On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations

V.K Chandrasekar, M Senthilvelan and M Lakshmanan

Proc. R. Soc. A 2006 462, 1831-1852
doi: 10.1098/rspa.2005.1648

References
Email alerting service

This article cites 15 articles, 1 of which can be accessed free http://rspa.royalsocietypublishing.org/content/462/2070/1831.full. html\#ref-list-1

Article cited in:
http://rspa.royalsocietypublishing.org/content/462/2070/1831.full.html\#re lated-urls

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Proc. R. Soc. A go to: http://rspa.royalsocietypublishing.org/subscriptions

On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations

By V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan*
Department of Physics, Centre for Nonlinear Dynamics, Bharathidasan University, Tiruchirapalli 620 024, India

Abstract

We introduce a method for finding general solutions of third-order nonlinear differential equations by extending the modified Prelle-Singer method. We describe a procedure to deduce all the integrals of motion associated with the given equation, so that the general solution follows straightforwardly from these integrals. The method is illustrated with several examples. Further, we propose a powerful method of identifying linearizing transformations. The proposed method not only unifies all the known linearizing transformations systematically but also introduces a new and generalized linearizing transformation. In addition to the above, we provide an algorithm to invert the non-local linearizing transformation. Through this procedure the general solution for the original nonlinear equation can be obtained from the solution of the linear ordinary differential equation.

Keywords: integrability; integrating factor; linearization; equivalence problem

1. Introduction

In a previous paper (Chandrasekar et al. 2005) we have discussed the complete integrability aspects of a class of second-order nonlinear ordinary differential equations (ODEs) through a non-trivial extension of the so-called Prelle-Singer (PS) (Prelle \& Singer 1983; Duarte et al. 2001) procedure. We have illustrated the procedure with several physically interesting nonlinear oscillator examples. We have also developed a straightforward algorithmic way to transform the given second-order nonlinear ODE to a linear free particle equation, if it is linearizable.

One of the questions raised at the final stage of our earlier work (Chandrasekar et al. 2005) was what are the implications of the novel features which we introduced in the extended PS procedure to obtain the second constant of motion (in the case of second-order ODEs) to third and higher-order ODEs. To have a closer look at the problem, let us recall our earlier work briefly here. We considered a second-order ODE of the form $\mathrm{d}^{2} x / \mathrm{d} t^{2}=P(t, x, \dot{x}) / Q(t, x, \dot{x})$, $P, Q \in \mathbb{C}[t, x, \dot{x}]$, and explored two pairs of independent functions, say, R_{i} and $S_{i}, i=1,2$, associated with the underlying ODE. These functions are nothing but

[^0]the integrating factors and null forms, respectively. Once these two pairs of functions are determined (by solving an overdetermined system of first-order partial differential equations (PDEs)), then each pair leads to an independent integral of motion, which can then be used to find the general solution for the given equation. Thus, instead of integrating the first integral and obtaining the general solution which is conventionally followed in the literature, we implemented some novel ideas in the PS method, such that one can construct the general solution for the given equation in a self-contained way and, in fact, our procedure works for a class of problems.

In the case of third-order ODEs, one should have three independent integrals of motion in order to establish the complete integrability. To deduce these three integrals, one should have three pairs of independent functions (R_{i}, U_{i} and S_{i}), $i=1,2,3$. When we extend the PS procedure to third-order ODEs, we find that the determining equations for the integrating factors and null forms straightforwardly provide either one or two integrals of motion only. Again the hidden form of the functions $\left(R_{3}, U_{3}, S_{3}\right)$ should be explored in order to establish the complete integrability of the given equation within the framework of PS procedure. In this paper we describe a procedure to capture the required set of functions. With the completion of this task we formulate a simple, straightforward and powerful method to solve a wide class of third-order ODEs of contemporary literature.

We stress at this point that the application of PS procedure to third-order ODEs is not a straightforward extension of the second-order case. In fact, one has to overcome many faceted problems. The first and foremost one is how to solve the determining equations in such a way that one could obtain three sets of independent functions, namely, $\left(R_{i}, U_{i}, S_{i}\right), i=1,2,3$, in a systematic way. In the present case we have six equations for three unknown functions (in the case of second-order equations we have three equations for two unknowns). We overcome this problem by adopting suitable methodologies, the details of which we present in §3. Another obstacle one could face in higher-order ODEs, at least in some cases, is that one may be able to get only one integral of motion and, in this situation, how one would be able to generate the remaining integrals of motion from the first integral is also tackled by us in this paper.

