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Abstract
Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physio-

logical functions including key roles in endocrine and metabolic function. The aim of this

study was to identify nuclear receptors in the fully sequenced genome of the gastropod

snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare

these to known vertebrate NRs, with a view to assessing the snail's potential as a inverte-

brate model organism for endocrine function, both as a prospective new test organism and

to elucidate the fundamental genetic and mechanistic causes of disease. For comparative

purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also in-

vestigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified

from the B. glabrata and L. gigantea genomes respectively, based on the presence of a con-

served DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript ex-

pression was confirmed and sequences were subjected to a comparative phylogenetic

analysis, which demonstrated that these molluscs have representatives of all the major NR

subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and inver-

tebrates, however differences exist, most notably, the absence of receptors of Group 3C,

which includes some of the vertebrate endocrine hormone targets. The mollusc genomes

also contain NR homologues that are present in insects and nematodes but not in verte-

brates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared recep-

tors between humans and molluscs indicates the potential for molluscs as model

organisms; however the absence of several steroid hormone receptors indicates snail en-

docrine systems are fundamentally different.

Introduction
The tropical freshwater snail Biomphalaria glabrata is an intermediate host for several digen-
ean trematode parasitic worms, including Schistosoma mansoni, the causative agent of human
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intestinal schistosomiasis. Human schistosomiasis is the most widespread trematode infection
affecting around 200 million people, leading to a chronic debilitating disease and up to 200,000
deaths per year, across 75 developing countries [1]. Due to its medical significance as an inter-
mediate host, B. glabrata has been the focus for much research, including several gene discov-
ery projects [2–4]. Tools have been developed for investigating genomic and transcriptomic
attributes of this species, including a BAC library for genome sequencing [5]; a 5K cDNA mi-
croarray [6]; a 1.2K oligo microarray [7] and the means to selectively silence gene expression in
the snail (RNAi: [8,9]). This background of research has culminated in the sequencing the B.
glabrata genome [10] (http://129.24.144.93/blast_bg/2index.html). The progress made in de-
veloping these resources has also provided the potential for the snail to become a new model
organism for other purposes, including testing and identification of endocrine disrupting
chemicals (EDCs) and for understanding fundamental biology, including endocrinology.

Endocrine and metabolic disease are among the most common contemporary human afflic-
tions, the prevalence of which has been well defined in large population-based studies (for ex-
ample, [11,12]). Some of the causes of these are not immediately obvious, but may be related to
increasing exposure to EDCs [13]. As a consequence, not only is more testing of potential
EDCs needed, but a better understanding of endocrine function and disruption is also required.
A solution that is appropriate and in keeping with the three R’s (replacement, refinement and
reduction) ethos of animal research [14], is to exploit the use of invertebrate organisms which
may offer a simplified model for research, as well as providing a faster, cheaper and more ethi-
cally acceptable alternative to mammalian testing, at least during initial chemical screening
[15]. As NRs play key roles in endocrine and metabolic functions [16], cross-species compara-
tive studies of the conservation of these genes within invertebrate genomes may identify new
model systems for the testing of chemicals with endocrine disrupting potential without using
vertebrates. In addition to this, B. glabrata has recently been proposed specifically for develop-
mental toxicity, acute toxicity and mutagenicity testing in order to establish standardised pro-
tocols to assess environmental risks [17]. Therefore a better knowledge of normal endocrine
function in molluscs will enable us to understand the full impact of EDCs in the environment,
where they have been shown to affect both vertebrate and invertebrate species [18].

One class of transcription factor involved in regulating endocrine function in vertebrates
are the nuclear receptors (NRs). NRs regulate and coordinate multiple processes by integrating
internal and external signals, thereby maintaining homeostasis (reviewed in [16,19]) These
proteins exhibit strong similarities in their mode of action due to their conserved molecular
structure, which includes a DNA-binding domain (DBD), consisting of two Cys4 zinc fingers,
and the ligand-binding domain (LBD), which not only controls signalling by binding small li-
pophilic molecules, called ligands, but also binds co-activators and co-repressors [20]. Both the
LBD and D box domain of the DBD mediate receptor hetero- or homo-dimerization (reviewed
in [21]). Biochemical studies and crystal structure of the LBD reveal that ligand binding trig-
gers a conformational change, causing bound co-repressors to be displaced by co-activators,
leading to gene expression [22]. NRs are classified into six distinct families by sequence homol-
ogy using a phylogenetic approach [23]. Based on their conserved nature and their biologically
essential roles throughout the Metazoa, NRs are believed to have emerged early in animal evo-
lution, prior to the bilaterian ancestor [24–26].

Molluscs are affected by EDCs and one of the most cited examples is that of the marine pol-
lutant tributyltin (TBT), found in antifouling paint, which is responsible for imposex in at least
195 species of gastropods worldwide (reviewed in [27,28]). TBT has been shown to act through
binding to an NR, the retinoid X receptor (RXR) [29,30]. Other environmental pollutants
could act through the estrogen receptor (ER) or androgen receptor (AR) and there is also some
evidence of a role for androgen and estrogen-like molecules in the reproductive cycle of
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molluscs [31,32]. ER orthologues have previously been reported in molluscs (eg [33–37]) al-
though their function is currently unconfirmed [38,36,39,37,40], since, for example, the identi-
fied ER homologue from the oyster Crassostrea gigas is unresponsive to estrogen [37], The
presence of an ER in molluscs and the potential to respond to estrogens is confounded by the
absence of aromatase (CYP19) [41], the enzyme required for the conversion of testosterone to
estradiol, but it is possible that another enzyme catalyses the aromatase reaction [38]. The pres-
ence of ARs in molluscs has been inferred [32,42], but this remains an area of controversy [43]
since homologues have not been identified despite investigations specifically searching for the
gene [44]. A recent survey of NRs in C. gigas also did not identify an AR [45].

