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Abstract. We briefly review the recent progress in obtaining (2 + 1) dimensional integrable
generalizations of soliton equations in (1 -+ 1) dimensions. Then, we develop an algorithmic
procedure to obtain interesting classes of solutions to these systems. In particular using a Painlevé
singularity structure analysis approach, we investigate their integrability properties and obtain their
appropriate Hirota bilinearized forms. We identify line solitons and from which we introduce the
concept of ghost solitons, which are patently boundary effects characteristic of these (2 + 1)
dimensional integrable systems. Generalizing these solutions, we obtain exponentially localized
solutions, namely the dromions which are driven by the boundaries. We also point out the
interesting possibility that while the physical field itself may not be localized, either the potential or
composite fields may get localized. Finally,the possibility of generating an even wider class of
localized solutions is hinted by using curved solitons.
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1. Introduction

The concept of soliton was born from the now famous numerical experiments of Zabusky
and Kruskal [1] on the stability properties of solitary wave solutions of the Korteweg-de
Vries (KdV) equation. These results were then analytically confirmed by the seminal
work of Gardner, Greene, Kruskal and Miura [2], who essentially developed the method
of inverse scattering transform (IST) procedure to solve the Cauchy initial value problem
of the KdV equation. Since then,a very large class of (14 1) dimensional nonlinear
dispersive wave equations such as the sine-Gordon (sG), nonlinear Schrédinger (NLS),
Heisenberg ferromagnetic spin equations and so on have been identified [3, 4] which are
also solvable by the IST method exhibiting the so called soliton solutions.
Furthermore,these systems are understood to be completely integrable infinite
dimensional dynamical systems. These equations encompass a vast number of topics in
(1+ 1) dimensions in many areas of physics and other sciences and engineering [5]. In
(14 1) dimensions, the soliton systems admit solitary waves and these waves retain their
shape and speed under collisions. Mathematically, the corresponding nonlinear evolution

~equations are linearizable and linear spectral problems can be identified with each one of

them. What are the possible counterparts of such soliton systems in 2 space and 1 time,
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(2 + 1) dimensions? In this review, we wish to bring out some of the recent developments
in this regard and in particular we wish to point out how exponentially localized coherent
structures can be identified here, whenever appropriate boundary effects are included in
the (2 + 1) dimensional systems. The plan of the review is as follows. In §2, we give a
very brief sketch of the concept of solitons in (1 + 1) dimensions and some of the
counterparts in (2 + 1) dimensions. In § 3, we point out how such soliton equations are
associated with linear spectral problems and how their initial value problems can be
solved using the inverse scattering transform method. In addition, we point out how by
treating the IST problem as just a d-bar problem associated with analytic functions, the
above procedure can be extended to (2 + 1) dimensions. In addition, we list some of the
important (2 + 1) dimensional integrable nonlinear evolution equations which have been
considered in the recent literature and possible algorithmic procedures to look for
exponentially localized solutions. In § 4, we sketch the salient features associated with the
Painlevé analysis and Hirota bilinearization procedure treating KdV as an example.
Exponentially localized solutions for the simplest (2 + 1) dimensional generalization of
KdV is obtained in §5 indicating the influence of boundary effects. Section 6 contains

brief details of the results for the other (2 + 1) dimensional evolution equations. Finally
§7 gives a summary of the results.

2. The concept of soliton and its generalization
2.1 Solitons in (1 + 1) dimensions

For linear dispersive systems, it is well known that the associated evolution equation
admits elementary wave solutions of trignometric type, satisfying appropriate dispersion
relations w = w(k). The Fourier transform of such elementary solutions over the k-space
then gives the general solution, thereby solving the initial value problem [6].

In contrast, often the elementary wave solutions of nonlinear dispersive systems are
expressible in terms of elliptic functions (example cnoidal waves) and in particular, one
has amplitude-dependent dispersion relations, w = w(k,A). For appropriate choice of
constants, one can often obtain solitary waves as special solutions for these wave
equations. However, because of the nonlinearity, Fourier transform of such elementary
solutions will no longer be a solution. On the other hand,one may be able to identify a
nonlinear superposition principle asympotically. '

Example: Korteweg ~ de Vries equation

U + 6uny + Ug, = 0. (1)

The solitary wave solution is
e |
u=u(x,1) = 7360112 [g (x— K+ 6)] ) ' (2)

where k and § are constants. One can also have a more general solution

u=up(x,1) = 2(k — k?) k3 cosech*x; + k7 sech )gl ,
 (kz cothys — k; tanhy; )
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Localized coherent structures of soliton systems

Phase
shift

Figure 1. Two soliton interaction in the KdV equation (see (3)).

x; = kix —4k?t+ 8, i=1,2 (ki 6 : constants). With a little bit of analysis, one can
easily check that

w0, o it ) = ot
2 x2+A) as x2— O(1), x1 —
and
) — {Zk% sech?(x1 +A) as x1 — O(1),x2 — 5)
t— 00 | 2k3 sech®(x2 — A) as x2 — O(1), x1 — o0
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and so one can interpret the solution (3) as representing two solitary waves of differing
amplitudes travelling in the same direction undergoing elastic collisions and coming out
without change of shape or velocity except for a phase shift. The actual plot of the
solution (3) for different times as given in figure 1 actually confirms this interpretation.
Such solitary waves are then essentially called solitons. In fact,one can obtain explicit N-
soliton solutions too as is well known [3] and also show that the solution of the Cauchy
initial value problem for general initial conditions leads asymptotically to such N-soliton
solutions in the background of small oscillatory decaying waves.

