.
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Proof. Put 0Z;=R+ S, where R=f;"Y(0Z,_,) and S=0{Z,_,). We may assume,
by induction, that H{(Z,n*L)=0 Vj>0, Vk>0 and Yr<i—1. We prove the
proposition in a series of claims:

Claim 1. Rjn,-._l* @62‘__‘:0 Vj>0 and Ti_ 1% (Oazi_l=@axi_1.

Proof. The first assertion follows from the Leray spectral sequence for the
morphism #; _,:0Z;_,—0X;_, along with the induction hypothesis. The secand
assertion follows from Lemma 2.

Now put T=t;_,(0X,_,) and T=g; Y(T).

Claim 2. Rit;_ 1, (05, )=0Vi>0and t;_,,(Op, )=0r.
Proof. The first assertion follows from Lemma 1 and the second from Lemma 2.
Claim 3. Rj(ti_ 1° T[i_ 1)*(0Zi—1 =0 Vj>0 and (ti‘_l oT; 1)* @ZiA = (OT‘

Proof. This follows from Claim 2 and the Leray spectral sequence for ¢, o m;_;.

Now the map n;: R—T is a flat base-change of t,_,om;_,: 6Z;_,—T, hence
Ri(n;/R)y Og=0Vj>0 and m,4,0r=05. For n,:S—X,_,, we already know
Ri(n/S)xOs=0VYj>0 and 7,,05=04,_,. Hence we get HI(RLY)
=HX(S, L¥)=0 Vj>0, Yk>0. Consider the sequence

057,20 @ Os—>0g s=0pz,_,—.

Tensoring with L¥, we get

H{Z,L¥)=0Vj2z, Vk>0. For j=1, we have H'(RUS, LY)->H%0Z,_,, L)
sutjective, as H(S,LY)—H%0Z,_,,L}) is already surjective Vk>0. Hence
HY(0Z,,L})=0 Vk>0. This completes the proof of Proposition 4.

Proposition 5. X; is Cohen-Macaulay.

Proof. From [2, 111, 7.6], we only have to prove that H(X,, L, *)=0 Vj <i, Vk» 0.
By the map =;:Z;— X, and Proposition 3, we get H(Z, n;*L;*)=H/(X, L;*).

But H(Z, n}L;y=H'"4Z, 0,(—0Z)®L:™"). Tensoring
0-0(—0Z)>0z,- 0,0

with Li™! and noting that H %Z, L™ ")-H%0Z, L") is onto Vk>0, we get

that H'HZ, 0,(—0Z)®L,™)=0Vj<i. QE.D.

Remark 1. Let n: Z— X be the standard resolution of a Schubert variety X C G/B. If

one could prove that H{(X ,, 0 x,)=0 Vi>0 Vye X (where X, is the fibre over y € X),
then one could prove directly, along with Lemma 1, that X is Cohen-Macaulay.

Remark 2. More generally, if there was a geometrical proof of Grauert-
Riemannschneider vanishing for arbitrary smooth Frobenius-split varieties in
char p, again it would follow that X is Cohen-Macaulay.
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