Previously only the RXR has been characterised in B. glabrata [46]. With the recent avail-
ability of a draft genome for B. glabrata it is particularly timely to search for the NRs of B. glab-
rata. The genome of the owl limpet, L. gigantea [47], a marine gastropod, for which 26 NRs
have already been identified [25,48,49], was compared with the snail NR repertoire. These spe-
cies, from different families, represent distinct gastropod lineages. The sequences of identified
putative genes were confirmed using transcript data from the L. gigantea genome portal and by
amplification of products from B. glabratamRNA. We assess the conservation, divergence,
and uniqueness of gastropod NRs in comparison with the previously characterised receptors of
a vertebrate (Homo sapiens), insect (Drosophila melanogaster), nematode worm (Caenorhabdi-
tis elegans) (reviewed in [50]) and the parasitic trematode (S.mansoni) (reviewed in [51]).

Methods

Identification of nuclear receptors from B. glabrata and L. gigantea
genomes
Human AR (GenBank: EAX05380) and ERα (GenBank: AAI28575) gene sequences were used
to search for expressed sequence tags (ESTs) in B. glabrata and L. gigantea at National Centre
for Biotechnology Information (NCBI) using TBlastX with default parameters [52]. These
ESTs were then used to search for homologues at the preliminary B. glabrata genome (version
4.01: http://129.24.144.93/blast_bg/2index.html) (TBlastX expect limit:1e-04) and assembled L.
gigantea transcripts from the filtered gene models in the JGI Genome Portal (http://genome.
jgi-psf.org/Lotgi1/Lotgi1.info.html) using BLASTN (expect limit: 1e-99). This was followed by
a wider search using NR gene sequences spanning all the groups present in humans and D.mel-
anogaster. A secondary search using the identified L. gigantea and B. glabrata NR genes against
both the gastropod genomes using a low expect threshold value identified additional family
members, some of which were distinct from human and fly NRs. Query sequences were filtered
for low complexity regions. Identified contigs from B. glabrata were downloaded and processed
through GENSCAN [53] (http://genes.mit.edu/GENSCAN.html) using default parameters, to
identify predicted coding regions, intron-exon boundaries, and peptides. Predicted peptides
were assessed using BLASTP (expect limit: 1e-10) against the non-redundant GenBank data-
base to check for the presence of the NR domains (LBD/DBD). The identified nucleotide se-
quences from both molluscs containing NR domains were analysed for redundancy using
clustering analysis with sequence overlap cut-off set at 0.5 and segment coverage cut-off at 0.25
in Seqtools (8.4ver) (http://www.seqtools.dk/).

The identified genes were named based on the phylogenetic analysis and sequence similarity
of the full-length sequence to previously characterized human and D.melanogaster NRs ac-
cording to the recognised nomenclature [23]. Small sequence fragments of putative NRs from
B. glabrata too short to be classified were left out of the subsequent analysis. Where there was
no vertebrate or invertebrate homologue, subfamily classification was made, with a number
representing the subfamily, a capital letter for the group, and a number for the individual gene.
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RNA isolation and cDNA synthesis
Total RNA was isolated from whole homogenized adult B. glabrata snails using TRI-reagent
(Sigma-Aldrich, St Louis, USA) according to the manufacturer’s protocol and treated with
DNAse to eliminate contaminating genomic DNA. Total RNA was extracted from embryonic
samples using the RNeasy Fibrous tissue mini kit (Qiagen, Limberg, Netherlands), which in-
cluded a DNAse treatment as part of the protocol. Quantification and purity of each RNA sam-
ple were determined by spectrophotometry (Nanodrop, Thermo Fisher Scientific Ltd.
Waltham, USA), and the RNA integrity was visually checked by agarose gel electrophoresis.
4μg of total RNA from adult snails and 1.5μg total RNA from embryonic samples was reverse
transcribed in a 20μl reaction using the Superscript III cDNA synthesis kit (Invitrogen, Life
Technologies, Carlsbad. USA) with 5 μM of a custom oligo (dTAP) primer (TGACTC-
GAGTCGACATCGAT20) following the manufacturer’s instructions. Residual RNA was re-
moved by adding 1μl of RNase H (2 U/μl) to the reaction and incubating it at 37°C for 20 min.
RT-PCR with 18S primers (18S-F: CGCCCGTCGCTACTATCG and 18S-R: ACGCCAGACC-
GAGACCAA) [54] verified successful cDNA synthesis.

