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Abstract

Noncompact groups, similar to those that appeared in various supergravity theo-

ries in the 1970’s, have been turning up in recent studies of string theory. First it was

discovered that moduli spaces of toroidal compactification are given by noncompact

groups modded out by their maximal compact subgroups and discrete duality groups.

Then it was found that many other moduli spaces have analogous descriptions. More

recently, noncompact group symmetries have turned up in effective actions used to

study string cosmology and other classical configurations. This paper explores these

noncompact groups in the case of toroidal compactification both from the viewpoint

of low-energy effective field theory, using the method of dimensional reduction, and

from the viewpoint of the string theory world sheet. The conclusion is that all these

symmetries are intimately related. In particular, we find that Chern–Simons terms

in the three-form field strength Hµνρ play a crucial role.
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1. Introduction

The unexpected appearance of noncompact global symmetries was one of the most

intriguing discoveries to emerge from the study of supergravity theories in the 1970’s.

The example that attracted the most attention at the time was the E7,7 symmetry (a

noncompact variant of E7) of N = 8, D = 4 supergravity. More recently, noncompact

groups have been found to play a significant role in string theory. Narain’s analysis of

the heterotic string with d toroidally compactified dimensions [1] focussed attention on

the group O(d, d+16). He showed that the coset space O(d, d+16)/O(d)×O(d+16)

is essentially the moduli space of inequivalent compactifications. Analogous coset

spaces describe the moduli spaces of certain Calabi–Yau, orbifold, and other string

compactifications, as well. While Narain’s O(d, d + 16) group is certainly not an

exact symmetry of the compactified heterotic string theory, the discrete subgroup

O(d, d + 16, Z) apparently is. (This is an example of a “target space duality” group,

which relates distinct geometries corresponding to the same conformal field theory.)

In the last couple of years, motivated by considerations of superstring cosmology,

attention has turned to the study of what happens when the compactification moduli

are allowed to be time-dependent. Mueller has found solutions with “rolling radii”

and a time-dependent dilaton [2]. Veneziano discovered an inversion symmetry for the

cosmological scale factor, or “scale factor duality,” both for vacuum solutions and for

the motion of classical strings in cosmological backgrounds [3]. Similar observations

were made by Tseytlin [4] for the case of closed strings and compact target space.

Scale factor duality was later extended to a full continuous O(d, d) symmetry of time-

dependent (but independent of d space dimensions) solutions to the low-energy theory

both in the absence [5] and in the presence of classical string sources [6]. The purpose

of this paper is to explore the relationships between these various appearances of

noncompact global symmetry groups. We will find that they are all very closely

related and that Chern–Simons terms play a significant role in the realization of the

symmetry.

The first appearance of a noncompact symmetry was the discovery of a global
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SU(1, 1) invariance in an appropriate formulation of N = 4, D = 4 supergravity [7].

The qualification “appropriate formulation” refers to the fact that duality transfor-

mations allow n-forms to be recast as (D−n−2)-forms in D dimensions (dÃ = ∗dA),

interchanging the role of Bianchi identities and equations of motion. Only after ap-

propriate transformations is the full noncompact symmetry exhibited. In the SU(1, 1)

theory there are two scalar fields, which parametrize the coset space SU(1, 1)/U(1).

A year later, Cremmer and Julia showed that N = 8, D = 4 supergravity could

be formulated with E7,7 symmetry [8]. In this case the 70 scalars parametrize the

coset E7,7/SU(8). In analogous manner the N = 8, D = 5 theory was found to

have E6,6 symmetry, with the 42 scalars parametrizing E6,6/USp(8) [9]. The largest

known symmetry of this type occurs in the N = 16, D = 3 theory, which has E8,8

symmetry, with 128 scalars parametrizing E8,8/O(16) [10]. It appears to be a general

feature that the scalars parametrize G/H , where H is the maximal compact subgroup

of G. Two-dimensional examples, in which G and H are both infinite, have also been

considered [11].

The examples listed above (except for the SU(1, 1) case) all refer to maximally

supersymmetric theories. If they have any connection to string theory, it is with the

type II superstring. Although it may be worthwhile to do so, that line of inquiry will

not be pursued here. Rather, we shall focus on theories with half as much supersym-

metry (N = 1 in D = 10 or N = 4 in D = 4). These should be relevant to heterotic

string theories. In [12] it was shown that the N = 1, D +d = 10 supergravity theory,

dimensionally reduced to D dimensions (by dropping the dependence of the fields on

d dimensions), has global O(d, d) symmetry. One exception occurs for D = 3, where

duality transformations allow the symmetry to be extended to O(8, 8) [10]. More-

over, when the original N = 1 D = 10 theory has n Abelian vector supermultiplets

in addition to the supergravity multiplet, the global symmetry of the dimensionally-

reduced theory becomes extended to O(d, d+n), except for d = 7, where one obtains

O(8, 8 + n) [10].

The coupling of N = 1 D = 10 supergravity to vector supermultiplets require the

inclusion of a Chern–Simons term (H = dB−ω3) in order to achieve supersymmetry.
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This was shown in the Abelian case by Bergshoeff et al. [13] and in the non-Abelian

case by Chapline and Manton [14]. In this paper we will focus on the bosonic sector,

which can be formulated in any dimension. In section 2 we show that dimensional

reduction from D + d dimensions to D dimensions gives rise to a theory with global

O(d, d) symmetry when there are no vector fields in D + d dimensions. In section 4

the addition of n Abelian vector fields in D + d dimensions is considered. We show

that the dimensionally-reduced theory has O(d, d + n) symmetry provided that the

Chern–Simons term (described above) is included. Thus the desirability of such terms

is deduced from purely bosonic considerations!

The O(d, d) symmetric theories considered by Veneziano and collaborators [3]

are special cases of the theories derived here. Hassan and Sen have considered the

extension to n 6= 0 and arbitrary D [15]. However, for their purposes only the

O(d) × O(d + n) subgroup is of interest.

In the older supergravity theories, discussed above, a beautiful technique for for-

mulating the G/H theory was developed. One starts with a matrix ViA of scalar

fields belonging to the adjoint representation of G, which acts as a sort of “vielbein.”

The i index runs over a representation of G and the A index over the corresponding

(possibly reducible) representation of the subgroup H . Then the theory is formulated

with global G symmetry and an independent local H symmetry. The latter is im-

plemented by introducing auxiliary gauge fields for the group H , without any kinetic

term. These fields, which are somewhat analogous to the spin connection in a first-

order formulation of general relativity, can be eliminated by solving their equations

of motion (algebraically) and substituting back in the action. The local H symmetry,

which still is present after this substitution, can then be used to choose a gauge in

which the scalar fields belonging to the H subgroup are set to zero. In section 3 we

carry out this procedure explicitly for the O(d, d) symmetric theory and show that it

gives the correct action for the moduli fields. The vector fields are shown to form a

2d-dimensional vector multiplet of O(d, d). It is a general feature of the supergravity

theories that all bosonic fields other than the scalars are inert under the local H

symmetry. To our surprise, we discovered a second construction that linearizes the
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action of G, which is also presented in section 3.

In section 5 we reconsider the noncompact symmetries from the viewpoint of the

world-sheet (σ-model) action. The result of Narain, Sarmadi, and Witten [16] that

the moduli of toroidal compactification parametrize O(d, d)/O(d) × O(d) is briefly

reviewed, as is the argument that string corrections break the O(d, d) symmetry to

the discrete O(d, d, Z) subgroup. By introducing d coordinates (Ỹα) that are dual

to the d compact string coordinates (Y α), we are able to obtain a set of 2d classical

equations of motion that have manifest O(d, d) symmetry. The equations of motion

for the space-time embedding of the string Xµ are also recast in an O(d, d) symmetric

form. The symmetry is broken to O(d, d, Z) by boundary conditions.

2. Dimensional Reduction Gives O(d,d) Symmetry

In the 1970’s it was noted that noncompact global symmetries are a generic

feature of supergravity theories containing scalar fields. One of the useful techniques

that was exploited in these studies was the method of “dimensional reduction.” In

its simplest form, this consists of considering a theory in a spacetime M×K, where

M has D dimensions and K has d dimensions, and supposing that the fields are

independent of the coordinates yα of K. For this to be a consistent procedure it is

necessary that K-independent solutions be able to solve the classical field equations.

Then one speaks of “spontaneous compactification” (at least when K is compact).