The above soliton picture holds good not only for the KdV equation, but for many
other ubiquitous systems in (1+ 1) dimensions; sine-Gordon, nonlinear Schrédinger,

modified KdV, Heisenberg continuum spin chain equations are some of the standard
examples [3].

2.2 Excitations in (2 + 1) dimensions

A question naturally arises as to what are the basic nonlinear excitations in higher
dimensions, especially in (2+1) dimensions. In recent years, at least three basic

excitations have been identified in (2+ 1) dimensional nonlinear generalizations of
(1+1) dimensional soliton possessing systems. They are

(i) line solitons (decaying everywhere except along certain lines),
(ii) lump solitons (algebraically decaying) and
(iii) dromions (exponentially decaying).

The line solitons are nothing but straightforward generalization of the soliton solutions
to (2+ 1) dimensions. They decay exponentially everywhere in space except along

certain lines, where they are bounded. For example, for the case of the so called
Kadomtsev—Petviashvilli I (KPI) equation, ‘

(uy + 6uu, + Uee)y — Sty = 0, (6)
which is obviously a generalization of KdV, one has the line soliton solution (figure 2)

u(x,y,t) = g sech?[1(kx + 2K%¢ + K2y + 9)]. (7)

Figure 2. Line soliton solution of the KPI equation (see (7)).
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Figure 3. Lump soliton solution of the KPI equation (see (8)).

Equation (6) has also a lump soliton of the form

_ A=+ k') + KBy = 3/R2)
[ + key)* + Ky = 3/

¥ =x+ (kg + ),

Y =y =2, (®)
which decays algebraically and is illustrated in figure 3. Finally, considering the Davey —
Stewartson equation I,

ig: + gge + g + (1 + 12)g =0,

vig = —2€lg|?,

| Vop = —2e|q|§, €==l, 9)

it admits exponentially localized solutions [7, 8], namely dromions which are driven
along specified tracks determined by the boundaries (dromos in Greek) of the form

qg(&mn,t)= Pexp{Pmé + S1rT) + i[Pué + s1f) +{|p1 |2 +s1 lz}t]}
y ' 1 +jCXP(2P1R£) + kexp(Zisﬁ) -+ lexp(z(p1R€ -+ S]Rﬁ)) )

(10a)
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Figure 4. (1,1) dromion solution of the DSI equation (see (10)).

where

§=§&-2put, fi=n—2st (10b)

and p, s, j, k, [ are constants. The form of (10a) is explicitly shown in figure 4.

In the remaining sections, we wish to explain how such exponentially localized
dromion possessing equations can be generated and how such solutions may be realized.
To start with, we demonstrate this for the KdV type equations.

3. Linearization and IST-(2+1) dimensional KdV

It is well known [3] that the (1 + 1) dimensional soliton systems are linearizable in the
sense that given the nonlinear evolution equation

U +K(u) = O,

(11)
where K is some nonlinear functional, then the compatibility of the two linear systems
Lip=0, Lyp=0, , ’ (12)

where L; and L, are linear differential oﬁerators, gives rise to the Lax equation
[L1, Lp] = 0, (13)

which is equivalent to the evolution equation (11). Example: KdV:
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Localized coherent structures of soliton systems
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Figure 5. The schematic representation of the IST method.

52
L= '—@ + (u(x, t) - )\), (14&)
(Schrodinger operator)
0 o’ 0
Then given the initial data u(x, 0) with u le’;"oo 0, (i) analyzing the scattering problem for

L1t =0, the scattering data S(0) at time =0 can be obtained. (ii) Makirig use of
Lyt = 0, one can obtain the time evolution of S(¢) almost trivially. (iii) Carrying out an
inverse scattering transform procedure for the scattering data S(¢) and by solving the
associated Gelfand-Levitan-Marchenko equation, the ‘potential’ u(x, t) can be uniquely
determined and so the initial value problem can be solved.

The above three steps are schematically illustrated in figure 5. Now the crucial point
is that an extension of the above procedure to (2 -+ 1) dimensions can also be carried
out provided we interpret the IST procedure as (i) a d-bar problem in complex analysis
for the direct scattering and (ii) the inverse scattering part as equivalent to obtaining
the analytic function (given the d-bar data) using the generalized Cauchy integral
formula [9-11]. ,

Thus the extension of the IST analysis crucially depends upon the linearization of
(2 + 1) dimensional equations and identifying appropriate Lax pairs in order to carry out
the d-bar analysis. One way of doing this is to generalize the Lax pairs L; and L, as given
in (12) by introducing operators and functions dependent on a second spatial variable y in
a consistent way such that the Lax equation (13) gives the appropriate nonlinear evolution
equation. We demonstrate this for the case of KdV equation in the following subsection.
Similar analysis can be carried out for other ubiquitous soliton equations [12].
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3.1 Generalization of KdV to (2+ 1) dimensions

There are several ways to generalize the Lax operators L; and L, but retaining the form of

the Lax equation (13). We may identify at least three interesting possibilities in the case
of the KdV equation. They are as follows. '

Method 1[13]. One essentially includes first derivative operators of y in L; while making
compensatory changes in L; in order to obtain the evolution equation from Lax condition.
For example for the KdV Lax pair (14), one can make the modifications

Ly =00y + & +ulxy,f) (15a)
and

Ly = 8, + 48] + 6ud, + 3u, + 300 'u, (15b)
so as to get the KPI and KPII equations (for o = i and 1 respectively).
Method 2 [14]. One keeps the operator L; unchanged while introducing first derivatives
of y in Lz: ’ .