Polymerase chain reaction
Specific PCR primers (S1 Table) were designed using PRIMER3 (version 0.4.0: http://bioinfo.
ut.ee/primer3-0.4.0/), to amplify fragments from DBD and/or LBD for each B. glabrata NR to
confirm transcription and sequence. 25μl PCRs contained 2μl cDNA (diluted 1 in 20), 1 X PCR
Buffer, 2.5mMMgCl2, 0.2mM dNTPs, 0.5μM forward and reverse primers and 1.25U Taq
DNA polymerase (Bioline, London, UK). Reaction conditions were 2 min at 95°C followed by
35 cycles of 30 sec at 95°C, 30 sec at 55–64°C (optimised for each primer pair (S1 Table)) 1 min
30 sec at 72°C, with a final extension of 5 min at 72°C. Amplified products were analysed by gel
electrophoresis and products of an appropriate size were gel extracted where necessary and se-
quenced (Sequencing facility, WolfsonWellcome Biomedical Laboratory, Natural History Mu-
seum, UK). Sequences were deposited in GenBank Accession Nos: JZ390894-JZ390939

Sequence alignments and phylogenetic analysis
The sequenced NR transcripts from B. glabrata were translated using proteomics tools at
EXPASY (http://www.expasy.org/). The predicted peptide sequences from both B. glabrata and
L. gigantea were analysed using PFAM domain analysis [55] (PF00104 and PF00105) and
PANTHER [56], a hidden Markov model-based method (PTHR24082) confirming the NR do-
mains. The NCBI program Simple Modular Architecture Research Tool (SMART, [57]) was
used for the identification of DNA-binding domain (DBD) and ligand binding domain (LBD)
regions which were then aligned with the DBD and LBD regions of human (H. sapiens), fruit
fly (D.melanogaster) nematode (C. elegans) and parasitic trematode (S.mansoni) NRs
(Table 1). The NR domains were aligned using default parameters in ClustalX and converted
to Nexus format using default parameters in Mesquite v2.75. The DBD and LBD from NRs of
the other species were obtained using the conserved domain database (CDD) and reconfirmed
using SMART. The NR2A subfamily expansion that contains a large number of the C. elegans
NRs [58] was disregarded and only 15 NRs from C. elegans that are broadly conserved among
animal phyla were included in this study for comparative analysis.

Phylogenetic reconstruction was performed using Maximum Likelihood analysis with
Bayesian inference and MEGA 6.06. Bayesian inference was conducted with MrBayes version
3.1.2 [59] using the WAGmodel; the best fitting substitution model determined by both
Akaike information criterion and Bayesian information criterion frameworks (ProtTest (v1.4)
[60]). Two independent runs of Markov Chain Monte Carlo (MCMC) analysis were
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performed, with four chains run for 7 million generations with the ‘temperature’ parameter at
0.10, prior probabilities with default values and sampling every 2000 generations. The first 2
million generations were discarded as burn-in because the Log likelihood values were plotted
and found to be asymptotic well before the burn-in fraction. Convergence between the inde-
pendent MCMC runs was examined by the average deviation of the split frequencies and the
potential scale-reduction factor (PSRF), which was 1.00. Clades with posterior probabilities
>95% were considered well supported. All PSRF values for MrBayes analyses were 1.00. For
Maximun Likelihood analysis, the Jones-Taylor-Thornton (JTT) substitution model [61] was
used, with a gamma distribution of rates between sites (eight categories, parameter alpha, esti-
mated by the program). Support was evaluated by 1000 bootstrap replicates.

Maximum parsimony was also used to provide additional phylogenetic support for classifi-
cation, naming, and the phylogenetic relationships observed between B. glabrata, L. gigantea
and nuclear receptors from selected species. Maximum parsimony with heuristic searches,
branch swapping set to tree-bisection-reconnection, topological constraints not enforced, and
1000 bootstrap replicates were performed using MEGA6.06 [62]. An appropriate out-group to
root the sequences was difficult for such a diverse and ancient nuclear receptor family and so
the phylogenies were mid-point rooted using Dendroscope (ver3.2.10) [63].

Results and Discussion

Nuclear receptor genes
Thirty nine NR sequences were identified from the genome of B. glabrata and a total of 33
from L. gigantea consisting of 7 newly identified NRs and confirming 26 sequences which had
been previously identified from L. gigantea in previous studies [25,48,49] (Table 1). An exhaus-
tive search with mammalian and D.melanogaster NRs and with the identified mollusc NRs
found no further NR homologs. Representative genes for each of the major nuclear receptor
groups were detected, suggesting the assembled genome for B. glabrata provides a good repre-
sentation of total gene content with physical genome coverage of approximately 27.5X (Gen-
bank: APKA00000000.1). The numbers found are comparable to the 48 NRs reported in the
human genome [64], 49 in mice [65] and 47 in rats [66]. Insects have lower numbers; only 21
NR genes are found in D.melanogaster [67], 22 in Apis mellifera [68], and 21 in Tribolium cas-
taneum [69]. Over 270 NRs have been found in C. elegans [70] but only 21 NRs in the trema-
tode S.mansoni [71]. The unusually large number of NRs in C. elegans is due to extensive
proliferation of one gene (HNF4) within the nematode phylum [58]. 43 NRs were recently
identified from the Pacific oyster, C. gigas, a marine bivalve, [45], similar numbers to those we
identified from the gastropods.