In a gravity theory this implies that K is flat, a torus for example. Of course, in

recent times more interesting possibilities, such as Calabi–Yau spaces, have received

a great deal of attention. In such a case, the analog of dropping y dependence is to

truncate all fields to their zero modes on K. Here we will only consider flat K, though

generalizations would clearly be deserving of study.

Explicit formulas for dimensional reduction were given in a 1979 paper by Joël

Scherk and JHS [17] and subsequently developed further by Cremmer [18]. The main

purpose of [17] was to introduce a “generalized” method of dimensional reduction that

could give rise to massive fields in the D-dimensional theory starting from massless
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ones in the (D + d)-dimensional theory. That procedure will not be utilized here.

Rather we will stick to the simplest case in which the fields are taken to be independent

of the K coordinates. Our notation is as follows: Local coordinates of M are xµ(µ =

0, 1, ..., D − 1) and local coordinates of K are yα(α = 1, ..., d). The tangent space

Lorentz metric has signature (−+ ...+), unlike [17], which results in a number of sign

changes in the formulas given there. All fields in D + d dimensions are written with

hats on the fields and the indices (φ̂, ĝµ̂ν̂ , etc.). Quantities without hats are reserved

for D dimensions. Thus, for example, the Einstein action on M×K (with a dilaton

field φ̂) is

Sĝ =

∫

M

dx

∫

K

dy
√

−ĝ e−φ̂
[

R̂(ĝ) + ĝµ̂ν̂∂µ̂φ̂∂ν̂ φ̂
]

(2.1)

If K is assumed to be a torus we can choose the coordinates yα to be periodic with

unit periods, so that
∫

K
dy = 1. The radii and angles that characterize the torus

are then encoded in the metric tensor. As usual, the strength of the gravitational

interaction is determined by the value of the dilaton field.

The formulas that follow can be read off from [17], generalized to include the

dilaton field. In terms of a (D + d)-dimensional vielbein, we can use local Lorentz

invariance to choose a triangular parametrization

êr̂
µ̂ =

(

er
µ A

(1)β
µ Ea

β

0 Ea
α

)

and êµ̂
r̂ =

(

eµ
r −eν

rA
(1)α
ν

0 Eα
a

)

. (2.2)

The “internal” metric is Gαβ = Ea
αδabE

b
β and the “spacetime” metric is gµν = er

µηrse
s
ν .

As usual, Gαβ and gµν represent inverses and are used to raise the appropriate indices.

In terms of these quantities the complete (D + d)-dimensional metric is

ĝµ̂ν̂ =

(

gµν + A
(1)γ
µ A

(1)
νγ A

(1)
µβ

A
(1)
να Gαβ

)

and ĝµ̂ν̂ =

(

gµν −A(1)µβ

−A(1)να Gαβ + A(1)ραA
(1)β
ρ

)

.

(2.3)

A convenient property of this parametrization is that

√

−ĝ = detêr̂
µ̂ = deter

µdetEa
α =

√−g
√

detG . (2.4)
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If all fields are assumed to be y independent, one finds after a tedious calculation

Sĝ =

∫

M

dx
√−g e−φ

{

R + gµν∂µφ∂νφ

+
1

4
gµν∂µGαβ∂νG

αβ − 1

4
gµρgνλGαβF

(1)α
µν F

(1)β
ρλ

}

,

(2.5)

where we have introduced a shifted dilaton field [19,20,3]

φ = φ̂ − 1

2
log det Gαβ (2.6)

and F
(1)α
µν = ∂µA

(1)α
ν − ∂νA

(1)α
µ .

Another field that is of interest in string theory is a second-rank antisymmetric

tensor B̂µ̂ν̂ with field strength

Ĥµ̂ν̂ρ̂ = ∂µ̂B̂ν̂ρ̂ + cyc. perms . (2.7)

The Chern–Simons terms that appear in superstring theory are not present here since

we are not including (D + d)-dimensional vector fields (in this section). The Lorentz

Chern–Simons term [21] is of higher order in derivatives than we are considering. The

action for the B̂ term is

S
B̂

= − 1

12

∫

M

dx

∫

K

dy
√

−ĝ e−φ̂ ĝµ̂µ̂′

ĝν̂ν̂′

ĝρ̂ρ̂′

Ĥµ̂ν̂ρ̂ Ĥµ̂′ν̂′ρ̂′ . (2.8)

Because of the structure of the inverse metric, a little thought is required to

organize the terms in the dimensional reduction of eq. (2.8) in a useful form. A

systematic procedure is to first convert Ĥ to tangent space indices Ĥr̂ŝt̂ and then use
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er
µ and Ea

α to convert back to Greek indices. This procedure leads to the result

S
B̂

= −
∫

M

dx
√
−g e−φ

{

1

12
HαβγHαβγ +

1

4
HµαβHµαβ

+
1

4
HµναHµνα +

1

12
HµνρH

µνρ

}

.

(2.9)

Here Hαβγ = 0, since B̂αβ = Bαβ is y independent. Also,

Hµαβ = er
µêµ̂

r Ĥµ̂αβ = Ĥµαβ = ∂µBαβ . (2.10)

Similarly,

Hµνα = er
µes

ν ê
µ̂
r êν̂

sĤµ̂ν̂α

= Ĥµνα − A
(1)β
µ Ĥβνα − A

(1)β
ν Ĥµβα

= F
(2)
µνα − BαβF

(1)β
µν ,

(2.11)

where we have used F
(2)
µνα = ∂µA

(2)
να − ∂νA

(2)
µα and

A
(2)
µα = B̂µα + BαβA

(1)β
µ . (2.12)

The gauge transformations of the vector fields are simply δA
(1)α
µ = ∂µΛ(1)α and

δA
(2)
µα = ∂µΛ

(2)
α , under which Hµνα is invariant.

For Hµνρ one finds

Hµνρ = er
µes

νe
t
ρê

µ̂
r êν̂

s ê
ρ̂
t Ĥµ̂ν̂ρ̂

= Ĥµνρ −
(

A
(1)α
µ Ĥανρ + 2 perms

)

+
(

A
(1)α
µ A

(1)β
ν Ĥαβρ + 2 perms

)

= ∂µBνρ −
1

2

(

A
(1)α
µ F

(2)
νρα + A

(2)
µαF

(1)α
νρ

)

+ cyc. perms. ,

(2.13)

where

Bµν = B̂µν +
1

2
A

(1)α
µ A

(2)
να − 1

2
A

(1)α
ν A

(2)
µα − A

(1)α
µ BαβA

(1)β
ν . (2.14)

In this case gauge invariance of the last line in eq. (2.13) requires that under the Λ(1)
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and Λ(2) transformations

δBµν =
1

2

(

Λ(1)αF
(2)
µνα + Λ

(2)
α F

(1)α
µν

)

. (2.15)

The extra terms in Hµνρ, which have arisen as a consequence of the dimensional

reduction, are abelian Chern–Simons terms. Recall that the requirement that H is

globally defined implies that dH is exact and hence that tr(R ∧ R) − tr(F ∧ F ) is

exact for the familiar Chern–Simons terms of N = 1, D = 10 supersymmetric theories

[21,22]. In the present case, similar reasoning yields the requirement that F (1)α∧F
(2)
α

be exact. Again, this is a significant restriction on possible background configurations.

To recapitulate, the dimensionally reduced form of S = Sĝ +S
B̂

has been written

in the form

S =

∫

M

dx
√−g e−φL . (2.16)

For the factor L we have found L = L1 + L2 + L3 + L4, where

L1 = R + gµν∂µφ∂νφ

L2 =
1

4
gµν
(

∂µGαβ∂νG
αβ − GαβGγδ∂µBαγ∂νBβδ

)

L3 = −1

4
gµρgνλ

(

GαβF
(1)α
µν F

(1)β
ρλ + GαβHµναHρλβ

)

L4 = − 1

12
HµνρH

µνρ .

(2.17)

We now claim that there is an O(d, d) global symmetry that leaves each of these

four terms separately invariant. The first term (L1) is trivially invariant since gµν and

φ are. It should be noted, however, that the individual terms in φ = φ̂− 1
2 log det Gαβ

are not invariant.