Ly = L(8) — A, (16a)

u _
L, =4 +f(}‘)ay + Z U (%, ¥, t)a;n (16b)

m=0

For KdV, this reads
L= —Bf +u(x,y, 1) — X

?

Ly = 8 ~ 48020, + 4Bu,8, + 3fuy, + 26ud,. (17)
Then the Lax equation [Ly, Ly] = 0 leads to the so called breaking soliton equation:

ur = 4f3uuy + 208, uy — Bu, = 0, (18)
provided the eigenvalue X in (17) evolves as ‘ §

A=A\ | ' (19)

leading to the breaking wave nature in the y directibn.

Method 3 [15]. One can also look at the possibility of introducing derivatives in the
second (y) variable with order greater than one. However such a possibility in general
leads to constant coefficients of L; or L, and so to trivial evolution equations. To
circumvent this difficulty in the case of (2 + 1) dimensional systems, one realizes that it
is enough to have only a sufficiently broad class of solutions of the linear equations

L7 =0 and L3 = 0 and that the spectrum need not be common. As a result, one can
impose the weaker Lax condition '

Ly, Lo = 0 ’ - (20)
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in the subspace of the eigenfunction v or equivalently
[L1, Lo] = 7L, @D
where +y is some operator.
Example: KdV generalization
L= (8- 0263) + u(x,y,t) = 0:0y + u(&,n, ), (22)
Ly = 8 + k18 + k18 + 351 'y, + 3k1 8, ue . (23)

From the weak Lax equation, one can then obtain the Boiti et al generalized KdV
equation [15]

U + Kyugee = 3k (u@;lug)f (24)

when k; = 0 in (23). When k; # 0, the Nizhnik-Novikov-Veselov (NNV) equation is
obtained as

s + kytgee + Koty = 3k2(u8€“ lu,,)n + 3k (ua,“]" Iug) ¢ (25)

For a more general class of equations, see for examaple Ablowitz and Clarkson [3]. In
this way,the other soliton equations in (1 4 1) dimensions can also be generalized to
(2+ 1) dimensions though the exact procedure may vary from system to system [3].
Some of the higher dimensional systems which have been studied extensively in recent
times include the following evolution equations apart from the ubiquitous K-P and
Davey-Stewartson equations already mentioned:

(1) Generalized KdV [15]

W+ Ugee = 3(u6,;1u5)5. (26)
(2) Generalized Nizhnik-Novikov—-Veselov (NNV) equation[16]

Uy + Ugeg + Uy + atlg + by = 3w ug)c + 3(ud; 'uy), . (27)
(3) Breaking soliton equation [12]
Ut + Qb + Oauuy + bty + 4bun, + 4bu,0; luy = (. (28)

(4) (2 + 1) dimensional generalized NLS equation [17]

3
- (@~ B)ge-+ @+ B)am - 22a| 0+ )] [ laog +m(n,) |

(o8]

- [ laar +men}| o ' (29)

(5) (2 + 1) dimensional generalized NLS equation [18]
igs = gny + Ve, Vi = 28|l (30)
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® 2+1) dimensional generalized sine-Gordon equation [19, 20]
Oen + 30np¢ + 30ep, =0, " (31a)
pen = $(066), (31b)
(7) (2 + 1) dimensional long dispersive wave (2LDW) equation [21]

Ag: + gu — 2qv =0, ; (32a)
Ar—rg+2rv=0, - (32b)
(gr); = vy, Oy = 8; - \§,. (32¢)

We will consider the existence of exponentially localized solutions in all these systems in
the next sections.

4. Painlevé analysis and Hirota bilinearization

4.1 Painlevé analysis

In order to investigate the integrability aspects of the above type of nonlinear evolution
equations, one can proceed to analyze the singularity structure of the solutions in the
complex space of the independent variables, namely the so called Painlevé property. Such
a procedure has been found to give considerable wealth of informations for finite
dimensional nonlinear systems [22-24]. Application to pdes has also been well developed
and the procedure of Weiss, Tabor and Carnevale [25] is algorithmic and identifies the

nature of the singularities in the local neighbourhood of a noncharacteristic singular
manifold.

Let us consider a NLEE of the form
u+ K(u) =0, (33)

where K(u) is a nonlinear functional of u(X1,%, ..., Xm, ) = u(X, ) and its derivatives
upto order N so that (33) is an Nth order nonlinear pde. Then one can say that (33)
possessess the P-property when the following conditions are satisfied.

The solution of (33) must be single valued about the noncharacteristic movable
singular manifold. More precisely, if the singular manifold is determined by

b0 =0, du(60)#0, lx,)#0, i=1,.. M (34)

and u(x, ) is a solution of the pde (33), then we have the Laurent expansion

(s, 1) = (605,017 3wy, )67 3, )

J=0

in a deleted neighbourhood of the singular manifold (34) and m is an integer. By the
Cauchy-Kovalevskaya theorem, the solution (35) should contain N arbitrary functions,
- one of them being the singular manifold ¢ itself and the others coming from the u;’s.
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Then the WTC procedure to test the given pde for its P-property essentially consists of
the following three steps [25].

(i) Determination of leading order behaviours.