Expression of B. glabrata nuclear receptor mRNAs
Each predicted nuclear receptor was evaluated for expression in B. glabrata adult snails, by am-
plifying cDNA fragments with receptor-specific primers, to demonstrate that the predicted
genes were expressed as transcripts and confirm their sequence. Primer pairs for which frag-
ments were not obtained from adults were also tested on embryos. Expression was confirmed
for 34 out of 39 identified receptor genes (Table 1), 31 from cDNA derived from whole adult
snails, while 3 nuclear receptors, BgTLX, BgDSF and BgFAX1, were not expressed in adult
snails but were identified in 96hrs/120hrs embryos. These receptors belong to NR2E sub family
and may be involved in embryonic development as reported in Daphnia pulex [72]. All ampli-
cons corresponded to the predicted sequence length and sequencing confirmed the predicted
identity of the gene products (GenBank Accession Nos: JZ390894-JZ390939). For L. gigantea,
in silico searches identified sequenced transcripts for 21 out of 33 NR genes (S2 Table). Three
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B. glabrata putative NRs (BgNR1D1/2/3) for which only partial sequences were obtained from
the genome were not included for further phylogenetic analysis, since it was not possible to as-
certain if they are multiple partial genes or parts of the same transcript. In addition to this
BgTLX, BgNRU4 and LgTR were not analysed further as these were also incomplete sequences.
A separate analysis was made of 2DBD genes from B. glabrata and L. gigantea with other previ-
ously identified 2DBD sequences from S.mansoni and other species as the 2DBD region could
not be aligned with the other NRs.

Phylogenetic analyses
The DBD and LBD regions for the full-length molluscan NRs (32 for B. glabrata and 30 for L.
gigantea) were aligned with S.mansoni, D.melanogaster, C. elegans andH. sapiensNR se-
quences (S1 File). Phylogenetic trees were constructed using 3 different approaches: Bayesian
Inference (BI), Maximum Parsimony (MP) and Maximum Likelihood (ML) and the resulting
trees assessed for concordance. All trees agree at family and subfamily level (S1 Fig, S2 Fig, S3
Fig) but BI shows the greatest resolution at the base of the phylogram and is shown with nodal
support generated from all the tree construction methods (Fig 1). The tree shows the main
groupings of the NRs.

The position of the unclassified B. glabrata NRs (BgNRU) is the same in all trees, close to
NR0A subfamily within the NR1 group; however the NR0 subfamily was derived to accommo-
date nuclear receptors that lack either the DBD or the LBD and these 3 B. glabrata NRs contain
both domains (S4 Fig). Therefore these remain as unclassified. The position of members of
NR2C/D is also not resolved within Group 2 (Fig 1). Both mollusc genomes each contain one
member of this clade that we have designated LgTR/BgTR based on their sequence similarity
with HsTR (Table 1). LgTR was not included in the phylogenetic analysis since it was missing
the LBD, but BgTR clusters with the other NR2C/D group members Ce_HR41, SmTR and
Dm_HR78. The Bayesian tree predicts BgTR as the most distal member of NR2C but the ML
and MP trees show both the mollusc sequences to be closely related to DmHR78. However the
MP tree placed Ce_HR41 in NR2D, although this NR is usually classified in NR2C. Clearly, the
NR2C/D groups seem to be related and not well defined. Within NR1 NR1D was not clearly re-
solved. In the NR3 subfamily, only the position of the human GR showed non-concordance be-
tween the BI tree and the MP tree. All of the trees were in agreement for the NR4/NR5/NR6
subfamilies, with one difference in the position of BgNR4a/LgNR4a and NR5A in the MP tree.

The identified genes have been named in agreement with the unified nomenclature for NRs
[23] based on their sequence homology and phylogenetic position. Overall, the identified mol-
lusc NRs encompass almost all the subfamilies, with representatives divided between 21 groups
(Table 1) and revealed both similarities and differences in the NR complement between the
species used in the study. Seventeen of the 19 subgroups containing human NRs also had repre-
sentatives in the invertebrate species, including molluscs although in general H. sapiens con-
tained several NRs where snails had only one, most likely the result of gene or lineage-specific
duplication events. The presence of these groups among both protostomes and deuterostomes
suggests that these receptors originated in a common ancestor of the bilateria [24,25]. The 2
vertebrate groups not represented in molluscs were the Groups 3C and 1I. Three groups that
were common to humans and molluscs, but not found in the other invertebrate organisms in-
cluded here were 0B (DAX), 1C (PPAR) and 3A (ER). The presence of these receptors in mol-
luscs suggests at least the possibility of commonality in shared signalling pathways, elucidating
the evolutionary development of the endocrine system. Seven groups were found only in inver-
tebrates; Groups 1G and 1K only in C. elegans; 0A only in D.melanogaster, while groups 1E
(E78), 5B (DHR39) 1J and the 2DBD NRs were found in several of the invertebrate species.
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Fig 1. Phylogenetic relationships of NRs in molluscs, humans, fly, nematode and trematode.NRs from
six species B. glabrata (Bg), L. gigantea (Lg), H. sapiens (Hs), D.melanogaster (Dm), C. elegans (Ce) and S.
mansoni (Sm), were subjected to phylogenetic comparisons using Bayesian inference, maximum parsimony
and maximum likelihood methods. The Bayesian tree (midpoint rooted) is shown with posterior probability
values from Bayesian inference and bootstrap values frommaximum parsimony and maximum likelihood
trees. The value of 1 on each node represents 100% posterior probability/bootstrap support; an X indicates
an area of disagreement from the Bayesian tree (S1 Fig). Scale bar, 0.1 expected changes/site.

doi:10.1371/journal.pone.0121259.g001
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Representation of these latter groups in L. gigantea and B. glabrata shows that these nuclear re-
ceptors pre-date the ecdysozoan/lophotrochozoan split.