To investigate the invariance of L2 we first rewrite it, using matrix notation, as

L2 =
1

4
tr
(

∂µG−1∂µG + G−1∂µBG−1∂µB
)

. (2.18)
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Then we introduce two 2d × 2d matrices, written in d × d blocks, as follows [23]:

M =

(

G−1 −G−1B

BG−1 G − BG−1B

)

(2.19)

η =

(

0 1

1 0

)

. (2.20)

Since η has d eigenvalues +1 and d eigenvalues −1, it is a metric for the group O(d, d)

in a basis rotated from the one with a diagonal metric. The diagonal form will be

used briefly in the next section. Next we note that M ∈ O(d, d), since

MT ηM = η . (2.21)

In fact, M is a symmetric O(d, d) matrix, which implies that

M−1 = ηMη =

(

G − BG−1B BG−1

−G−1B G−1

)

. (2.22)

It is now a simple exercise to verify that

L2 =
1

8
tr(∂µM−1∂µM) . (2.23)

Thus L2 is invariant under a global O(d, d) transformation

M → ΩMΩT , (2.24)

where

ΩT ηΩ = η . (2.25)

This transformation acts on G and B in a rather complicated nonlinear way. We will

give a simple description of this action later.
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One might be tempted to think that the symmetry is even larger, since L2 is

formally invariant under M → AMAT for any matrix A ∈ GL(2d). However, M is

not an arbitrary symmetric matrix (which would have d(2d−1) parameters), but one

which belongs to O(d, d) and has just d2 parameters. Thus O(d, d) transformations

are the most general transformations that preserve the structure of M and can be

realized as transformations of G and B.

Next we consider the L3 term:

L3 = −1

4

[

F
(1)α
µν GαβF (1)µνβ +

(

F
(2)
µνα − BαγF

(1)γ
µν

)

Gαβ
(

F
(2)µν
β − BβδF

(1)µνδ
)]

= −1

4
F i

µν(M−1)ijFµνj ,

(2.26)

where F i
µν is the 2d-component vector of field strengths

F i
µν =

(

F
(1)α
µν

F
(2)
µνα

)

= ∂µAi
ν − ∂νAi

µ . (2.27)

Then L3 is seen to be O(d, d) invariant provided that the vector fields transform

linearly according to the vector representation of O(d, d), i.e., Ai
µ → Ωi

jAj
µ.

Finally we turn to L4. In this case Hµνρ can be written in the form

Hµνρ = ∂µBνρ −
1

2
Ai

µηijF j
νρ + (cyc. perms.) . (2.28)

This is O(d, d) invariant if we require that Bνρ not transform. The second term is

invariant since ΩT ηΩ = η.

To make contact with string theory, the formulas we have presented here are

appropriate to the massless fields of the closed oriented bosonic string with D+d = 26.

In that case the O(d, d) symmetry is certainly broken by higher mass and higher

dimension terms that have been dropped. An O(d, d, Z) subgroup is believed to

survive as an exact symmetry of the theory, though it is broken spontaneously when

a particular background is selected. This discrete group and its relationship to the
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continuous groups described here will be explored in section 5. To make contact with

the heterotic string, Yang–Mills gauge fields should be introduced in the original

(D + d)-dimensional theory. This extension will be explored in section 4.

3. Coset Space Reformulations

The realization of O(d, d) symmetry found in the last section, M → ΩMΩT , is

not very transparent as a rule for the transformation of the d2 scalar fields

X = G + B . (3.1)

Let us explore this in a little detail. To start with, consider an infinitesimal O(d, d)

transformation given by
⋆

Ω =

(

1 + α β

γ 1 − αT

)

, (3.2)

where α, β, γ are infinitesimal d × d matrices and β = −βT , γ = −γT . Then

δM =

(

α β

γ −αT

)

M + M

(

αT −γ

−β −α

)

, (3.3)

which is easily seen to correspond to [24]

δX = γ − αT X − Xα − XβX . (3.4)

The similarity of the last formula to one for an infinitesimal SL(2, C) transforma-

tion, which exponentiates to z → (a z + b)(c z + d)−1, suggests the following. Write

⋆ The GL(d, R) subalgebra parametrized by the matrix α corresponds to constant (global) gen-
eral coordinate transformations of the internal manifold K. Clearly, in view of the toroidal
topology, only the SL(d, Z) subgroup belongs to Diff(K) (see section 5). The remaining gen-
erators of O(d, d, Z) correspond to integer shifts of the moduli Bαβ .
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an arbitrary O(d, d) matrix Ω in block form

Ω =

(

Ω11 Ω12

Ω21 Ω22

)

. (3.5)

Then the finite transformation

X → (Ω22X + Ω21)(Ω11 + Ω12X)−1 (3.6)

reproduces the infinitesimal transformation formula obtained above [25]. Moreover,

it has the correct group property, and so must be correct in general. The matrix that

appears here is actually

Ω̃ = ηΩη =

(

Ω22 Ω21

Ω12 Ω11

)

, (3.7)

which is an equivalence transformation. It is the matrix X−1 that undergoes a lin-

ear fractional transformation controlled by the matrix Ω. This transformation law

of X is reminiscent of that for period matrices matrices under symplectic modular

transformations in the theory of Riemann surfaces.

How should we utilize these facts? A possible goal is to rewrite the action in terms

of the matrix X rather than the matrix M . Another possible goal is to introduce

auxiliary gauge fields and extra scalar fields such that the O(d, d) symmetry is realized

linearly. Towards these ends let us introduce a second real d×d matrix of scalar fields,

called Y , and generalize eq. (3.6) to

(

X

Y

)

→
(

Ω22 Ω21

Ω12 Ω11

) (

X

Y

)

, (3.8)

which corresponds to the previous nonlinear transformation rule for the matrix XY −1.

In other words, (3.6) corresponds to (3.8) in the “gauge” Y = 1. It is convenient to
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introduce a 2d× d matrix V consisting of the blocks X and Y (as in eq. (3.8)), such

that the above transformation is

Viα → Ω̃ij Vjα .

The rectangular matrix Viα transforms as d copies (labeled by α) of the vector rep-

resentation of O(d, d).

In order to have enough gauge freedom to eliminate Y , which is an arbitrary real

nonsingular matrix, we need local GL(d, R) gauge symmetry. If mαβ is a matrix

belonging to GL(d, R), we require that Viα transform as 2d copies (labeled by i) of

the vector representation of GL(d, R)

Viα → mαβ Viβ = (V mT )iα . (3.9)

Next we introduce auxiliary gauge fields, belonging to the GL(d, R) algebra, called

(Aµ)αβ , and we define a covariant derivative

DµViα = ∂µViα + (Aµ)αβViβ . (3.10)

Now let us try to write a V kinetic term with global O(d, d) symmetry and

local GL(d, R) symmetry. Two O(d, d) invariant d × d matrices are (V T ηV )αβ and

(DµV T η DµV )αβ . Under local GL(d, R) transformations

V TηV → m(V T ηV )mT

DµV TηDµV → m(DµV TηDµV )mT .
(3.11)

Therefore the natural guess with the desired symmetries is

L′
2 =

1

4
tr
[

(V T ηV )−1(DµV T ηDµV )
]

. (3.12)

It is straightforward to solve the classical field equation implied by this Lagrangian
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for (Aµ)αβ in the Y = 1 gauge with the result

(Aµ)αβ = −1

2
(G−1)βγ∂µ(G + B)γα . (3.13)

Substituting this back into L′
2, one obtains the desired result found in Section 2:

L′
2 = L2 =

1

4
tr(∂µG−1∂µG + G−1∂µBG−1∂µB) . (3.14)

To complete this part of the story we still need to recast L3 in terms of V in an

O(d, d) × GL(d, R) invariant form. Since F i is an O(d, d) vector, (V TF)β is O(d, d)

invariant and a GL(d, R) vector. Thus an invariant combination is

(FTV )α(V T ηV )−1
αβ(V TF)β . (3.15)

It is straightforward to show that in the Y = 1 gauge this reduces to

1

2

(

FTηF + FTM−1F
)

. (3.16)

Thus the desired result is

L3 = −1

2
(FTV )(V TηV )−1(V TF) +

1

4
FTηF . (3.17)

The result found above is not what was expected. Experience from supergravity

theories leads one to expect that it should be possible to linearize the O(d, d) sym-

metry transformations by introducing a complete adjoint multiplet of scalar fields

and gauging the maximal compact subgroup O(d)×O(d), so that the d2 scalar fields

X = G + B would parametrize the coset space O(d, d)/O(d)× O(d). What we have

done above is quite different – it is not a coset construction, since the starting multi-

plet of scalars V does not parametrize the adjoint representation of any group. Rather

it belongs to vector representations of both O(d, d) and GL(d, R), the latter being

gauged. This raises a question. Does the usual G/H construction give an equivalent

result or does it give a wrong result?
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To construct an O(d, d)/O(d) × O(d) theory we follow the procedure used in

various supergravity theories. The way to do this is to introduce a 2d × 2d matrix

VAi which plays the role of a “vielbein” for the matrix Mij [24], in the sense that

Mij = (V T V )ij = δABVAiVBj . (3.18)

A matrix that solves this equation is

V =

(

E−1 −E−1B

0 E

)

(3.19)

where E is a d × d vielbein satisfying ETE = G. It should be noted that the matrix

V belongs to O(d, d), i.e., V T ηV = η.