Our main goal, besides the above, is to bring out a novel and straightforward way to construct linearizing transformations for third-order ODEs. The latter can be used to transform the given third-order nonlinear ODEs to a linear equation. We note that unlike the second-order equations, the third-order ODEs can be linearized through different kinds of transformations, namely, invertible point transformation (Ibragimov \& Meleshko 2005), contact transformation (Bocharov et al. 1993; Ibragimov \& Meleshko 2005) and generalized Sundman transformation (Berkovich \& Orlova 2000; Euler et al. 2003; Euler \& Euler 2004).

In this paper we introduce a new kind of transformation, which can be effectively used to linearize a class of nonlinear third-order ODEs. In fact, one can linearize certain equations only through this transformation alone and not by the known ones in the literature. We call this transformation generalized linearizing transformation (GLT). We note that generalized Sundman transformation is a special case of this transformation. In the generalized Sundman transformation, the new independent variable is a non-local one, and so even though one is able to transform the given nonlinear third-order ODE to a linear
one, due to the nature of the non-local independent variable, it is not easy to write down the general solution. In the case of GLT, both the new dependent and independent variables also contain derivative terms in addition to the independent variable being non-local. Even for this general case, in this paper, we succeed in presenting an efficient algorithm to deduce the general solution.

Another fundamental problem regarding linearization is how to deduce the linearizing transformations systematically. Generally, Lie symmetry analysis and direct methods are often used to deduce the point and contact transformations (Steeb 1993; Bocharov et al. 1993; Olver 1995; Bluman \& Anco 2002; Ibragimov \& Meleshko 2005). In this work we propose a simple and straightforward method to deduce linearizing transformations and we derive them from the first integral. Our method of deducing linearizing transformations has several salient features. Irrespective of the form of the linearizing transformation (point/contact/ generalized Sundman transformation), it can be derived from the first integral itself. We also note that one can also linearize a third-order ODE to the secondorder free particle equation through our method. An added advantage of our method is that suppose a given equation is linearizable through one or more kinds of transformations, then our procedure provides all these transformations in a straightforward way and as far as our knowledge goes no such single method has been formulated in the literature.

The plan of the paper is as follows. In §2, we extend the PS procedure to thirdorder ODEs and indicate new features in finding the three independent integrals of motion. In §3, we describe the methods of solving the determining equations and how one can obtain compatible solutions from them. We illustrate the procedure with several examples. In §4, we propose a powerful method of identifying linearizing transformations. This method not only brings out all the known transformations systematically, but also a new GLT for the third-order ODEs. We emphasize the validity of the method with several illustrative examples arising in different areas of mathematics and physics in §5. We present our conclusions in $\S 6$.

2. Prelle-Singer method for third-order ODEs

(a) General theory

Let us consider a class of third-order ODEs of the form

$$
\begin{equation*}
\dddot{x}=\frac{P}{Q}, \quad P, Q \in \mathbb{C}[t, x, \dot{x}, \ddot{x}]\left(\cdot=\frac{\mathrm{d}}{\mathrm{~d} t}\right) \tag{2.1}
\end{equation*}
$$

where the overdot denotes differentiation with respect to time and P and Q are polynomials in t, x, \dot{x} and \ddot{x} with coefficients in the field of complex numbers, \mathbb{C}. Let us assume that the third-order ODE (2.1) admits a first integral $I(t, x, \dot{x}, \ddot{x})=C$, with C being constant on the solutions, so that the total differential of I gives

$$
\begin{equation*}
\mathrm{d} I=I_{t} \mathrm{~d} t+I_{x} \mathrm{~d} x+I_{\dot{x}} \mathrm{~d} \dot{x}+I_{\ddot{x}} \mathrm{~d} \ddot{x}=0 \tag{2.2}
\end{equation*}
$$