(ii) Identification of powers j (resonance) at which the arbitrary functions can enter into
the Laurent series expansion (35) and

(iii) Verifying that at the resonance values j, a sufficient number of arbitrary functions
exist without the introduction of a movable critical singular manifold. An important
feature of the WTC formalism is that the generalized Laurent series expansion can
not only reveal the singularity structure aspects of the solution and integrability
nature of a given pde, but can also provide an effective algorithm which in most
cases successfully captures all its properties, namely the linearization (Lax pair), the
Bicklund transformation (BT), Hirota bilinearization, symmetries and so on [3]. As
a simple application, we illustrate the above aspects with KdV as an example. Any
other soliton system can also be likewise analysed [3,26].

For the KdV equation (1), we substitute the formal Laurent expansion (35) around the
singularity manifold ¢(x,#) = 0 into (1) and equate the powers of ¢ to zero. One finds
that the exponent m = +2 and that at j = —1,4,6 arbitrary functions can enter the

Laurent series (35). Identifying the arbitrariness of ¢ with j = —1 recursively, one finds
j=0:u =242, (36a)
j=1:1u =2¢%, (36b)
J=2: ety + OUsry — 2u3% + Priex =0, (36¢)
J =31 u + 6ur¢xx — 2u3 % + b = 0, (36d)
j=4: 8B + bz — 2U38% + baraa) = 0. (36e)

Now, it is clear that by the condition (36d), (36e) is always satisfied so that ua(x, 1) is
arbitrary. Similarly, one can derive the condition at j = 5 and prove that at j = 6, ug(x, 1)
is arbitrary. As the KdV equation is of third order,the Laurent series admits three arbitrary
functions and so the Painlevé property is satisfied.

Now, if the arbitrary functions u4 and ug are chosen to be identically zero and if we
require u3 = 0, then u; = 0, j > 3 provided u, satisfies the KdV equation. Thus, we obtain
the Béicklund transformation for the KdV in the form

=2(log @), + 2, . (37)
where u; and u, solve the KdV and ¢ satisfies (36a—e) with u3 =0. By a set of

transformations, it is possible to show that the defining equations for ¢ are equivalent to

linearizing equations (12) and (14). One can apply a similar procedure to any other NLEE
in (1+1) or (2+ 1) dimensions and obtain its integrability property [24]. For recent
applications in (2 + 1) dimensions, see for example Radha and Lakshmanan [27-33].

4.2 Hirota bilinearization

We have noted above that the Bécklund transformation of the form (37) can be used to
bilinearize the NLEE. Indeed considering the vaccum solution u; = 0 in (37) one obtains
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the transformation

u=2(log ¢),, (38)
so that the KdV equation can be written in the bilinear form

P = Gt + b — 4y + 397, = 0. (39)
Using the so-called Hirota’s bilinear operator

DD (ab) = (8 — 02)™(8 — 8¢)"alx, 0B, )y y—ys (40)
equation (39) can be rewritten in a compact form as

(DxD: + D3)¢-¢ = 0. | (41)

The properties of the bilinear operator can be easily worked out. For example, one has the
relations Di'a-1 = 87'a, D (a-b) = (—1)"D?(b-a), D™(a-a) =0, m odd, and so on.
Using such properties, the calculations can be simplified considerably.

Now, expanding ¢ in a formal power series in 6 ‘

o]
¢=> oM, 0=, (42a)
n=0
where
y ,
oV =" exp(m), m = kix +wit + (42b)
i=1

and k;, w;, n,@ are constants, the N soliton solution of KdV can be obtained. To see this,

one substitutes (42) in (41) and equates each power of ¢ separately to zero to obtain the
following set of equations:

0(1):0=0,

(43a)
0(e) : 63 + ), =0, (43b)
0() : ¢ + 62, = —4(D.D, + D)gD. 40) (43¢)

and so on. The procedure is then to use (43b) in (43c) and succesively solve the remaining
equations. In practice, one finds the solution for N =1,2,3 and then hypothesize it for
arbitrary N which is to be proved by induction. '

239‘or example, for N =1, ¢() = exp(n;) and from (43b), w; = —k3 and (8,8, + 8?)
¢®) =0 50 that ¢@ = 0 and ¢® = 0,i > 2. Thus, the solution of (43b) can be written as

8V =exp(m), m =lkax— Kt + 0. , (44)

Making use of (38) and (42a), it is straightforward to obtain the one soliton solutions of
KdV given by (2).

Similarly for the case N = 2,
Y =exp(m +m), m=kx ~Ke+n®, i=1,2 (45a)
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so that the solution (42a) becomes

¢ =1+ exp(m) + exp(m) + exp(m + 2 + Ar), (45b)

where Aj; is a constant. Again this leads to the 2-soliton solution (3) of the KdV equation.
In an analogous fashion, one can proceed to find the N-soliton solution also. It is also
useful to note that with the solution of the Hirota equation in a form such as (45b), it is
quite easy to understand the elastic nature of the soliton interaction as discussed in §2.

As noted above, all the other known soliton equations in (1 + 1) dimensions can also
be bilinearized and the soliton solution obtained through the Hirota method. In the next
sections, we will apply this method to generate interesting coherent structures in (2 + 1)
dimensions.