Group 3 receptors
The nuclear receptors that bind to steroids, such as androgens, estrogens and progestogens, are
responsible for the long-term effects of steroid hormones on reproduction, behaviour, immuni-
ty, stress responses and development. The Group 3 steroid receptor family includes the estro-
gen related receptor (ERR), as well as the estrogen receptor (ER) and group 3C subfamily with
the androgen, progesterone, glucocorticoid and mineralocorticoid receptors. Steroid receptors
were originally thought to be a vertebrate specific gene family but the identification of the
genes with a clear homology to human ERR in trichoplax [73] and an ancestral steroid receptor
in amphioxus [74] suggested that these receptors arose early in metazoan evolution and subse-
quently proliferated in vertebrates through series of gene duplication events [75]. We have
identified ER homologues in B. glabrata and L. gigantea (Table 1, Group 3A), which have been
previously reported in other molluscan species, including bivalves, C. gigas [37],Mytilus edulis
[76] and Chlamys farreri [77] and gastropods, Aplysia californica [38], Lymnaea ollula [78],
Marisa cornarietis [33], Thais clavigera [39], Nucella lapillus [79], Bithynia tentaculata [35]
and the cephalopod, Octopus vulgaris [36]. The phylogenetic position of the mollusc ER homo-
logue with the vertebrate ER is well supported with a BMCMC posterior probability of 98%
and bootstrap values of 0.88 and 0.79 (Fig 1), supporting the suggestion that vertebrate and in-
vertebrate ER diverged from a common ancestor, before the evolution of the deuterostomes
[38,75,80]. Structural similarities between ER DBDs of molluscs, annelids, cephalochordates
and vertebrates have been documented showing them to bind to and regulate transcription
through estrogen response elements [36,40,74,81,82]. The ER LBD in invertebrates may have
unique functions, since the mollusc ER homologue, at least in vitro (usually in mammalian re-
porter cell lines), appears to activate transcription constitutively in the absence of a ligand
[36,37,39,40] although in annelids the ER has been shown to activate transcription in the pres-
ence of estrogens [82]. We also identified a single estrogen-related receptor (ERR) in both B.
glabrata and L. gigantea (Table 1, Group 3B), which clusters with fly and human ERRs. ERRs
have been reported previously in molluscs, includingM. cornarietis [33], C. gigas (Genbank:
EKC20050),Mizuhopecten yessoensis (GenBank: BAN84542.1) andM. edulis [76]. ERRs have
no known endogenous ligand, although they are thought to bind to estrogen response elements
and may play a role in estrogen signalling and energy metabolism [83].

We identified no convincing homologues in either of the two molluscs for the AR or for any
other members of group 3C (Fig 1), which also contains the glucocorticoid receptor (GR),
mineralocorticoid receptor (MR) and progesterone receptor (PR). The absence of an AR se-
quence homologue, both in our systematic exhaustive genomic searches of 2 gastropod species,
as well as specific laboratory-based searches in other molluscs [44] using an approach which
successfully identified other receptors and another systematic NR survey in the bivalve C. gigas
[45] strongly suggests no vertebrate AR homologue exists in gastropod molluscs. The presence
of an AR in molluscs has been hotly contested [84], its existence having been inferred from the
effects of androgens and anti-androgens in several species of mollusc (eg. [42,85]), rather than
by the identification of a homologous sequence. The absence of an AR means that the findings
from previous papers requiring its presence to explain their results may require further analysis
in the light of this information; although it should also be noted that the effects of steroids, in-
cluding those reported for androgens in molluscs may not be mediated via NRs. Steroid hor-
mones have also been shown to act via non-genomic mechanisms in vertebrates, using
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membrane bound receptors from the G protein family [86–88], although homologues for these
receptors have also not yet been identified in molluscs.

The absence of a molluscan AR and the constitutive expression of the ER in vitro suggest al-
ternative pathways must exist for spermatogenesis/oogenesis in molluscs and other nuclear re-
ceptors have been proposed as initiating these pathways for reproductive processes, some of
which exist in vertebrates and which may be particularly important in invertebrates. Although
vertebrates have subsequently evolved further processes involving steroid hormones, the pres-
ence of orthologous NRs involved in other pathways in molluscs offers the potential opportuni-
ty to study these conserved networks in an invertebrate.

Group 1 and 2 nuclear receptors
Conservation between other NR-mediated pathways in molluscs and humans, even with the
absence of Group 3C NRs, still provides the potential to develop a mollusc model for endocrine
physiology. The retinoid X receptor (RXR, Group 2B) has been previously identified in mol-
luscs including B. glabrata, [46], L. gigantea [25] and L. stagnalis [89]. We found that the mol-
luscan RXR sequences grouped with good support (BMCMC posterior probability of 91%)
close to the human RXR sequences, with the D.melanogaster ultraspiracle (USP) RXR homo-
logue basal to the clade (Fig 1). BgRXR has been demonstrated to bind and be activated by reti-
noids, suggesting that retinoid signalling pathways are conserved in the Lophotrochozoa [46].
It was also shown to bind to the response element DR1 either as a homodimer or as a heterodi-
mer with mammalian RARα, LXR, FXR or PPARα [46], which suggests the possibility of con-
servation of several important signalling pathways in molluscs. The ligand and the co-activator
peptide have been previously reported to bind to snail RXR in essentially the same manner as
observed in human RXR LBD structures [90], suggesting that the mechanisms of RXR-mediat-
ed transcription regulation are very similar in molluscs and humans. The significance of RXR
signalling on reproductive physiology in molluscs is strongly supported by the finding that
RXR expression is affected during TBT exposure and subsequent development of imposex in
N. lapillus [91]; RXR is thought to be the receptor which mediates TBT induction of imposex
in this species [29]. It has also been recently demonstrated that, in conjunction with RXR sig-
nalling, peroxisome proliferator-activated receptor (PPAR) pathways are activated by organo-
tins [92] and may induce imposex in response to TBT in N. lapillus [93]. Convergence of 9-cis
retinoic acid, a natural ligand for RXR, and PPAR signalling pathways through PPAR-RXRα
hetero-dimerization is well established in mammals [94]. We identified two PPAR homologues
in both L. gigantea and B. glabrata both containing identical sequence to the P-box of human
PPAR (CEGCKGFFRRTI) which grouped with the human PPAR genes (Fig 1); however the 3
human genes seem to have diverged after the split with the molluscan paralogues. Examination
of PPAR gene relationships in more detail and including some additional species in the phylo-
genetic analysis, confirms that the 2 molluscan paralogues diverged prior to the split with verte-
brates. The genes we have designated PPAR1 lie basal to the clade, while the vertebrate α, β and
γ PPAR genes are orthologues of the gene we have designated PPAR2 (Fig 2).