The obvious guess, then, for an action with global O(d, d) symmetry and local

O(d) × O(d) symmetry is

L =
1

4
ηijηAB(DµV )Ai(D

µV )Bj , (3.20)

with V an arbitrary O(d, d) matrix (not yet of the special form in eq. (3.19)) and

auxiliary gauge fields for local O(d) × O(d), which are incorporated in the covariant

derivatives. The covariant derivative is a little awkward to formulate in the basis with

the off-diagonal metric η. Therefore we make a change of basis that diagonalizes it.

Introducing ρT ηρ = σ, where

ρ =
1√
2

(

1 −1

1 1

)

and σ =

(

1 0

0 −1

)

, (3.21)

we rotate the matrix V by defining W = ρTV ρ. Since V is an O(d, d) matrix satisfying

V TηV = η, W is an O(d, d) matrix satisfying W TσW = σ. Now the covariant
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derivative takes the form

(DµW )Ai = ∂µWAi + ωµABσBCWCi , (3.22)

where the auxiliary O(d) × O(d) gauge fields are given by

ωµ =

(

ω
(1)
µ 0

0 ω
(2)
µ

)

. (3.23)

In this expression ω
(1)
µ and ω

(2)
µ are independent O(d) gauge fields (antisymmetric).

The Lagrangian now takes the form

L =
1

4
σijσAB(DµW )Ai(D

µW )Bj . (3.24)

To make contact with L2 one varies with respect to the gauge fields, solves their

classical equations, and substitutes back into L. This procedure is certainly valid in

the present context. One finds that

ω
(1)
µab =

1

2
ηij(Wai∂µWbj − Wbi∂µWaj) (3.25)

where a, b run over the first d values of the indices A, B. ω
(2)
µab is given by an analogous

formula using the second d values of the indices. Substituting back into eq. (3.24)

we find that

L =
1

2
tr
[

(Wσ∂µW T )12 (Wσ∂µW T )21
]

. (3.26)

The notation is that the numerical indices represent d×d blocks of the 2d×2d matrix

Wσ∂µW T . At this point W is an arbitrary O(d, d) matrix. However, L still has local

O(d)×O(d) symmetry even though the gauge fields have been eliminated. This local

symmetry allows us to choose a gauge in which W takes the form W = ρT V ρ, with

V the matrix given in eq. (3.19).
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Now we must compare the result above to L2 = 1
8tr(η ∂µM η ∂µM) . Substituting

M = V TV = ρW T WρT and using ρTηρ = σ gives

L2 =
1

8
tr(σ ∂µ(W TW )σ ∂µ(W TW )) . (3.27)

Expanding out the derivatives and using W TσW = σ gives

L2 =
1

4
tr

[

(Wσ ∂µW T )(Wσ ∂µW T ) − (Wσ ∂µW T )σ(Wσ∂µW T )σ

]

. (3.28)

Expanding in d × d blocks one finds that eqs. (3.26) and (3.28) are identical, and

hence L = L2, as desired! Thus the conventional wisdom that G and B parametrize

an O(d, d)/O(d)× O(d) coset is correct. The somewhat surprising fact is that there

is an alternative interpretation utilizing local GL(d, R) described in the first part of

this section.

4. Generalization to O(d, d+n) Symmetry

Previous work in supergravity [10] and superstring theory [1] suggests that if we

add n Abelian U(1) gauge fields to the original (D + d)-dimensional theory, that

O(d, d + n) symmetry should result from dimensional reduction to D dimensions. In

this section we explore whether this is the case. The additional term to be added to

the action is

S
Â

= −1

4

∫

M

dx

∫

K

dy
√

−ĝ e−φ̂ ĝµ̂ρ̂ĝν̂λ̂δIJ F̂ I
µ̂ν̂ F̂ J

ρ̂λ̂
, (4.1)

where F̂ I
µ̂ν̂ = ∂µ̂ÂI

ν̂ − ∂ν̂Â
I
µ̂ and the index I takes the values I = 1, 2, · · · , n.

The most important point to note is that the original (D+d)-dimensional theory

should have O(n) symmetry described by the formulas of section 2 with MIJ = ηIJ =

δIJ . Looking at the various pieces of the Lagrangian, we see that L1 has the usual
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form, L2 = 0, and L3 gives S
Â
. The crucial observation concerns L4, which is built

from the square of

Ĥµ̂ν̂ρ̂ = ∂µ̂B̂ν̂ρ̂ −
1

2
ÂI

µ̂δIJ F̂ J
νρ + (cyc. perms.) . (4.2)

This contains the Chern–Simons term (for the U(1) gauge fields), a feature that is

clearly crucial for the symmetries we wish to implement.
⋆

Once this point is un-

derstood, the analysis is a fairly straightforward generalization of that presented in

section 2, though some of the algebra is more complicated.

The dimensional reduction can now be carried out by the same methods intro-

duced in section 2. The reduction of Sĝ is unchanged from before. For the vectors

we obtain

S
Â

= −1

4

∫

dx
√
−g e−φ

{

F I
µνF

Iµν + 2F I
µαF Iµα

}

, (4.3)

where we define

A
(3)I
µ = ÂI

µ − aI
αA

(1)α
µ

F
(3)I
µν = ∂µA

(3)I
ν − ∂νA

(3)I
µ

aI
α = ÂI

α

F I
µν = F

(3)I
µν + F

(1)α
µν aI

α

F I
µα = ∂µaI

α .

(4.4)

The reduction of the various H terms includes additional pieces beyond those of

section 2, because of the presence of the Chern–Simons term. We find the following:

Hµαβ = ∂µBαβ +
1

2
(aI

α∂µaI
β − aI

β∂µaI
α)

Hµνα = −CαβF
(1)β
µν + F

(2)
µνα − aI

αF
(3)I
µν

Hµνρ = ∂µBνρ −
1

2
Ai

µηijF j
νρ + cyc. perms. ,

(4.5)

⋆ It is remarkable that the necessity of the Chern–Simons terms is deduced from purely bosonic
considerations. This has been argued previously, in the σ-model description of strings, based
on anomaly effects arising from gauge fields that couple chirally to the world sheet [26]. Such
a chiral coupling is not assumed in the present analysis.
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where we have used the definitions

A
(2)
µα = B̂µα + BαβA

(1)β
µ +

1

2
aI

αA
(3)I
µ (4.6)

Cαβ =
1

2
aI

αaI
β + Bαβ . (4.7)

As usual, Hµνρ is gauge invariant for δAi
µ = ∂µΛi and δBµν = 1

2ΛiηijF j
µν . In matrix

notation we write C = 1
2aT a + B. We have introduced a (2d + n)-component vectors

Ai
µ = (A

(1)α
µ , A

(2)
µα, A

(3)I
µ ) and F i

µν = ∂µAi
ν − ∂νAi

µ and the O(d, d + n) metric η,

which, when written in blocks, takes the form

η =







0 1 0

1 0 0

0 0 1






. (4.8)

With these definitions, Hµνρ has manifest O(d, d + n) symmetry.

Next, we look at all terms that are quadratic in field strengths F . The contribu-

tions to

L3 = −1

4
F i

µν(M−1)ij F jµν (4.9)

come from Sĝ (as before), from 1
4F I

µνF
Iµν , and from 1

4HµναHµνα. From these we

read off the result

M−1 =







G + CTG−1C + aT a −CT G−1 CTG−1aT + aT

−G−1C G−1 −G−1aT

aG−1C + a −aG−1 1 + aG−1aT






(4.10)

To check whether this is an O(d, d + n) matrix we form

ηM−1η =







G−1 −G−1C −G−1aT

−CT G−1 G + CT G−1C + aT a CTG−1aT + aT

−aG−1 aG−1C + a 1 + aG−1aT .






(4.11)

Multiplying these, we find that M−1ηM−1η = 1. Hence M−1 and M are symmetric

O(d, d + n) matrices, as expected.

