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Abstract. We consider the states with extremum products and sums of the uncertain-
ties in non-commuting observables. These are illustrated by two specific examples of
harmonic oscillator and the angular momentum states. It shows that the coherent
states of the harmonic oscillator are characterized by the minimum uncertainty sum
(AZ)?Y + ((AD)?). The extremum values of the sums and products of the
uncertainties of the components of the angular momentum are also obtained.
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1. Introduction

It is well known that two non-commuting observables cannot simultaneously have
sharply defined values. In fact, if

A A

[4, B] = 1€, 0

where 2, ﬁ, C are Hermition operators, then the uncertainties ( AA32> and
{(AB)*) satisfy the inequality

LAARY L(ABYS =3 (O @)

Further, if the observables representing A and B have the same dimensions, we find
from the relation

{{Ady)t — ((ABYPYH) >0
that

DAY + (ABYY > 2((A 4 (ABME. ©)
From (2) and (3), we obtain
(AAP) + ((ABYY > (C)). | @

In case when (4) is an equality, the relations (2) and (3) must also necessarily reducé
to equalities and

(AdPy = (ABYPY = 3] Oy . | )
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Let us briefly consider the proof of the uncertainty relation (2). If A is real, we
observe that for an arbitrary state, the inequality

(A<irB) (d+irB)y >0 ©

holds. The left hand side is minimum when

A

\=33 Q)
(B*)
Setting this value of A in (6), we find that
(dvy (Bry > 1 (O | ®)

The equality sign in (8) will hold, if and only if it holds in (6). This implies that (8) is
an equality only for those states (or a statistical mixture of such states) which are

the eigenstates of the operator (fi\ +iA ﬁ) belonging to the eigenvalue zero:
(A-+irB)|y>=0. ©)

Now, since the operators A A=Ad— (2) and A B = f? — <§) also satisfy the
commutation relation '

[Ad, ABl=iC, | | (10)
we may replace Aand Bin (8) by AE and AI/?: respectively
(AR (ABY)Y > 1(C | (i

The equality sign in (11) will hold only for those states which satisfy [cf. eq. (9) and
also Jackiw (1968)]

(A4 +nB) [y =0,
or
A+ D)) = [ (A + X (B |4, » (12)

where A is an arbitrary real number. The uncertainties (( AZ )?> and {( Aﬁ)“’) for
these states are in fact given by :

LAYy =12 (CY | - (13)

and

{ABRy = 515‘ (C. (14)
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Equations (13) and (14) are readily derived by (12) on setting A4 + id AB = R so
that A4 = } (K-- KT), AB =} (@A) (K—-KT) and observing that

CR?y = (R = (RTRY =0,
CRRTY = (IR KT + RIRY =2 2 (6.

The states for which the inequality (4) is an equality are now readily obtained by
requiring [cf. eq. (5)] {( /AAA = {(( Af?)?). This gives us A = - 1 depending on
whether (6) is positive or negative. :

We also observe an important conclusion from this result. It is readily seen from
eq. (13) that if Cisa positive definite operator, X is necessarily positive. This implies
that in the case when [//1\ , 3] = iC with 6 positive definite there are no eigenstates of
the operator A i A B with A < 0.

When the commutator [4, 13] is a C-number (= i C) we find that {C is, simply a
constant and does not depend on the state. In such cases, we refer to the states,
for which equality sign in (2) holds as the minimum uncertainty product states and
to those for which equality sign in (4) holds as the minimum uncertainty sum states.

Obviously, the minimum uncertainty sum states are also necessarily the minimum
uncertainty product states, and, for such states

LADFy ={ABYY =3 C. (15)

The minimum uncertainty product states are the eigenstates of 4 -+ iA B with \ real and
having the same sign as C.  The minimum uncertainty sum states are the eigenstates of
AA+ iB if C>0 and of A—iBif € < 0. It may further be observed that the
eigenstates of AA+ i X B with A having a sign opposite to that of C do not exist.

When the commutator [/f, Ié\] is a g-number =i é: we find that (6 > will in general
depend on the given state. The nomenclature (cf. Ruschin and Ben Aryeh 1976),
of calling the states which satisfy (2) as an equality the ““ minimum uncertainty pro-
duct states ** is therefore misleading. For such states, only the quantity {( Aﬁ)%)

A A A
(AB)*) [1{C> | is minimum which is not the product of uncertainties since [{C> |
is neither an uncertainty nor a normalization constant. These states, may, however,
be interpreted as “ minimum uncertainty product states ” in a restrictive or relative

sense: Among those states for which | <5 > | is fixed, the uncertainty product {( AAA)2>
{(AB)*y is minimum for such states and these are then the eigenstates of the

operator A + iA B. Similar remarks also hold for states which satisfy (4) as an
equality.

We illustrate our observations by considering two specific examples, viz., the
harmonic oscillator and the angular momentum states.
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2. Harmonic oscillator states -

Let [#/(mew)]* § and (mwh)f p denote the position and momentum operators res-
pectively of a harmonic oscillator (so that § and 7' are both dimensionless). § and $
then satisfy the commutation relation ‘

[@, 71 =1. (15)

- We identify 2, Band C by 7, p and 1 respectively. We thus find that the states with

the minimum product of the uncertainties in position and momentum variables are
the eigenstates of ( § +iAp) where A is an arbitrary positive number. (Since C = 1,

is positive definite, there are no eigenstates with A negative). If 2 and 2 T denote the
annihilation and creation operators defined as

4= -\%‘(a +ip), a4t = ;}5@ —ip), (16)

then the minimum uncertainty product states are the eigenstates of the operator

~ 1+A/\ 1'-"A/\T .
A, = , A=0. 17
A V2a+ ‘\/20 (17)

The extreme values of A, viz. 0 and oo correspond respectively to the operators pro-
portional to § and 7.