The RXR also binds with the thyroid hormone receptor (THR, Group 1A). Both gastropods
contain a THR homologue (Table 1), which has been previously reported in L. gigantea and
other invertebrates [49]. Wu et al (2007) confirmed that the S.mansoni THR was able to het-
erodimerise with the RXR. The molluscan THRs cluster with the human THRα/β (Fig 1). The
presence of this NR makes B. glabrata a potential model for thyroid hormone processes. Thy-
roid hormones (THs) play key roles in growth development and metabolism in vertebrates. In
invertebrates exogenous (food) sourced THs have been suggested to be involved in signalling
[95].
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Ultraspiracle (USP), the fly orthologue of the RXR (reviewed in [96]), has been shown to
heterodimerize with the ecdysone receptor (EcR) to control ecdysone signalling in insects driv-
ing metamorphosis and moulting [97]. EcR homologues (Group 1H) were identified in both
molluscs (Table 1), the first time this has been reported for B. glabrata. The presence of the
EcR ligand, ecdysone, has been previously reported in pulmonate snails, in B. glabrata and
Lymnaea stagnalis [98], but its origin (endogenous or exogenous) is still contested [99]. Inter-
estingly, ecdysone exposure was found to affect growth and egg production in B. glabrata and
it has been suggested that ecdysone secreted from the S.mansoni parasite might provide a

Fig 2. Phylogenetic relationships of peroxisome proliferator-activated receptors (PPAR α, β and γ).
PPAR sequences from different species were subjected to phylogenetic analyses using Bayesian inference,
maximum likelihood and maximum parsimony. Accession numbers of the PPARs of the different species in
the phylogenetic tree: Heterocephalus glaber XP_004846774; Physeter catodon XP_007109986;
Leptonychotes weddellii γ XP_006734113; L.weddellii α XP_006750071; L. weddellii δ XP_006737129;
Saccoglossus kowalevskii XP_006819446; Strongylocentrotus purpuratus α XP_781750; S. purpuratus γ
XP_784429; C. gigas EKC18691; H. sapiens α AB32649;H. sapiens γ AAH06811; H. sapiens β AAA36469;
Musmusculus αNP_035274;M.musculus γ NP_035276;M.musculus β NP_035275;Oryzias latipus α
XP_004069934;O. latipus β NP_001265836;O. latipus γ NP_001158348; B. glabrata 1 Contig2052; B.
glabrata 2 Contig1275; L. gigantea 1 ProteinID174409; L. gigantea 2 ProteinID238472;H. sapiensROR
AAH0883. Scale bar, 0.1 expected changes/site.

doi:10.1371/journal.pone.0121259.g002
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mechanism for parasitic castration and gigantism seen in some intermediate hosts when in-
fected [100]. The EcR of L. gigantea has been previously identified and its 3D structure investi-
gated [101] revealing the ligand-binding pocket of the L. gigantea EcR homolog has the
potential to bind to ecdysone-related steroids. The observation that EcR is expressed in testis
tissue may also indicate a role in molluscan reproductive processes [101].

One retinoic acid receptor (RAR) was identified in each gastropod species. RARs have previ-
ously been identified in the gastropod L. stagnalis (GenBank: GU932671), the rock shell, T. cla-
vigera [102], the bivalve, C. gigas [45] and recently in N. lapillus [103]. In vertebrates RAR
binds retinoic acid, the biologically active form of vitamin A, which mediates cellular signalling
in embryogenic antero-posterior patterning of the central nervous system [104]. However the
RAR of N. lapillus did not bind to all-trans retinoic acid or any other retinoid tested nor was it
able to activate the transcription of reporter genes in response to stimulation by retinoids
[103]. More work is clearly necessary to elucidate the function of RAR in molluscs.

We also identified homologues of Group 2 C/D vertebrate testicular receptor 4 (TR4) in B.
glabrata and L. gigantea, (designated as BgTR and LgTR) that in mice have been shown to con-
trol spermatogenesis [105] and folliculogenesis [106]. As an orphan nuclear receptor (with no
known ligand) the physiological function of TR4 has been difficult to ascertain until the recent
development of knock-out mice for this gene (reviewed in [107]). Thus determining the basic
biology of vertebrate NRs is dependent on animal experimentation, some of which may be pos-
sible in a simplified model system such as a mollusc.