where each subscript denotes partial differentiation with respect to that variable. Equation (2.1) can be rewritten as $(P / Q) \mathrm{d} t-\mathrm{d} \ddot{x}=0$. Now adding the null terms
$U(t, x, \dot{x}, \ddot{x}) \ddot{x} \mathrm{~d} t-U(t, x, \dot{x}, \ddot{x}) \mathrm{d} \dot{x}$ and $S(t, x, \dot{x}, \ddot{x}) \dot{x} \mathrm{~d} t-S(t, x, \dot{x}, \ddot{x}) \mathrm{d} x$ to this we obtain that, in the solutions, the one-form

$$
\begin{equation*}
\left(\frac{P}{Q}+S \dot{x}+U \ddot{x}\right) \mathrm{d} t-S \mathrm{~d} x-U \mathrm{~d} \dot{x}-\mathrm{d} \ddot{x}=0 \tag{2.3}
\end{equation*}
$$

Looking at equations (2.2) and (2.3) one can conclude that, in the solutions, these two forms are proportional and the form of equation (2.3) is equivalent to equation (2.2), except for an overall multiplication factor. Thus, multiplying equation (2.3) by the factor $R(t, x, \dot{x}, \ddot{x})$ which acts as the integrating factor for (2.3), we have in the solutions that

$$
\begin{equation*}
\mathrm{d} I=R(\phi+S \dot{x}+U \ddot{x}) \mathrm{d} t-R S \mathrm{~d} x-R U \mathrm{~d} \dot{x}-R \mathrm{~d} \ddot{x}=0, \tag{2.4}
\end{equation*}
$$

where $\phi \equiv P / Q$. Comparing equation (2.2) with (2.4) we have the following relations in the solutions:

$$
\begin{equation*}
I_{t}=R(\phi+S \dot{x}+U \ddot{x}), \quad I_{x}=-R S, \quad I_{\dot{x}}=-R U, \quad I_{\ddot{x}}=-R \tag{2.5}
\end{equation*}
$$

Now imposing the compatibility conditions, $I_{t x}=I_{x t}, I_{t \dot{x}}=I_{\dot{x} t}, I_{t \ddot{x}}=I_{\ddot{x} t}$, $I_{x \dot{x}}=I_{\dot{x} x}, I_{x \ddot{x}}=I_{\ddot{x} x}, I_{\dot{x} \ddot{x}}=I_{\ddot{x} \dot{x}}$, which exist between equations (2.5), we have the following equations which constitute three determining equations ((2.6)-(2.8)) for the functions S, U and R along with three constraints $((2.9)-(2.11))$ that they need to satisfy:

$$
\begin{gather*}
\mathrm{D}[S]=-\phi_{x}+S \phi_{\ddot{x}}+U S \tag{2.6}\\
\mathrm{D}[U]=-\phi_{\dot{x}}+U \phi_{\ddot{x}}-S+U^{2}, \tag{2.7}\\
\mathrm{D}[R]=-R\left(U+\phi_{\ddot{x}}\right), \tag{2.8}\\
R_{x}=R_{\ddot{x}} S+R S_{\ddot{x}} \tag{2.9}\\
R_{\dot{x}} S=-R S_{\dot{x}}+R_{x} U+R U_{x} \tag{2.10}\\
R_{\dot{x}}=R_{\ddot{x}} U+R U_{\ddot{x}} \tag{2.11}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathrm{D}=\frac{\partial}{\partial t}+\dot{x} \frac{\partial}{\partial x}+\ddot{x} \frac{\partial}{\partial \dot{x}}+\phi \frac{\partial}{\partial \ddot{x}} . \tag{2.12}
\end{equation*}
$$

The task of solving equations (2.6)-(2.11) can be accomplished in the following way. Substituting the given expression of ϕ into (2.6) and (2.7) and solving them one can obtain expressions for S and U. With the known U, equation (2.8) becomes the determining equation for the function R. Solving the latter one can get an explicit form for R. Compatible solutions to equations (2.6)-(2.8) can also be obtained in alternative ways, the details of which are given in §3.