5. Localized coherent structures in the (2 + 1) dimensional KdV equation

As an example,we consider the generalized KdV equation (26) of Boiti et al and obtain its
localized solutions [28]. We rewrite it as

ur + ugge = 3(uv),, (46a)
ug = vy, (46b)

Note that the potential v itself satisfies the equation
Ve + vege = 3(%)¢ + 30 e v + veva] (47)

5.1 P-property

Considering the Laurent expansion

o0

o= Sy, (0
- ,

v= (w08, (48)
=0

around the noncharacteristic_singular manifold ¢(x,y,t) =0, @, ¢y, , ¢ # 0, we can
algorithmically check that

a=B=-2 uy=2ppy, vo=20; (49)

and that one member each of (uz,v2), (u4,v4) and (us, ve) are (the coefficient functions)
arbitrary in addition to the manifold ¢ itself without the introduction of a critical singular
manifold. Thus, the P-property is satisfied here.

5.2 Hirota bilinear form

One can easily check that the Laurent series (48) can be cut off at constant level terms to
consider special solutions of the form

Uy U
u"——"a'i**‘-a)—'f' U, ‘ (503.)
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Vv Vi
V=t —+y, (50b)
»* ¢

so that if (u3, v2) solve (46), so also (i, v). Thus, (50) can be effectively considered as an
auto-Bécklund transformation and its further properties can be worked out. Particularly
useful to us is the vacuum solution

Uy = vy = 0. (51)

Then with the expressions (49) for (ug,vq) and (u1,v1) (from a knowledge of the P-
analysis), the transformations (50) can be simplified to

u = —20¢ log ¢, ‘ (52a)
V= —-2355 Iog ¢ (52b)

On substituting the above into the original evolution equation (46), one obtains the
bilinear version

20bn — 2bad + 2beeen — 2eee by + 6deedbey — 6 begn = 0. (53)
In the Hirota operator notation, (53) can be rewritten as

(DD, +DiD)$-¢=0. (54)
Expanding ¢ as a power series,
equation (54) can be written as a set of coupled linear pdes: |

Ofe): & +¢fgh =0, (56a)

O(): ¢ + bk, = ~LDyD; + DIDy) V-0, (56b)

ete.

5.3 Line solitons and ghost solitons

Equation (56a) obviously admits special classes of solutions of the form

N

$) =3 o), x5 =ké+Im—RBr+x?, (57)
J=1 : ‘

where k;, [; and x}o)’s are constants. One can use these solutions for various choices of N

to obtain the so called line solitons as in the case of KdV equation as discussed in §4.2.
For example, with the choice N = 1, we have

oM =exp(x1), X1 =k +hn— K+ XY (58)
and the corresponding solution to the evolution equation becomes
1= —20glog ¢ = —20, log(1 + V) = -’—‘12—11 sech? (521) (592)
K2
V= ~20log § = ~20gclog(1 + ) = T sect? (%) (59b)
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where ¢ has been scaled out in the final form of the solution. These structures in (2 4 1)
dimensions are line solitons, because eventhough they have soliton-like properties, they
are localized in the two dimensional space except along the lines x; = 0, where the
solution is though bounded does not go to zero as x, y — oo. N-line solitons can also be
constructed following the procedure suggested in §4 and their interaction properties can
be studied in the usual way.

But more interestingly, we observe the fact that in (59), k; and [; are arbltrary
parameters. One finds that

as k3 — 0, both wu,v—0, (60a)

whereas
k.2 3. (0
as I —>0,u——+0,v—>-—2—sech (k1& — kit +x; ) (60b)

Thus eventhough the physical field vanishes, the potential

U
v = / uedn' +vi(€,1) (61)
survives. Comparing (60b) and (61), one concludes that
v k2 0)
nHEI v(fa 1, ) =W (5’ t) = ""él" eCh(klé kst + X1 ) (62)

is the ghost or background soliton at the boundary 1 = —oc.

5.4 Localized solution: Dromions

The existence of ghost solitons at the boundary 17 = —oo prompts one to look for a more
general ansatz than (58) so that we may choose

¢=1+eX 4eX2 4 KeXtt@2 K >0, (63a)
where

x1=ké—kKt+e, xa=un+e (63b)
so that

w = 20 log § = 2kl (1 — K) exp(x1 + X2) n (64)

[1+ exp(x1) +exp(x2) + K exp(x1 + x2)]

while

v = — 20 log ¢ = — 241ExR0A) + (1 = K) exp(X1 + x2) + exp(x1+ 2x2)]

[1+ exp(x1) + exp(x2) + K exp(x1 + x2)]*
(65)

One observes that while the physical field is now exponentially localized in the entire
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(&,m) plane, the potential v is not. In this case, when

u—0 as n— —co, (66a)
v — —~% sech®(kié — Kt + ¢;) (66b)

so that we can interpret that the energy is continuously injected at the boundary n — —oo
in the form of a soliton (with k 3 0) so that the physical field can overcome the tendency
to disperse so as to get a fully localized structure. Solution (64) is then called the (1,1)
dromion solution to the NLEE (46).

Multidromion solutions can also be obtained. For example a (2, 1) drorion solution is
obtained as

2(1 = K)[ksly exp(x1 + x2) + kol exp(x2 + x3)]

B [1+exp(x1) +exp(x2) + K(exp(x1 + x2) +exp(x2 + x3))]* (672)
where
xi = ke~ Er+x, (67b)
x2 =ln+x, : : - (67c)
xs =kt — 3t +x. (67d)

One may obtain (N, M) dromions also proceeding in this way.