19



Motivated by the results of section 3, we next seek a matrix V belonging to

O(d, d + n) such that V TV = ηM−1η = M . It is very easy at this point to discover

that a suitable choice is

V =







E−1 −E−1C −E−1aT

0 E 0

0 a 1






, (4.12)

which is remarkably simple.

The last remaining check of O(d, d + n) symmetry is to verify that we recover

L2 = 1
8tr(∂µM−1∂µM), with the matrix M given above. Relevant contributions

come from Sĝ, −1
2(F I

µα)2, and −1
4(Hµαβ)2. The calculation is a bit tedious, but

the desired result is obtained. Clearly this term can also be understood using an

O(d, d+n)/O(d)×O(d+ n) analysis generalizing that presented in section 3. In this

case L2 would be obtained, as before, if one uses the local O(d)×O(d+n) symmetry

to bring an arbitrary O(d, d + n) matrix V to the form given above.

It is natural to inquire what happens if the (D + d)-dimensional theory contains

a non-Abelian Yang–Mills group. After all, the heterotic string in 10 dimensions can

have O(32) or E8 × E8. In general, compactification with nontrivial moduli breaks

these symmetries. The only thing that is easy to do, and which makes contact with

Narain’s analysis [1], is to set to zero all the gauge fields except those belonging to

a Cartan subalgebra – [U(1)]16 in the case of the heterotic string. Then the problem

reduces to the Abelian theory, and the analysis of this section becomes applicable. In

this way one obtains the noncompact group O(d, d + 16) considered by Narain.
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5. O(d,d) Symmetric World Sheet Equations

In this section, we discuss how O(d, d) symmetry appears in the σ-model descrip-

tion of string theory. The generalization to the O(d, d+n) case will not be presented

in detail here, but the result will be stated at the end of the section. First, we review

the description of a string in the presence of constant background fields when d coor-

dinates are compactified on a torus, following refs. [16,23,27]. Then we consider the

extension to spacetime-dependent background fields, generalizing previous studies in

refs. [28,29,30,24,31,32]. Only closed string theories are considered here. For a recent

discussion of toroidal compactification of open string theories see [33].

To be specific, let us consider the two-dimensional σ-model description of a

bosonic string in a space with d compactified coordinates Y α(σ, τ). The portion

of the action containing these coordinates is

SK =
1

2

∫

d2σ
[

Gαβηab∂aY
α∂bY

β + ǫabBαβ∂aY
α∂bY

β
]

, (5.1)

where Gαβ and Bαβ are constants. The coordinates are taken to satisfy the periodicity

conditions Y α ≃ Y α + 2π.
⋆

For closed strings it is necessary that

Y α(2π, τ) = Y α(0, τ) + 2πmα , (5.2)

where the integers mα are called winding numbers. It follows from the single-

valuedness of the wave function on the torus that the zero modes of the canonical

momentum, Pα = Gαβ∂τY
β + Bαβ∂σY β , are also integers nα. Therefore the zero

modes of Y α are given by

Y α
0 = yα + mασ + Gαβ(nβ − Bβγnγ)τ , (5.3)

⋆ We apologize for switching conventions from section 2, where the yα’s were taken to have unit
periods.
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where Gαβ is the inverse of Gαβ as before. The Hamiltonian is given by

H =
1

2
Gαβ(Ẏ αẎ β + Y ′αY ′β) , (5.4)

where Ẏ α and Y ′β are derivatives with respect to τ and σ, respectively.

Since Y α(σ, τ) satisfies the free wave equation, we can decompose it as the sum

of left- and right-moving pieces. The zero mode of Pα = GαβPβ is given by pα
L + pα

R

where

pα
L =

1

2
[mα + Gαβ(nβ − Bβγmγ)] and pα

R =
1

2
[−mα + Gαβ(nβ − Bβγmγ)] (5.5)

The mass-squared operator, which corresponds to the zero mode of H, is given (aside

from a constant) by

(mass)2 = Gαβ

(

pα
Lpβ

L + pα
Rpβ

R

)

+
∞
∑

m=1

d
∑

i=1

(αi
−mαi

m + α̃i
−mα̃i

m) , (5.6)

As usual, {αm} and {α̃m} denote oscillators associated with right- and left-moving co-

ordinates, respectively. Substituting the expressions for pL and pR, the mass squared

can be rewritten as

(mass)2 =
1

2
Gαβmαmβ +

1

2
Gαβ(nα−Bαγmγ)(nβ−Bβδm

δ)+
∑

(αi
−mαi

m+α̃i
−mα̃i

m) .

(5.7)

It is significant that the zero mode portion of eq. (5.7) can be expressed in the form

(M0)
2 =

1

2
(m n)M−1

(

m

n

)

, (5.8)

where M is the 2d× 2d matrix introduced in section 2, which we display once again:

M =

(

G−1 −G−1B

BG−1 G − BG−1B

)

(5.9)

In order to satisfy σ-translation symmetry, the contributions of left- and right-moving

sectors to the mass squared must agree (L0 = L̃0 in the usual notation). The zero
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mode contribution to their difference is

Gαβ(pα
Lpβ

L − pα
Rpβ

R) = mαnα . (5.10)

Since this is an integer, it always can be compensated by oscillator contributions,

which are also integers.

Equation (5.10) is invariant under interchange of the winding numbers mα and the

discrete momenta nα. Indeed, the entire spectrum remains invariant if we interchange

mα ↔ nα and simultaneously let [23]

(G − BG−1B) ↔ G−1 and BG−1 ↔ −G−1B . (5.11)

These interchanges precisely correspond to inverting the 2d × 2d matrix M . This is

the spacetime duality transformation generalizing the well-known duality R ↔ α′/R

in the d = 1 case [34,35,36,37]. The general duality symmetry implies that the 2d-

dimensional Lorentzian lattice spanned by the vectors
√

2(pα
L, pα

R) with inner product

√
2 (pL, pR) ·

√
2 (p′L, p′R) ≡ 2Gαβ(pα

Lp′βL − pα
Rp′βR ) = (mαn′

α + m′αnα) , (5.12)

is even and self-dual [1].

The moduli space parametrized by Gαβ and Bαβ is locally the coset O(d, d)/O(d)×
O(d) [16], just as we found in section 3. The global geometry requires also mod-

ding out the group of discrete symmetries generated by Bαβ → Bαβ + Nαβ and

G + B → (G + B)−1. These symmetries generate the O(d, d, Z) subgroup of O(d, d).

An O(d, d, Z) transformation is given by a 2d × 2d matrix A having integral entries

and satisfying AT ηA = η, where η consists of off-diagonal unit matrices as before.

Under an O(d, d, Z) transformation

(

m

n

)

→
(

m′

n′

)

= A

(

m

n

)

and M → AMAT . (5.13)
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It is evident that

m · n =
1

2
(m n)η

(

m

n

)

, (5.14)

which appears in eq. (5.10), and M2
0 in eq. (5.8) are preserved under these trans-

formations. The crucial fact, already evident from the spectrum, is that toroidally

compactified string theory certainly does not share the full O(d, d) symmetry of the

low energy effective theory. It is at most invariant under the discrete O(d, d, Z) sub-

group. However, as emphasized by Sen [15], if the Y coordinates are not compactified,

but still flat, so that K = Rd, there is a continuous O(d)×O(d) symmetry (the com-

pact part of O(d, d)) corresponding to independent rotations of YL and YR. The

diagonal subgroup describes ordinary rotations of K.