Now the functions R, U and S have to satisfy an extra set of constraints, i.e. equations (2.9)-(2.11). Suppose a compatible solution satisfying all the equations has been found, then the functions R, U and S fix the differential invariant
$I(t, x, \dot{x}, \ddot{x})$ by the relation

$$
\begin{align*}
I(t, x, \dot{x}, \ddot{x})= & r_{1}-r_{2}-\int\left\{R U+\frac{\mathrm{d}}{\mathrm{~d} \dot{x}}\left[r_{1}-r_{2}\right]\right\} \mathrm{d} \dot{x} \\
& -\int\left\{R+\frac{\mathrm{d}}{\mathrm{~d} \ddot{x}}\left[r_{1}-r_{2}-\int\left\{R U+\frac{\mathrm{d}}{\mathrm{~d} \dot{x}}\left[r_{1}-r_{2}\right]\right\} \mathrm{d} \dot{x}\right]\right\} \mathrm{d} \ddot{x} \tag{2.13}
\end{align*}
$$

where

$$
r_{1}=\int R(\phi+S \dot{x}+U \ddot{x}) \mathrm{d} t, \quad r_{2}=\int\left(R S+\frac{\mathrm{d}}{\mathrm{~d} x} \int r_{1}\right) \mathrm{d} x .
$$

Equation (2.13) can be derived straightforwardly by integrating equations (2.5). Here it is to be noted that for every independent set (S, U, R), equation (2.13) defines an integral.

(b) Exploring the complete form of R : theory

From the above discussion, it is clear that equation (2.1) may be considered as completely integrable once we obtain three independent sets of the solutions $\left(S_{i}, U_{i}, R_{i}\right), i=1,2,3$, which provide three independent integrals of motion through the relation (2.13). Here we note that since we are solving equations (2.6)-(2.8) first and then checking the compatibility of this solution with equations (2.9)-(2.11), one often meets the situation that all the solutions which satisfy equations (2.6)-(2.8) need not satisfy the constraints (2.9)-(2.11), since equations (2.6)-(2.11) constitute an overdetermined system for the unknowns R, S and U. In fact, for a class of problems one often gets one or two sets of S, U, R, which satisfy all equations (2.6)-(2.11) and another(other) $\operatorname{set}(\mathrm{s})(S, U, R)$, which satisfies(satisfy) only the first three equations and not the other, namely, (2.9)-(2.11). In this situation we find an interesting fact that one can use the integral(s) derived from the set(s) which satisfies(satisfy) all the six equations (2.6)-(2.11) and deduce the other compatible solution(s) (S, U, \hat{R}) (definition of R follows). For example, let the set $\left(S_{3}, U_{3}, R_{3}\right)$ be a solution of the determining equations (2.6)-(2.8) and not of the constraints (2.9)-(2.11). After analysing several examples we find that one can make the set $\left(S_{3}, U_{3}, R_{3}\right)$ compatible by modifying the form of R_{3} as

$$
\begin{equation*}
\hat{R}_{3}=F(t, x, \dot{x}, \ddot{x}) R_{3}, \tag{2.14}
\end{equation*}
$$

where \hat{R}_{3} satisfies equation (2.8), so that we have

$$
\begin{equation*}
\left(F_{t}+\dot{x} F_{x}+\ddot{x} F_{\dot{x}}+\phi F_{\ddot{x}}\right) R_{3}+F \mathrm{D}\left[R_{3}\right]=-F R_{3}\left(U_{3}+\phi_{\dot{x}}\right) . \tag{2.15}
\end{equation*}
$$

Further, if F is a constant of motion (or a function of it), then the first term on the left-hand side vanishes and one gets the same equation (2.8) for R_{3}, provided F is non-zero. That is, whenever F is a constant of motion or a function of it, then the solution to (2.8) may provide only a factor of the complete solution \hat{R}_{3} without the factor F in equation (2.14). This general form of \hat{R}_{3} along with S_{3} and U_{3} can now provide a complete solution to equations (2.6)-(2.11) as discussed below.

(c) Exploring the complete form of R : method

Now if the sets $\left(S_{i}, U_{i}, R_{i}\right), i=1,2$ are found to satisfy equations (2.6)-(2.11) and the third set $\left(S_{3}, U_{3}, R_{3}\right)$ does not satisfy equations (2.9)-(2.11), then F may be a function of the integrals $I_{i}, i=1,2$, derived from the sets $\left(S_{i}, U_{i}, R_{i}\right), i=1,2$. We need to find the explicit form of $F\left(I_{1}, I_{2}\right)$ in order to obtain the compatible solution $\left(S_{3}, U_{3}, R_{3}\right)$. To do so let us find the derivatives of \hat{R}_{3} with respect to x, \dot{x} and \ddot{x} :