The NR2E nuclear receptors that have been functionally characterized have a common role
in nervous system development, for example the tailless (tll) gene of D.melanogaster is in-
volved in embryonic CNS and larval eye development [108] and the mouse Tlx gene has also
been found to be a key component of retinal development and vision [109]. In B. glabrata we
identified homologues of photoreceptor cell-specific nuclear receptor (PNR), dissatisfaction
(DSF), TLX and FAX1, while in L. gigantea, we identified a further NR2E gene (Table 1).

Groups NR1J and NR1I cluster in the tree (Fig 1). No members of the NR1I group, includ-
ing vitamin D receptor (VDR) or pregnane X receptors (PXR), were identified in B. glabrata
and L. gigantea; however NR1J group in protostomes shares similarity with vertebrate NR1I
group [110] and there is evidence that both NR1I/NR1J groups share a common ancestor [24].
NR1I receptors are considered as natural sensors and are involved in xenobiotic metabolism in
vertebrates [111]; however, other studies have indicated that NR1J members might regulate xe-
nobiotic responses in D.melanogaster and C. elegans [112,113]. Our results show that L. gigan-
tea has three and B. glabrata four NR1J representatives (Table 1). The mollusc NR1J group
members possess the well-conserved base contact residues (ESCKAFFR) within the DBD, char-
acteristic of the NR1J sub family [114]. In molluscs the NR1J group receptors may be able to
perform the same xenobiotic recognition functions as the closely related NR1I of vertebrates.

Group 5 and 6 nuclear receptors
Germ cell nuclear factor (GCNF) homologues (Group 6) have previously been reported in bila-
terians (reviewed in [50]) and we identified them in both gastropod species. This is in contrast
to the recently published survey of NRs in the pacific oyster C. gigas [45] which did not identify
any NRs from Group 6. Both BgHR4 and LgHR4a/b cluster with good support (posterior prob-
ability 1) to the D.melanogaster GCNF homologue, Dm_HR4 (Fig 1). During embryonic stages
in vertebrates, GCNF can interfere with retinoic acid signalling affecting the expression of
cyp26A1, which is essential for normal hindbrain patterning and early developmental stages
[104]. In Group 5 we identified BgFTZ-F1/LgFTZ-F1 and BgHR39/LgHR39, homologues of
the D.melanogaster NR5 subfamily members, fushi tarazu factor 1 and hormone receptor 39

Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea

PLOSONE | DOI:10.1371/journal.pone.0121259 April 7, 2015 13 / 23



respectively, with a conserved stretch of 23 amino acids adjoining the C-terminal end of the
zinc finger motif (AVRSDRMRGGRNKFGPMYKRDRA). This sequence is located immedi-
ately after the DBD and plays an important role in high affinity interactions of the receptor
with DNA [115]. These Group 5 NRs are related to the vertebrate SF-1 which controls repro-
ductive development and regulates the transcription of steroid-modifying cytochrome P450
genes. In DrosophilaHR39 is essential for sexual development, required in females both to acti-
vate spermathecal secretion and repress male-specific courtship genes, and controls the expres-
sion of specific cytochrome P450 genes [116]. The conservation of function between
invertebrates and vertebrates in these receptors in Groups NR5 and NR6, suggests the potential
for molluscs to be used to model some aspects of mammalian reproductive biology and that
further study into the reproductive biology of invertebrates is warranted.

2DBD nuclear receptors
We identified two 2DBD-NRs in B. glabrata as well as the two 2DBD-NRs previously reported
from L. gigantea [48]. We compared these to the 3 previously identified from S.mansoni [71]
as well as 2DBD NRs from other organisms (Fig 3). The gastropod 2DBD1 clusters with
Sm2DBDγ while the position of the second gastropod 2DBD was not determined within the
clade. Both the identified Bg 2DBD-NRs possess the two tandem DNA binding domains, and a
well-conserved P-box sequence (CEACKK) in the first DBD and a P-box (CEGCK) in the sec-
ond DBD. The P-box of the second DBD is similar to DBD of NR1 family but the P-box of the
first DBD is unique to this NR and may determine novel targets [48].

NRs in parasite and intermediate host
The discovery of differences and similarities in the nuclear receptor repertoire of snail host and
S.mansonimay open up avenues to further characterize host-parasite interactions and poten-
tially to interfere with schistosome development within the host. Parasites are known to inter-
fere with the snail reproductive system, since one effect of trematode infection in snails is
parasitic castration (reviewed in [117]). The intimate host-parasite and intermediate host-para-
site relationships, makes a comparison of nuclear receptors in all three organisms significant. It
has been suggested, at least for the definitive host, that the ability of the parasite to exploit the
hosts’ hormonal microenvironment may be critical to allow it to establish, grow and reproduce
[118]. This may also be significant in enabling the parasite to inhabit its intermediate host and
may depend upon shared nuclear receptors. All 3 organisms have one or more THR, RAR,
HNF4, RXR, TR, COUP-TF and similar NRs in Groups 2E, 4A and 5A. Only snails and schis-
tosomes have the E78, HR39, HR96 and 2DBD NRs, while snails and humans only have
DAX1, PPAR, Rev-erb, ROR, ER, ERR and group 6A NRs. NRs which are specific to the snails
(in this three-way comparison) are the EcR and the group of unclassified NRs, designated as
BgNRU1, BgNRU2, BgNRU3, and BgNRU4 respectively and placed in a separate group
(Table 1). These unclassified receptors may have originated from a specific duplication event in
a B. glabrata precursor, or alternatively, they could be remnants of ancient NR subfamilies,
whose representatives have been secondarily lost in the other represented species. With regard
to the EcR, given that snails have a EcR homologue and schistosomes do not, the suggestion
that β-ecdysterone acts as an attractant in host location by miracidia and affects the rate of
growth and maturation in snails [100] is potentially interesting, although the ability of snails to
make ecdysone is not proven [99]. Both organisms have homologues of the D.melanogaster
NRs E78 and HR39 which are active in ecdysone signalling [116,119].