Now we turn our attention to the case when the (D + d)-dimensional massless

background fields ĝµ̂ν̂ and B̂µ̂ν̂ depend on D coordinates. The D+d string coordinates

X µ̂ decompose into two sets {Xµ} and {Y α} where µ = 0, 1, . . . , D − 1 and α =

1, 2, . . . , d. The world sheet action is

S =
1

2

∫

d2σ(ĝµ̂ν̂η
ab + B̂µ̂ν̂ǫ

ab)∂aX
µ̂∂bX

ν̂ . (5.15)

Varying this with respect to X µ̂(σ, τ) gives the classical equation of motion for the

string

δS

δX µ̂
= − Γ̂µ̂ν̂ρ̂∂

aX ν̂∂aX
ρ̂ − ĝµ̂ν̂∂

a∂aX
ν̂

+
1

2
ǫab(∂µ̂B̂ν̂ρ̂ + ∂ν̂B̂ρ̂µ̂ + ∂ρ̂B̂µ̂ν̂)∂aX

ν̂∂bX
ρ̂ = 0 ,

(5.16)

where

Γ̂µ̂ν̂ρ̂ =
1

2
(∂ν̂ ĝµ̂ρ̂ + ∂ρ̂ĝµ̂ν̂ − ∂µ̂ĝν̂ρ̂) . (5.17)

To analyze these equations it is convenient to consider Xµ and Y α separately. Since

the Y α equation is somewhat simpler we begin with that. Indeed for that case, let

24



us back up and focus on those terms in S that are Y dependent. These are

SY =

∫

d2σ

{

1

2

(

ηabGαβ(X)∂aY
α∂bY

β + ǫabBαβ(X)∂aY
α∂bY

β
)

+ Γa
α(X)∂aY

α

}

,

(5.18)

where

Γa
α ≡ ηabĝµα∂bX

µ − ǫabB̂µα∂bX
µ

= ηabGαβA
(1)β
µ ∂bX

µ − ǫab
(

A
(2)
µα − BαβA

(1)β
µ

)

∂bX
µ

(5.19)

encodes information about the gauge fields A
(1)α
µ and A

(2)
µα. This action generalizes

eq. (5.1), both by including background vector fields and by allowing X dependence

for all the background fields.

The goal now is to study the resulting Y equations of motion, to recast them

into a form with manifest O(d, d) symmetry, and to understand why the symmetry

breaks to O(d, d, Z). The O(d, d) symmetry cannot be explicitly realized on the ac-

tion. Rather, it is necessary to combine the equations of motion for Y with those for

dual coordinates Ỹ , in order to make the symmetry manifest [29,24].
⋆

In the absence

of nontrivial backgrounds, Y and Ỹ would correspond to the sum and difference of

left-moving and right-moving components. In more general settings, the interpreta-

tion is not quite so simple. It has been suggested on occasion [39,24,40] that this

doubling of coordinates has some deep significance. However one feels about that,

the mathematics is indisputable.

Since the backgrounds are independent of Y α, the Euler–Lagrange equations take

the form

∂a

(

δS

δ∂aY α

)

= 0 . (5.20)

⋆ Previous studies of four-dimensional examples illustrate that, when duality transformations
are required, the equations of motion can be made manifestly invariant under the “hidden”
symmetries even though the action cannot be [38]. Actually, hidden symmetries sometimes can
be made manifest in the action it one is willing to give up some other symmetry. For example, in
ref. [40], a duality invariant action that does not have manifest world sheet Lorentz invariance
is formulated.
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Therefore, locally, we can write

δS

δ∂aY α
= ηab∂bY

βGαβ + ǫab∂bY
βBαβ + Γa

α = ǫab∂bỸα , (5.21)

where Ỹα are the dual coordinates. They clearly have the same periodicities as the

Y α. Introducing auxiliary fields Uα
a , let us now define a dual action

S̃ =

∫

d2σ

{

1

2

(

ηabUα
a Uβ

b Gαβ + ǫabUα
a Uβ

b Bαβ

)

+ ǫab∂aỸαUα
b + Γa

αUα
a

}

. (5.22)

Varying this action with respect to Ỹα gives ∂a(ǫ
abUα

b ) = 0, while the Uα
a equation of

motion

ηabUβ
b Gαβ + ǫabUβ

b Bαβ − ǫab∂bỸα + Γa
α = 0 (5.23)

agrees with eq. (5.21) when one identifies Uα
a with ∂aY

α. This can be used to solve

for Uα
a in terms of ∂aỸα and Γa

α. The result is

Uα
a =

(

ǫa
bGαβ + δb

aBαβ
)(

∂bỸβ − ǫbcΓ
c
β

)

, (5.24)

where we have introduced

G = (G − BG−1B)−1 (5.25)

and

B = −G−1B(G − BG−1B)−1 . (5.26)

Note that (G+B)(G+B) = 1, so that G and B are the symmetric and antisymmetric

parts of (G + B)−1, respectively.

Substituting for Uα
a , the dual action (5.22) takes the form

S̃ =

∫

d2σ

{

1

2

(

ηab∂aỸα∂bỸβGαβ + ǫab∂aỸα∂bỸβBαβ
)

− ǫab∂aỸαΓb
βGαβ

− ∂aỸαΓa
βBαβ − 1

2

(

ηabΓ
a
αΓb

βGαβ + ǫabΓ
a
αΓb

βBαβ
)

}

.

(5.27)

Since Gαβ and Bαβ are determined in terms of Gαβ and Bαβ, they depend only on

Xµ, as does Γa
α. As before, the equation of motion derived from S̃ is ∂a

(

δS̃

δ∂aỸα

)

= 0.
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The two Lagrangians S and S̃ give a pair of equivalent equations of motion (at least

locally), which are obtained by applying ∂a to eq. (5.21) and

ǫab∂bY
α =

δS̃

δ∂aỸα

= ηab∂bỸβGαβ + ǫab∂bỸβBαβ − ǫabGαβΓb
β − BαβΓa

β . (5.28)

In order to express equations (5.21) and (5.28) in an O(d, d) covariant form, let us

multiply them by G−1 and G−1, respectively, as well as by ǫab, as follows:

Gαβ∂aỸβ − (G−1B)αβ∂aY
β = ǫa

b∂bY
α + ǫabG

αβΓb
β . (5.29)

(G−1)αβ∂aY
β − (G−1B)α

β∂aỸβ = ǫa
b∂bỸα − ηabΓ

b
α − ǫab(G−1B)α

βΓb
β . (5.30)

If we define an enlarged manifold combining the coordinates Y α and Ỹα such that

{Zi} = {Y α, Ỹα}, i = 1, 2, . . . , 2d, then eqs. (5.29) and (5.30) can be combined as

the single equation

Mη∂aZ = ǫa
b∂bZ + MηΣa . (5.31)

Here Σa is an O(d, d) vector (for each value of a) given by the column vector

Σi
a =

(

−ηabG
αβΓb

β

ǫabΓ
b
α − ηabBαγGγβΓb

β

)

. (5.32)

Substituting eq. (5.19) into eq. (5.32) gives

Σi
a = −∂aX

µAi
µ + ǫa

b∂bX
µ(MηAµ)i , (5.33)

where Ai
µ is comprised of A

(1)α
µ and A

(2)
µα, as in section 2. Inserting this into eq. (5.31)

then gives the first-order equation

Mη(∂aZ + Aµ∂aX
µ) = ǫa

b(∂bZ + Aµ∂bX
µ) . (5.34)

(This equation appears in ref. [24] for the special case Aµ = 0.) One can eliminate

Ỹ , of course, obtaining a second-order equation for Y , but then the noncompact
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symmetry is no longer evident. This is reminiscent of the issue of making Lorentz

invariance manifest for the Dirac equation. Unlike that case, there is no obvious

action principle that gives the desired first-order equation for the Z coordinates. In

terms of light-cone components on the world sheet, (5.34) is equivalent to the pair of

equations

(1 + Mη)(∂+Z + Aµ∂+Xµ) = 0

(1 − Mη)(∂−Z + Aµ∂−Xµ) = 0 .
(5.35)

These equations have nontrivial solutions, since (Mη)2 = 1. Furthermore, they have

manifest O(d, d) invariance provided the transformation rules M → ΩMΩT and Aµ →
ΩAµ, obtained in section 2, are supplemented with Z → ΩZ.

Using the identity ηV ηV T = 1, and recalling that M = V T V , we can rewrite

(5.35) in the form

(η ± 1)V η(∂±Z + Aµ∂±Xµ) = 0 . (5.36)

Written this way, it is clear that the plus and minus cases each consist of d linearly

independent equations. Defining

(DaZ)i = ∂aZ
i + Ai

µ∂aX
µ , (5.37)

the component equations for Y and Ỹ are

(G − B)D+Y + D+Ỹ = 0

(G + B)D−Y − D−Ỹ = 0 ,
(5.38)

which is quite a bit simpler than the second order equation for Y that we started

from. Even though these equations have continuous O(d, d) invariance, the sym-

metry is broken to the discrete subgroup O(d, d, Z) by the boundary conditions

Y α ≃ Y α + 2π and Ỹα ≃ Ỹα + 2π. The fundamental point is that all geometries

related by O(d, d, Z) transformations correspond to the same conformal field the-

ory and are physically equivalent. The moduli space of conformally inequivalent
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(and hence physically inequivalent) classical solutions is given by the coset space

O(d, d)/O(d)×O(d)×O(d, d, Z) and is parametrized locally by the scalar fields Gαβ

and Bαβ.