5.5 Further general localized structures

Unlike the case of (1+ 1) dimensional soliton equations, the linear set of Hirota
equations (56) can also have more general solutions than the one given by (57). For
example, (56a) admits general solutions of the form

¢="explk€ — Kt +m(n)], (68)

=1

where m;(n) is an arbitrary function of 7. For example with the choice N = 1 in (68), we
can obtain :

u(&:m,1) = —gkum (n) sech®Jkré — Kt + my ()] (69)

where my(n) = (dmy/dn) is arbitrary (as m, (n) is arbitrary). Choosing m(n) suitably,
one can obtain various types of localized solutions. For example, with the choice,

my(n) = sech®(an+f), «,f: constants (70a)
we have the exponentially localized solution

u = ysech®(om + B) sech? Lk, £ — K3t +my (n)] . (70b)
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Localized coherent structures of soliton systems

Many other interesting classes of exponentially localized solutions including oscillatory
and rational functions can be similarly constructed for suitable choices of m;(n) [35].

6. Exponentially localized structures in other (24 1) dimensional NLEEs [34]

The procedure elucidated in § 5 for the (2 + 1) dimensional generalized KdV equation
can be extended to other (2 + 1) dimensional systems discussed in §3 as well. In the
following, we summarize the main results.

6.1 NNV equation

Proceeding as in the case of the generalized KdV equation (46), we rewrite (27) as
Uy + Ugee + Unny + aug + buy = 3(wv), + 3(ug),, (71a)
Ug =V, Uy =gs, (71b)

the Painlevé property can be established [28]. Working out the auto-Bicklund
transformation, the bilinearizing transformation becomes ‘

u = —20,log ¢, (72a)
V= -—2655 log ¢, (72b)
g = —20p, log ¢. (72c)
The line solitons work out to be
_ kl ll 2 X1
u=——t sech’ 2, (732)
2
V= kz sech? D;I , (73b)
2
q= —52— sech? él , (73c)
where
X1 = ki€ + lyn — (cky + )t — (dly + B)t + x¥ (73d)

so that in the limit k; — 0, u, v — 0, while g survives, whereas when [; — 0, », g — 0,
but v survives. Thus we have two nonparallel ghost solitons in the present case. Following
the procedure discussed in the previous section, we take ¢ to be of the same form as (63a)
so that the (1,1) dromion in the present case becomes

2kl (1 — K) exp(x1 + X2)

u(€,m,t) = K>0 (74)
[1 + exp(x1) + exp(x2) + Kexp(x1 + Xz)]
where now '
X1 =k — (ki + B+ X7, xa=hé— (@ +B)y+x5 (75)

Multidromions solutions can be similarly worked out.
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6.2 Breaking soliton equation

Rewriting (28) as
Ur + Qlyry + Dby + 6auu, + 4buuy + 4bu,y = 0, (76a)
— (76b)

one can check algorithmically that the Painlevé property is satisfied in the nontrivial case

only for the choice a = 0, b # 0 (b = 0, a # 01is the trivial KdV case) so that we have the
equation of motion

Ur + blbry + 4buuy, + dbu,y = 0, (77a)

Uy = Vy. (77b)
Note that v itself satisfies an equation of the form

Ve + by + 4bvvy + 4bvy 851y, = 0. (78)

One verifies that bilinearization is possible only for the special case (77) and the required
transformation works out to be

u=30,log ¢, | (79a)
=30, log ¢. (79b)
xy

The bilinearized equation becomes
(DxD; + bDD,)¢-¢ = 0. (80)

Expanding ¢ in a formal power series as before and truncating, one obtmns the line
soliton as

u=3hsect’(XL), - (812)
v = 3kl sech? (%) (81b)

where
x1 = ki + by — bt 4+ 5. (81c)

As k — 0, both u and v — 0, while when Iy — 0, the potential v — 0, but the field u

survives as a static ghost soliton of the form u — 2 k% sech® (kyx + X% at the boundary
X = —o0.

The dromion solutions can be obtained in the usual way. For generating the (1,1)

dromion, we take
¢ =1+eX +ev 4 Kelita) g0 (82a)
=kx+x{", x2=hy—bht+ 5O | (82b)
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so that the potential v becomes fully localized exponentially,
, 3 kili(K — 1) exp(x1 + x2
= 0 v(x7y: t) =§ ( ) p( )

[1 +exp(x1) + exp(x2) + K exp(x1 + x2)]*’ (83)

whereas’ the physical field

u(x,y, ) = > LK)k exp(xa + xa) + K exp0a)(1 + K exp(2x2)) (84
T2 [t+exp(a) +exp(xa) + Kexp(u +x2)F

which is though bounded does not fall off to zero as y» — oo. One can proceed further
[29] and obtain an (1, N) dromion of the form

(K — ks exp(x1) S liexp(x:) (85)

3
2(1+ 37 exp(x;) + Kexp(xa) Sy exp(xi)*

V(1,8

Finally, as in the case of the generalized (2 + 1) dimensional KdV equation (§ 5. 4), one
can obtain more general exponentially localized solution of the form

u = 3 ki sech® Lkix + g(€)), . (86a)
v = {kih(€) sech® 3 flrx + g(€)], (86b)

where g(£) and h(€) are arbitrary functions in the variable ¢ =y — k?t. Choosing
h(£) suitably, one can indeed obtain a very large class of localized structures for the
potential v.