$$
\left.\begin{array}{c}
\hat{R}_{3 x}=\left(F_{1}^{\prime} I_{1 x}+F_{2}^{\prime} I_{2 x}\right) R_{3}+F R_{3 x}, \quad \hat{R}_{3 \dot{x}}=\left(F_{1}^{\prime} I_{1 \dot{x}}+F_{2}^{\prime} I_{2 \dot{x}}\right) R_{3}+F R_{3 \dot{x}} \tag{2.16}\\
\hat{R}_{3 \ddot{x}}=\left(F_{1}^{\prime} I_{1 \ddot{x}}+F_{2}^{\prime} I_{2 \ddot{x}}\right) R_{3}+F R_{3 \ddot{x}}
\end{array}\right\}
$$

where $F_{1}^{\prime}=\partial F / \partial I_{1}$ and $F_{2}^{\prime}=\partial F / \partial I_{2}$. Substituting equation (2.16) into equations (2.9)-(2.11), we have

$$
\begin{equation*}
\frac{\left(f_{1} F_{1}^{\prime}+f_{2} F_{2}^{\prime}\right)}{f_{3}}=\frac{F}{R_{3}}, \quad \frac{\left(f_{4} F_{1}^{\prime}+f_{5} F_{2}^{\prime}\right)}{f_{6}}=\frac{F}{R_{3}}, \quad \frac{\left(f_{7} F_{1}^{\prime}+f_{8} F_{2}^{\prime}\right)}{f_{9}}=\frac{F}{R_{3}}, \tag{2.17a}
\end{equation*}
$$

where

$$
\left.\begin{array}{ccc}
f_{1}=\left(I_{1 x}-I_{1 \ddot{x}} S_{3}\right), & f_{2}=\left(I_{2 x}-I_{2 \ddot{x}} S_{3}\right), & f_{3}=\left(S_{3} R_{3 \ddot{x}}+R_{3} S_{3 \ddot{x}}-R_{3 x}\right), \\
f_{4}=\left(I_{1 \dot{x}}-I_{1 \ddot{x}} U_{3}\right), & f_{5}=\left(I_{2 \dot{x}}-I_{2 \ddot{x}} U_{3}\right), & f_{6}=\left(U_{3} R_{3 \ddot{x}}+R_{3} U_{3 \ddot{x}}-R_{3 \dot{x}}\right), \\
f_{7}=\left(S_{3} I_{1 \dot{x}}-I_{1 x} U_{3}\right), & f_{8}=\left(S_{3} I_{2 \dot{x}}-I_{2 x} U_{3}\right), f_{9}=\left(R_{3} U_{3 x}+U_{3} R_{3 x}-R_{3} S_{3 \dot{x}}-S_{3} R_{3 \dot{x}}\right) . \tag{2.17b}
\end{array}\right\}
$$

Equation (2.17a) represents an overdetermined system of equations for the unknown F. A simple way to solve this equation is to uncouple it for $F_{1}^{\prime}\left(=\partial F / \partial I_{1}\right)$ and $F_{2}^{\prime}\left(=\partial F / \partial I_{2}\right)$ and solve the resultant equations. For example, eliminating F_{2}^{\prime} from equation (2.17a) we obtain equations for F_{1}^{\prime} in the form

$$
\begin{equation*}
\frac{R_{3} F_{1}^{\prime}}{F}=\frac{\left(f_{3} f_{5}-f_{2} f_{6}\right)}{\left(f_{1} f_{5}-f_{2} f_{4}\right)}=\frac{\left(f_{3} f_{8}-f_{2} f_{9}\right)}{\left(f_{1} f_{8}-f_{2} f_{7}\right)}=\frac{\left(f_{6} f_{8}-f_{5} f_{9}\right)}{\left(f_{4} f_{8}-f_{5} f_{7}\right)} \tag{2.18}
\end{equation*}
$$

On the other hand, eliminating F_{1}^{\prime} from equation (2.17a) we arrive at equations for F_{2}^{\prime} in the form

$$
\begin{equation*}
\frac{R_{3} F_{2}^{\prime}}{F}=\frac{\left(f_{3} f_{4}-f_{1} f_{6}\right)}{\left(f_{2} f_{4}-f_{1} f_{5}\right)}=\frac{\left(f_{3} f_{7}-f_{1} f_{9}\right)}{\left(f_{2} f_{7}-f_{1} f_{8}\right)}=\frac{\left(f_{6} f_{7}-f_{4} f_{9}\right)}{\left(f_{5} f_{7}-f_{4} f_{8}\right)} \tag{2.19}
\end{equation*}
$$