The combination DaZ
i = ∂aZ

i + Ai
µ∂aX

µ, which appears above, can be given a

covariant interpretation under gauge transformations. For this purpose it is nec-

essary to redefine the internal coordinates Y α and Ỹa in an Xµ dependent way.

Namely, a gauge transformation δAi
µ(X) = ∂µΛi(X) should be accompanied by

δZi = −Λi(X). Despite superficial appearances, this does not allow the internal

coordinates to be eliminated as part of a gauge choice. In particular, the winding

numbers mα and discrete moment nα are encoded in Y α(2π, τ) = Y α(0, τ) + 2πmα

and Ỹα(2π, τ) = Ỹα(0, τ)+2πnα. They cannot be changed by a gauge transformation,

since Xµ(2π, τ) = Xµ(0, τ).

Let us turn now to the Xµ equation of motion. This requires considering eq.

(5.16) for the case of µ̂ = µ and substituting the various definitions given in section

2. After a certain amount of algebra one finds, separating different powers of Y , that

δS

δXµ
= E2

µ + E1
µ + E0

µ , (5.39)

where

E2
µ = ∂µ(G + B)αβ∂+Y α∂−Y β (5.40)

E1
µ = − (A

(1)
µ G)α∂a∂aY

α + ǫab∂aX
νF

(2)
µνα∂bY

α

+ (∂µ[A
(1)
ν (G + B)]α − (µν))∂+Xν∂−Y α

+ (∂µ[A
(1)
ν (G − B)]α − (µν))∂−Xν∂+Y α

(5.41)

E0
µ = − Γ̂µνρ∂

aXν∂aX
ρ − ĝµν∂

a∂aX
ν

+
1

2
ǫab(∂µB̂νρ + ∂νB̂ρµ + ∂ρB̂µν)∂aX

ν∂bX
ρ .

(5.42)

In the expression for E0
µ one must still substitute (see section 2)

ĝµν = gµν + A
(1)
µ GA

(1)
ν (5.43)
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and

B̂µν = Bµν − 1

2
A

(1)
µ A

(2)
ν +

1

2
A

(1)
ν A

(2)
µ + A

(1)
µ BA

(1)
ν . (5.44)

Now we must try to reexpress all this in an O(d, d) invariant form. As a first step

consider the manifestly O(d, d) invariant expression

F 2
µ =

1

2
D+Zi

(

∂µM−1
)

ij
D−Zj . (5.45)

Inserting the matrix M−1 and expanding out the terms, one can show (by using the

equations of motion (5.38)) that

F 2
µ = D+Y ∂µ(G + B) D−Y . (5.46)

Therefore, comparing with eq. (5.40), we see that F 2
µ is an O(d, d) invariant term

containing E2
µ. To proceed we must compensate for the terms linear in Y and inde-

pendent of Y in F 2
µ as additions E1′

µ and E0′

µ to E1
µ and E0

µ. The difference of eqs.

(5.46) and (5.40) gives

E1′

µ = − ∂+XνA
(1)
ν ∂µ(G + B) ∂−Y

− ∂−XνA
(1)
ν ∂µ(G − B) ∂+Y

(5.47)

E0′

µ = −∂+XνA
(1)
ν ∂µ(G + B) A

(1)
ρ ∂−Xρ . (5.48)

Next, we need to find O(d, d) invariant terms that contain E1
µ + E1′

µ . Making

repeated use of eq. (5.38), we find that these terms are completely contained in the

manifestly invariant term

F 1
µ = ǫab∂aX

νFµν ηDbZ . (5.49)

Compensating for the additional Y -independent terms that have been introduced
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gives

E0′′

µ = − ∂+Xν∂−Xρ[A
(1)
µ F

(2)
νρ + A

(1)
ρ F

(2)
µν + A

(1)
ν F

(2)
ρµ

+ A
(1)
ρ (G − B)F

(1)
µν + A

(1)
ν (G + B)F

(1)
µρ ]

+ ∂+[A
(1)
ν ∂−Xν(G − B)]A

(1)
µ + ∂−[A

(1)
ν ∂+Xν(G + B)]A

(1)
µ .

(5.50)

To complete this part of the story E0
µ + E0′

µ + E0′′

µ must still be recast in O(d, d)

invariant form. Remarkably, there is a great deal of cancellation and one ends up

with

F 0
µ = −Γµνρ∂

aXν∂aX
ρ − gµν∂

a∂aX
ν +

1

2
ǫabHµνρ∂aX

ν∂bX
ρ , (5.51)

with Hµνρ as defined in section 2.

To summarize, we have found that the Xµ equation of motion can be written in

the manifestly O(d, d) invariant form

1

2
D+Z

(

∂µM−1
)

D−Z + ǫab∂aX
νFµν ηDbZ

− Γµνρ∂
aXν∂aX

ρ − gµν∂
a∂aX

ν +
1

2
ǫabHµνρ∂aX

ν∂bX
ρ = 0 .

(5.52)

Together with eq. (5.36) or eq. (5.38) this gives the classical dynamics of strings

moving in an arbitrary X-dependent background. The equations are remarkably

simple considering all the information they encode. Clearly, O(d, d) is a useful guide

for making them intelligible.

It should come as no surprise to the reader to learn that eqs. (5.36) and (5.52)

continue to hold for the O(d, d + n) generalization, provided that M, η, and Ai
µ are

defined as in section 4. Also, Zi now becomes a (2d + n)-component vector made

by combining Y α, Ỹα, and Y I , where Y I are n additional internal coordinates. It is

natural to require that

∂−Y I + A
(3)I
µ ∂−Xµ = 0 , (5.53)

as a “gauge invariant” generalization of what we know to be true for the heterotic

string with vanishing A
(3)I
µ background fields, viz. that the Y I are left-moving. (The
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second term in eq. (5.53) was omitted in sect. 6 of ref. [25].) Once eq. (5.53) is

imposed, the number of unknowns and equations for the Y coordinates matches up

properly.

6. Discussion

This work has explored the noncompact O(d, d) group that appears in toroidal

compactification of oriented closed bosonic strings as well as the O(d, d + n) gener-

alization that is required for the heterotic string. In sections 2 and 4 we showed,

using methods of dimensional reduction, that these noncompact groups are exact

symmetries of the (classical) low-energy effective field theory that is obtained when

one truncates the dependence on the internal coordinates yα keeping zero modes only.

In section 5 we explored noncompact symmetries from the world-sheet viewpoint,

extending the analysis of previous authors [16,29,24] to a somewhat more general

setting. We found that the classical string dynamics that results from toroidal com-

pactification and zero-mode truncation is also described by equations of motion that

can be written in a manifestly O(d, d + n)-invariant form. Only global boundary

conditions break the symmetry to the discrete subgroup O(d, d+n, Z). Therefore the

moduli space that arises in toroidal string compactification is given by the O(d, d+n)

group manifold modded out by O(d, d + n, Z) as well as by the maximal compact

subgroup O(d) × O(d + n).

Logically, the analysis of section 5 should perhaps come first, since it describes

the noncompact symmetry at tree-level of the σ model, i.e., to leading order in

the α′ expansion. The low-energy effective field theory analysis of sections 2 and 4

corresponds to the requirement of conformal invariance of the sigma model at the

one-loop order [41,42]. In particular, at this order the sigma model action must be

modified to include a term coupling the dilaton to the world-sheet curvature [41]. We

have not investigated the higher-loop corrections, which generate additional higher-

dimension terms in the field equations of the massless fields. They could in principle

be generated by enforcing conformal symmetry of the world-sheet action to higher
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orders in α′. It seems very plausible that the noncompact symmetries would continue

to hold for them as well. For example, a strong case could probably be made by

using formal path-integral manipulations along the lines described by Fradkin and

Tseytlin [43]. In fact, some evidence that the O(d, d) symmetry is present at the

two-loop order has been presented by Panvel [44], and more general arguments have

been advanced in refs. [30,25].

One result that seems interesting to us is that the need for Chern–Simons terms in

the Hµνρ field strength was deduced from purely bosonic considerations. One wonders

whether two-loop conformal invariance implies the necessity of Lorentz Chern–Simons

terms, again from purely bosonic considerations.

The noncompact symmetries transform the moduli fields in complicated nonlinear

ways. In section 4 we reviewed techniques (well-known from previous supergravity

studies) for realizing these symmetries linearly. Two distinct constructions to achieve

this were presented. The first one was a bit of a surprise, whereas the second was

the standard coset construction in which one introduces auxiliary scalar fields to

fill out the adjoint representation of the noncompact group and then compensates by

introducing a local gauge symmetry corresponding to the maximal compact subgroup.