Thus in the case of the breaking soliton equation (77), it is not the physical field which
is localized but it is rather the potential which admits localized solutions. Looking
from another point of view, one may take (78) along with (77b) as the basic evolution
equation, in which case we have now the new physical field which admits localized
structures.

6.3 (2 + 1) dimensional NLS equation

Considering the symmetric generalized (2+ 1) dimensional nonlinear Schrédinger
equation (29) introduced by Fokas [17], it can be rewritten as

igi + (@ + B)gm — (@ — B)age — 2Mq[(a+ BV — (@ = /U] =0,  (87a)

laly = Ve, (87b)

4l = U, | (87c)
Equation (87) contains three important systems:

(i) @ = B = 1: Simplest complex scalar equation in (2 + 1) dimensions
(i) & = 0, B = 1: Davey-Stewartson equation I (DSI)
(iii) ¢ = 1, B = 0: Davey-Stewartson equation III (DSIII).
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The Painlevé property of system (87) can be established in the standard way and it can
be bilinearized [31, 36]. With the transformation,

%

=5, =5, (88)

V= —X\oplogp, U= —A0glogo, (88b)
one obtains the bilinearized form

[iD; — (& = B)D + (@ + B)Djlg- =0, (89a)

D¢Dyé-¢ = —2Xg8". (89b)
Expanding

g=cegi+egt, o=1+h+ed+- (90)
and following the usual procedure, the basic line solitons are obtained as

q(&,,t) = zexp(—) sech(xir + 1) exp(ixur), (91a)

V(& mt) = —Asigsech® (xir + 9), . (91b)

U(¢,n,t) = —Aplesech? (xir + 1), (91c)

x1 = pié + s = il(e - B)pt — (o + A)stle+x17. (91d)

One identifies two nonparallel ghost solitons, one at 1 = —00,

U = —pigsech®[xir + ¥, X1z = pirlé +2(a — B)purt, (92a)
and the other at £ = —o0.

V = —Astpsech®[xir +¥'], Rir = sir[n -+ 2(a + B)sus]. (92b)
Consequently,the exponentially localized (1,1) dromion is obtained with the choice

¢up = 1+jexp(x1 + x7) +kexp(x2 + x3) + lexp(xa + X5 + X2 + X3)

(93a)
with

x1=pi€ —i(la—B)pit+c1, x2=sin+i(a+ Bt + ey, (93b)

where pi, 51, ¢1 and ¢, are constants. Choosing g appropriately, one then obtains

diip = pexp(piré + sz + i{pué + sufi + [(@ + B)lsi[* — (a — B)lp1|A1})
1 +jexp(2pirE) + kexp(2sizf) + Lexp(2[piré + s1z7)])

(94a)
where

E=t+20—Ppur, fH=n-2a+Bumr. (94b)
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The multidromions can also be constructed by generalizing the above procedure.
Similarly exponentially localized breather solutions also follow by putting s;; = py;;y =0
in (94a) to obtain

girp = —PXPO1RE + s1xm + i{( + B)sty — (o — F)phe})
1+ jexp(2pir€) + kexp(2sizn) + Lexp(2[piaé + sizn])

(95)

6.4 The (2 + 1) dimensional generalized NLS equation used by Strachan [18]

The system of equations (30) is completely integrable and satisfies the Painlevé property
[27]. It can be bilinearized through the transformation

¢

qzi-, q*=%;, y = 20, log ¢ (96)
as

iDig-¢ = DyDyg- ¢, ’ (97a)

D2p-¢ =2gg". (97b)

While admitting line solitons, it does not admit two nonparallel ghost solitons driving the
boundaries in the usual sense. Thus the basic dromion solutions of the form considered in
the previous examples do not seem to arise in this case.

However, one finds that a more general form of localized solutions corresponding to
curved solitons can exist. To generate such localized solutions, we expand g and ¢ in the
form of a power series similar to (90) to give rise to the following set of equations:

€: igfl) = gg) (98a)
& : ¢2) = g g (98b)
and so on. Solving (98a), we obtain
N
gV = ZGXP(XJ'): Xj = kx +m(y,1) + ¢, (99a)
j=1

where m;(y, t) is an arbitrary function of (y,#) chosen such that
m;(y, 1) = m;(p;) = my(y — ikjt) (99b)

and k; and ¢; are complex constants. To construct one soliton solution, we take N = 1 and
substitute g!) in (98b) to give

1

¢ =exp(x1 + x| +2¢), exp(2¢) = ot (100)

Hence, the physical field g and the potential V assume the form
q = kir sech(x1r + 9) exp(ixu), (101a)
V = 2kir(mig) ,,, sech(xiz +v), pir =y+kut, ki =Im(k)). (101b)
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It is evident from (101) that both the physical field g and the potential V remain finite on
the curve

C=xwr+%=krx+mpgyt)+crg=0 (102)

and decay exponentially everywhere (as x, y — 0o) apart from the curve C = 0 given by
(102). We call such line solitons as ‘““curved solitons”. As (myz), is arbitrary, one can
choose it conveniently as

PIR
(mlR)pm = SBChZ(le) (103)
so that a one dromion solution for the potential V' becomes
V= 2k1RSCCh2(p1R)SeCh2(X1R + ). (104)

One calls such localized solutions as “induced dromions™ as they are induced by virtue
of the arbitrary function present in the system. One can indeed construct a large class of
localized solutions for the potential by choosing the arbitrary function properly.