The eigenstates |, ) of 4, with eigenvalue zero may readily be expressed in
terms of the number states |#n ). Thus writing

|¢0> =fcnln>’

where 2 T2 |7 =}z]n) and requiring 23]% » = 0 we obtain
o0 .

—\m 3 .
wea S (ETe

m==0

The general eigenstate | i, ) with eigenvalue o of the operator A, is obtained from
| o) in the following way:

~

O.AAT - 0*2;
22

_ |z/u>=exp( )\t/:o). | (19)

The state [gﬁ,) is the most gehefétl state [Schrodinger 1926; cf. also Schiff 1955]
with the minimum product of the uncertainties in 4 and p, {{(ADP =%
(APP) =1A; (AP (AP =1} - |
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The states with the minimum sum of the uncertainties in g and p are obtained by
setting A =1. In this case ((AF)?> = {(AP)> =} and (AP + LAPR = 1.

These states are the eigenstates of the annihilation operator &, which are the usual

coherent states (Glauber 1963). We further observe that there are in fact no
eigenstates of the operator 4.

3. Angular momentum states

Let 4 f;, ﬁ J:, h f, be the Cartesian components of the angular momentum operator.
A

Since [fx, fy] = if; we may identify Af,\ 15\, ¢ with the operators fx, Jys .?, respectively.
We thus find that the states for which [cf. relation (12) ]

XA (ALY =1 T, (20)

are the eigenstates of .’]\x +iA 9,, where A is an arbitrary real number. Examples
of these states for — 1 < A < 1 are the recently introduced atomic coherent states
[Arecchi et al 1972] | 6, ¢ ) with¢ =0, 4 4= or =. The state |6, ¢ > is obtained

by the rotation of lowest J-eigenstate | — j > in the angular momentum space and
is given by

6,65 = exp {—i0 (J, sin ¢ —J, cos )} [— . 1)

For these states one may verify that

AT = 37 (1 — sin® 6 cos? B), (22)
ALY = §j (1 —sin® 0 sin?g), 23)
D> =—jcosh, (24)

Therefore, we observe that" ((A};)2> {(Aﬁ)”} =} (J/;)2 for¢ =0, 4 }mworm
The states for which

UNADERINAS TR | (25)

are obtained by setting A= - 1. These are then the eigenstates of .’I\t = .?x 4+ i fy '
A A
There is only one eigenstate of J, (J_) viz., the state 17y (| —J ) with maximum

* It has been stated by Arecchi et al (1972) that the atomic coherent states | 6, )y satisfy the
“minimum uncertainty relation” {(( Af;’)z) {( AJ;')’) = } (f,’)', where primes denote the rotated
ang/!\ﬂar momentum components ?x’ =3 fx ﬁ“, etc., and the averages are taken in tEe state | 0/,\95 )
=R| " J'>. The statement is however trivial since what it amounts to, is that ((AJ,) (( A

=4 (J,2) where the average are taken in the state | =7 and thus the atomic coherent states as
such have nothing to do with the ¢ minimum uncertainty product’ in that context.
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(minimum) m-value and the correspondmg elgenvalue is zero. The uncertainty
sum in this case is glven by .. '

ONADERNADE

It is however obvious that the states satisfying eq. (20) are not the minimum un-
certamty product states in the absolute sense—nor those satisfying eq. (25) are the
minimum uncertainty sum states It may readily be seen that the absolute minimum

value of the product {( AJ )2> A, ) > JS in fact zero and it occurs only for the
states for Whlch -either <(AJx) > or {(AJ ) > ds zero, i.e. for the eigenstates of
either J or of J We have not been able to obtain the absolute mmnmum value
of the sum {( AJ. ) > + ((AJ )3> but it is certainly not . For the state |J =j%

we find that {(AJ. ) > =0, {( AJ )2> = ¢ j so that the above uncertainty sum has
the value %j. It appears that this is the lower bound.
It is of 1nterest to note extremum values, for a given j, of some related sums and

I

products of the uncertainties in J Jys T

z*

ST <73 (a=2xp,72), (26)
ONAE AP <TG+ D= &, 27)
SUALPY LATDY <ELG+ D — PP, | (28)
AT + L(ATRD + ((ATPY <J G+ 1), (29)
0 < (AT AT L 2T < %[j(j+ e, | (30)

A R
where ¢; is the lowest non-negative eigenvalue of J,:
€; = 0 when j is an integer,

== when j is half odd integer. = (3D

~ Relation (26) is obvious since j2 <f 2 = ( AJ,,)2> 0, and that {( AJay >

is in fact zero for any of the (27 + 1) eigenstates of J and is equal to j2 for the two

states 2-% [lJ =j> —_{— l J = —j»]. There may of course be several other mixed
states for which ((AJ 2D = ] Relation (27) is obtained by observing that

AT ARy = =KL+, @

and that the minimum value of the quantity in the square bracket is €2 and this
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occurs for example for the state |J = e,) For this state {( AJ,C)2> A J,,)2>

is also maximum since in this case ((AJ 32> = (( AT, »)*)>. This establishes the
relation (28).

Relation (29) is obtained by noting that

AATYS + L AREY + LAy =< — 1< s, (33)

and that 0 < ]<]>| <J. Thus for example |{J>| = for the state |] =7
whereas | (]) | = 0 for the mixed state described by the density operator

=@j+ )7 (34)

where 7 is the identity operator in (2j 4 1) dimensions. In fact, for the state
described by the above density operator we find that

LATP = (ADE> = AT =17 + 1), (35)

from which relation (30) follows immediately. There may of course be several other
states for which (35) holds.
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