This is implemented using a generalized ‘vielbein’ formalism, which we saw gives rise

to a better understanding of some of the otherwise mysterious matrices that appear.

In the special (but physically interesting) case D = 4, it is well known that there is

an additional SU(1, 1) or SL(2, R) symmetry of the low-energy effective field theory.

The special feature of four dimensions is that by making a duality transformation it

is possible to replace the antisymmetric tensor Bµν by a scalar field, usually called

the ‘axion’. The axion and dilaton together then magically parametrize the coset

space SL(2, R)/SO(2). The full SL(2, R) symmetry in the presence of vector fields

Aµ cannot be realized on the action, but can be understood in terms of the classical

field equations [7]. (This involves duality transformations of the vector fields.) The

way this works is rather analogous to the way the O(d, d+n) symmetry is realized on

the world sheet. There too the symmetry could only be made manifest for the field
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equations. Despite these common features, the SL(2, R) symmetry appears to be of

a qualitatively different character than the O(d, d + n) symmetry. The evidence for

this is that it is apparently impossible to realize it on the classical string equations

of section 5. However, this question still deserves further investigation.

Veneziano and collaborators [3] have considered the O(d, d) effective theory with

background fields Bαβ(t) and Gαβ(t) depending on “time” only. The action they

arrive at is

S =

∫

dte−φ[Λ + (φ̇)2 +
1

8
tr(ṀηṀη)] , (6.1)

where Λ is a cosmological constant proportional to D − Dcrit. Solutions to the clas-

sical field equations obtained from (6.1) describe spatially homogeneous cosmological

models. They exploit the global symmetry of the theory to generate new solutions

that would have been difficult to discover by other methods. Transformations in-

volving dimensions that are not compactified should correspond to exact symmetries,

even in the string case. However, for uncompactified dimensions, one has to mod out

O(d, d) by GL(d, R) and by constant shifts in B. The resulting coset was identified

by Sen [15] with O(d) × O(d)/O(d). Sen has considered more general models of this

type in order to obtain new black hole and black string solutions [45]. His techniques

appear to be quite powerful.

The emphasis in our work has been to understand the common origin of non-

compact groups in string theory and field theory, both as symmetry groups of low

energy effective action and for the characterization of string theory moduli spaces.

For toroidally compactified dimensions, the only case studied in detail, this has been

achieved. Clearly, it would be desirable to explore extensions and generalizations ap-

propriate to other internal spaces K. For example, we know from the work of Seiberg

that K3 compactification of the heterotic string should give a six-dimensional theory

with a O(20, 4) coset structure [46]. (This is remarkably similar to what one gets from

T 4 compactification, though the two cases do seem to be somewhat different [47].)

Calabi–Yau spaces are of particular interest in string theory, since in the context

of heterotic string compactification they can lead to many realistic features [48]. In
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addition to the SU(1, 1)/U(1) associated with the axion-dilaton system, the moduli

space of the heterotic string compactified on a Calabi–Yau manifold
⋆

consists of two

factors, M11 ×M21, where M11 corresponds to Kähler form deformations and has

complex dimension h11, while M21 describes complex structure deformations and

has complex dimension h21. (This factorization was established in refs. [50,51].)

The integers h11 and h21 are Hodge numbers of the Calabi–Yau space. In general,

each factor should have a discrete symmetry group analogous to the O(d, d + n, Z)

of toroidal compactification. It is quite difficult to compute the groups for specific

examples, but it is known that they must be subgroups of Sp(2b11+2, Z) and Sp(2b21+

2, Z), respectively. (One specific CY example has been worked out in detail in ref.

[52]. An orbifold example is given in ref. [53].)

The spaces M11 and M21 are themselves Kähler manifolds of a special type

for which the Kähler potential can be derived from a holomorphic prepotential [54].

Homogeneous spaces of this type have been classified. Presumably, at least in certain

cases, Calabi–Yau moduli spaces are given by such homogeneous spaces modded out

by the discrete group. Whether or not this is the general case (we do not know), it

may be interesting to try to classify Calabi–Yau spaces whose moduli spaces are of

this type. For this class, the techniques described in this paper for tori should have

the most straightforward generalizations.

In conclusion, there is much more still to be learned by pursuing the study of

noncompact groups of the type described here. In string theory they are broken to

discrete subgroups. These subgroups are, in fact, “discrete gauge symmetries,” [55]

which means that they should be quite robust, surviving the plethora of phenomena

that typically break global symmetries. By thinking hard about them, it may be pos-

sible to draw some very powerful general conclusions about compactified dimensions,

as well as the implications for physical four-dimensional spacetime.

⋆ For a description of the geometry of Calabi–Yau moduli space see ref. [49] and references
therein. This subject has been very active in recent years, and we will not attempt to give a
complete set of references here.
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Ann. Inst. Poincaré 46 (1987) 215; H. Nicolai, Phys. Lett. B194 (1987) 402;

H. Nicolai and N. P. Warner, Commun. Math. Phys. 125 (1989) 384.

12. A. Chamseddine, Nucl. Phys. B185 (1981) 403.

13. E. Bergshoeff, M. de Roo, B. de Wit, and P. Van Nieuwenhuizen, Nucl. Phys.

B195 (1982) 97.

36



14. G. Chapline and N. Manton, Phys. Lett. B120 (1983) 105.

15. S. F. Hassan and A. Sen, Nucl. Phys. B375 (1992) 103; A. Sen Phys. Lett.

B271 (1991) 295 and Phys. Lett. B272 (1992) 34.

16. K. S. Narain, M. H. Sarmadi, and E. Witten, Nucl. Phys. B279 (1987) 369.

17. J. Scherk and J. H. Schwarz, Nucl. Phys. B153 (1979) 61.

18. E. Cremmer, in Supergravity ’81, ed. S. Ferrara and J.G. Taylor (Cambridge

Univ. Press, Cambridge, 1982).

19. T. Buscher, Phys. Lett. B194 (1987) 59; Phys. Lett. B201 (1988) 466.

20. E. Smith and J. Polchinski, Phys. Lett. B263 (1991) 59; A. A. Tseytlin, Mod.

Phys. Lett. A6 (1991) 1721.

21. M. B. Green and J. H. Schwarz, Phys. Lett. B149 (1984) 117.

22. E. Witten, Phys. Lett. B149 (1984) 351.

23. A. Shapere and F. Wilczek, Nucl. Phys. B320 (1989) 669; A. Giveon, E.

Rabinovici, and G. Veneziano, Nucl. Phys. B322 (1989) 167; A. Giveon, N.

Malkin, and E. Rabinovici, Phys. Lett. B220 (1989) 551; W. Lerche, D. Lüst,
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25. A. Giveon and M. Roček, preprint IASSNS-HEP 91/84.

26. R. A. Nepomechie, Phys. Lett. B171 (1986) 195; J. M. Rabin, Phys. Lett.

B172 (1986) 333; A. Das, P. Panigrahi, and J. Maharana, Mod. Phys. Lett.

A3 (1988) 759.

27. J. H. Schwarz, “Spacetime Duality in String Theory,” p. 69 in Elementary

Particles and the Universe, ed. J. H. Schwarz (Cambridge Univ. Press 1991).

28. M. Duff, Phys. Lett. B173 (1986) 289.

29. S. Cecotti, S. Ferrara, and L. Girardello, Nucl. Phys. B308 (1988) 436.

30. J. Molera and B. Ovrut, Phys. Rev. D40 (1989) 1146.

37



31. J. Maharana, “Duality and O(d, d) Symmmetries in String Theory,” Caltech

preprint CALT-68-1781, April 1992.

32. S. P. Khastgir and A. Kumar, Mod. Phys. Lett. A6 (1991) 3365; S. Kar, S. P.

Khastgir, and A. Kumar, Mod. Phys. Lett. (in press).

33. M. Bianchi, G. Pradisi, and A. Sagnotti, Nucl. Phys. B376 (1992) 365.

34. M. B. Green, J. H. Schwarz, and L. Brink, Nucl. Phys. B198 (1982) 474.

35. K. Kikkawa and M. Yamasaki, Phys. Lett. 149B (1984) 357; N. Sakai and I.

Senda, Prog. Theor. Phys. 75 (1984) 692.

36. V. P. Nair, A. Shapere, A. Strominger, and F. Wilczek, Nucl. Phys. B287

(1987) 402.
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