6.5 (2+ 1) dimensional sine-Gordon equation

The system (31) under the transformations
i

g=—50 r=-26 (105)
can be recast in the form

e +3Peq + 507 =0, (1062)

Yo +3peq + 3 pgr =0, (106b)

o pey = ~2(gr),. (106c)

Again the P-property can be established algorithmically [30]. One then obtains the
bilinearizing transformation

ngg’ r=%, k(107a)

p=231080)+2 [ m(€0e€+2 [ mi.or (107b)
so that the Hirota bilinear form of eq. (106) becomes

DeDig¢ +ma(€,1)g-¢ + my(n, )h-¢ = 0, (108a)

DpDig-¢ + may(&,1)g- ¢ + my(n, )h-¢p = 0, - (108b)

o*D¢Dy-¢p = —2gh, : (108c)

hDyD:¢-¢ — gDDyp-¢p = 0, (108d)

where m; (n,#) and my(€,7) are certain arbitrary functions which can be identified with
boundary flows at { = =co and 9 = —o0 respectively.
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Considering the 2DSGI (62 = +1) case, we note that the presence of nonzero m; and
my are essential for the formation of line kink solitons as well as localized solutions.
Expanding g, h and ¢ in a suitable formal power series, one obtains the line kinks for the
case in which m; and m, are non-zero constants as

2iq; exp x1 2ipy exp X1
- = : , 109
=1+ exp(2xi + 26)’ T exp(2x1 + 20) (109)
where py, ¢, and § are constants and
xt = 2916 +2q1m — ot — 22 4 50 3 O:consts. (110)

2q; 2P
Then we have

0(¢,m,t) = 4tan~ exp(x1 + )] (111)

Taking m; and my in the form

mi(n,1) = m +m(if), of =n+wt (112a)
my(€,8) = m) +m(¢), &€ =&+t (112b)
one ultimately obtains the (1,1) dromion solution [30, 37]
_ —(p1€' + qn')]
6 =4t 1{ N 1. i (1 .3
D\ AT o2 - 8 F el 2@ — &)

6.6 The (2 + 1) dimensional long dispersive wave (2DLW) equation

Considering the 2DLDW equation (32), we find that again the P-property is true and that
with the transformation

q:-:%, r=g, v=§;2-10g¢ | . (114)
it can be bilinearized in the form

(AD; +D})g-¢ =0, | (115a)

(AD; — D?)h-¢p =0, (115b)

D,Dyé-¢ = —2gh. (115¢)

Analysis of (115) leads to the line soliton solutions of the form

exp(—pix + 510 — (p}/N)t + c1)

q= , 116a
e Py e P Yl ) M
1+exp(—[pr+pile+si+sin+(1/N)[pf — pllt+c +29)
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while the potential v is described by the line soliton

— / 2

v = (PII‘PI) sech%(;a + X, + 29), (116¢)

where
: i Pyl ! P_,lz !
X1 = -—p1x+sm—"xt+cla X1 = —Pix+sn+ by t+cy,
exp(27y) = ,,1 | : (116d)
(p1+p)(s1 +5)
We also note that the composite field is given by
! /
qurz(pl +p1)(S1+S1) SeCh%(Xl'l‘X/l'l'zd)) (117)

4

- Further in the limit (s; + 5}) — 0 (or equivalently at the boundary n = —co), one has the
ghost soliton :

. 7\2
1 1
v =_____(p1 —:pl) SCCh2§ ([Pl +Pll]x+x(P'12 —P%)H'Cl)- (118)

The above features indicate that it is not the physical fields q and r that will get localized,

but it is rather the composite field Q = “gr” which will get localized. Indeed with the
choice :

¢=1+expxi+expxz+Kexp(xi + x2), - (119a)
pit
X1=P1x——é-+61, X2 = s1n+ ¢y, (119b)
one obtains the (1,1) dromion for the composite field as
x ——
Qzuqru 2/ v,,ch: (1 K)plsl eXP(XI + XZ) 5 K>0.
~c0 [1+exp(x1) +exp(x2) +K exp(x1+x2)]
(120)
More general (1,N) dromions can be given by
1 —K)piex N o siex ;
(qr)lN — [1 " ( )Pl P(Xl) Zx—l i P(X +1) (121)

Tt exp(g) + K exp (xa S, exp(xers))l

Again, it should be mentioned that one can indeed generate induced localized solutions
for the composite field by utilising the arbitrary function f (m) present in the system.

7. Conclusions

In this paper, we have investigated the type of basic nonlinear coherent structures that can
arise in a class of nonlinear evolution equations in (2 + 1) dimensions. In contrast to the

ordinary solitons in (1 + 1) dimensions, it was pointed out that much richer structures can
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arise in (2+ 1) dimensions: line solitons, lump solitons, exponentially localized
dromions and their generalizations and so on. In particular, we have discussed in detail
certain algorithmic methods of obtaining the localized dromion-like solutions, either in
the field variables or in the potential variables or even in the composite variables. In all
these cases, the relevance of boundary contributions to form localized structures was
stressed. :

The necessity of boundary contributions to form exponentially localized solutions also
justifies the type of NLEEs we have discussed here, namely all of them have nonlocal
terms or equivalently extra fields associated with them. Simple minded (2+ 1)
dimensional (local) generalizations of (1+ 1) dimensional soliton equations do not
seem to admit exact analytical localized structures in general. More work needs to be
carried out to understand the basic structures in such systems and the analysis of such
systems will constitute an important area of development in nonlinear dynamics in future.
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