In addition to discovering the intricacies of the molecular interactions between host and
parasite with a view to disrupting the development of the schistosome, the other key strategy

Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea

PLOSONE | DOI:10.1371/journal.pone.0121259 April 7, 2015 14 / 23



for schistosomiasis control is to reduce the numbers and/or distribution of the intermediate
host snails. Currently molluscicides, such as the commercially available niclosamide-based
Bayluscide, are effectively employed in schistosomiasis control programs; however the prob-
lems of resistance and toxicity to other organisms means that the search for alternative, more
selective, compounds is on-going. The capacity of nuclear receptors to bind small ligands, in-
cluding exogenous substances such as natural products and synthetic chemicals, makes them
potential targets for molluscicides [120].

Fig 3. Phylogenetic relationships of 2DBD nuclear receptors (alpha, beta and gamma). 2DBDNR
sequences from different species were subjected to phylogenetic analyses using Bayesian inference,
maximum likelihood and maximum parsimony. Accession numbers of the 2DBDNRs of the different species
in the phylogenetic tree: D. pulex FE382753;Hymenolepis microstoma CDS31978; Echinococcus
multilocularis CDI99377; Echinococcus granulosus CDS24085; S.mansoni α AAW88533; S.mansoni β
AAW88534; S.mansoni γ AAW88550; Dugesia japonica BP186725; L. gigantea 2DBD1 ProteinID168696; L.
gigantea 2DBD2 ProteinID173632; B. glabrata 2DBD1 Contig304; B. glabrata 2DBD2 Contig1296. Scale bar,
0.1 expected changes/site.

doi:10.1371/journal.pone.0121259.g003
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Biomphalaria glabrata as a model organism
There is a long tradition in biology of examining biochemical processes in simplified models to
elucidate mechanisms in more complex organisms. We have demonstrated that there are some
NR groups with a single representative in the mollusc species’ examined instead of the multiple
genes from humans. For example in the NR1 subfamily, both molluscs have single homologues
of several significant NRs, such as the retinoic acid receptor (RAR), THR and ROR. For these
groups, B. glabrata could provide a simple model system, not only to study the development
and diversification of endocrine systems, but also to investigate and test gene function and re-
sponse to external stimuli. The identification of many vertebrate-like NRs in B. glabrata could
make it a suitable model candidate to investigate functional relationships of individual recep-
tors. The ultimate choice of model organisms lies not only with the biology of the organism,
but also on its tractability for study and manipulation. Aside from the genome, the full range of
genomic tools available for B. glabrata, such as RNAi [8,121], BAC library [5] and microarrays
[6,122,123] as well as the potential to use classical approaches of enhancer and suppressor ge-
netics and transgenics to explore regulatory networks, make B. glabrata a good candidate.
However, the advent of next generation sequencing makes transcriptome study from non-
model organisms a real possibility and therefore other mollusc species may ultimately make
better model systems. In particular, this approach could be used to identify inputs from signal
transduction pathways, potential hormone metabolic genes, co-activators, co-repressors and
other unknown factors that may impinge upon receptor activity. Based on the absence of
Group3C NRs, it can be concluded that B. glabrata is an inappropriate model for mammalian
steroid hormone function mediated via NRs, as the genes for several major steroid hormone re-
ceptors are not present. However since steroid hormones have also been shown to act via non-
genomic mechanisms in vertebrates, using membrane bound receptors (mPR and GPR30) [87]
there is still potential to examine alternative pathways in these organisms.

Conclusions
We identified 39 nuclear receptor genes in B. glabrata and 33 in L. gigantea representing all
seven principal vertebrate nuclear receptor groups. Molluscan endocrinology is poorly under-
stood, so further study to determine the functionality of these identified NRs promises new in-
sights, especially concerning the many unanswered questions regarding the effects of steroids
and other EDCs on molluscs. The importance of the snail as an intermediate host for schisto-
somes, also justifies further investigation into the function of such genes. The absence of verte-
brate NRs such as VDR, CAR and PXR, as well as steroid hormone NRs, AR/PR/GR/MR for
which we found no orthologues in the two mollusc species examined in this study, indicates
that several significant signalling pathways are absent in gastropods. Nevertheless, we have
identified an array of NRs common to both vertebrates/molluscs and molluscs/flies. These re-
sults add weight to Thummel’s speculation about the convergent regulation of NRs in verte-
brates and invertebrates [124]. Elucidation of NR targets in molluscs may unlock their
potential as new model organisms allowing the discovery of new pathways leading to similar
phenotypes found in vertebrates or, indeed, similar pathways that produce a different pheno-
type; both of which could potentially form simple test assays, for determining gene function or
drug/chemical testing. The range of phenotypes, and their underlying genetic mechanisms,
available for study in different species may enable the identification of alternative pathways
mediated by NRs that might also be exploited [125]. The potential of many invertebrate species
for endocrine study is yet to be explored, but the underlying fundamental similarities and dif-
ferences between molluscs and vertebrates may be the solution to determining not only the en-
docrine mechanisms of molluscs but also the full intricacies of our own.
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substitution model. Node labels indicate bootstrap values. Notations Bg, Lg, Hs, Dm, Sm and
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