It can be easily cheeked that the compatibility of the right three expressions in equations (2.18) or (2.19) gives rise to relations which are effectively nothing but the constraint equations (2.9)-(2.11) and so no new constraint is added now. Consequently, equations (2.18) and (2.19) can be written as

$$
\begin{equation*}
\frac{\partial F}{\partial I_{1}}=g\left(I_{1}, I_{2}\right) F \text { and } \frac{\partial F}{\partial I_{2}}=h\left(I_{1}, I_{2}\right) F \tag{2.20}
\end{equation*}
$$

respectively, where $g\left(I_{1}, I_{2}\right)=1 / R_{3}\left(\left(f_{3} f_{5}-f_{2} f_{6}\right) /\left(f_{1} f_{6}-f_{3} f_{4}\right)\right)$ and $h\left(I_{1}, I_{2}\right)=1 / R_{3} \times$ $\left(\left(f_{3} f_{4}-f_{1} f_{6}\right) /\left(f_{2} f_{4}-f_{1} f_{5}\right)\right)$. Now we can solve equations (2.20) and obtain the form of $F\left(I_{1}, I_{2}\right)$. This is demonstrated for several examples in the following sections
explicitly. Once F is known we can obtain the complete solution \hat{R}_{3} from which, along with S_{3} and U_{3}, the third integral I_{3} can be constructed. Thus, with the explicit forms of the three integrals of motion, the complete integrability of equation (2.1) is guaranteed.

Finally, if the set $\left(S_{1}, U_{1}, R_{1}\right)$ alone is found to satisfy equations (2.6)-(2.11) and the second set $\left(S_{2}, U_{2}, R_{2}\right)$ also does not satisfy equations (2.9)-(2.11), then F may be a function of the integral I_{1} alone which was derived from the set $\left(S_{1}, U_{1}, R_{1}\right)$. We need to find the explicit form of $F\left(I_{1}\right)$ in order to obtain the compatible solution $\left(S_{2}, U_{2}, R_{2}\right)$. To do so let us find the derivatives of \hat{R}_{2} with respect to x, \dot{x} and \ddot{x} :

$$
\begin{equation*}
\hat{R}_{2 x}=F_{1}^{\prime} I_{1 x} R_{2}+F R_{2 x}, \quad \hat{R}_{2 \dot{x}}=F_{1}^{\prime} I_{1 \dot{x}} R_{2}+F R_{2 \dot{x}}, \quad \hat{R}_{2 \ddot{x}}=F_{1}^{\prime} I_{1 \ddot{x}} R_{2}+F R_{2 \ddot{x}}, \tag{2.21}
\end{equation*}
$$

where $F_{1}^{\prime}=\partial F / \partial I_{1}$. Substituting equation (2.21) into equations (2.9)-(2.11), we have

$$
\begin{equation*}
\frac{R_{2} F_{1}^{\prime}}{F}=\frac{s_{2}}{s_{1}}=\frac{s_{4}}{s_{3}}=\frac{s_{6}}{s_{5}} \tag{2.22a}
\end{equation*}
$$

where

$$
\left.\begin{array}{cc}
s_{1}=\left(I_{1 x}-I_{1 \ddot{x}} S_{2}\right), & s_{2}=\left(S_{2} R_{2 \ddot{x}}+R_{2} S_{2 \ddot{x}}-R_{2 x}\right), \tag{2.22b}\\
s_{3}=\left(I_{1 \dot{x}}-I_{1 \ddot{x}} U_{2}\right), & s_{4}=\left(U_{2} R_{2 \ddot{x}}+R_{2} U_{2 \ddot{x}}-R_{2 \dot{x}}\right), \\
s_{5}=\left(S_{2} I_{1 \dot{x}}-I_{1 x} U_{2}\right), & s_{6}=\left(R_{2} U_{2 x}+U_{2} R_{2 x}-R_{2} S_{2 \dot{x}}-S_{2} R_{2 \dot{x}}\right) .
\end{array}\right\}
$$

One can again check that the compatibility of the right three expressions in equation $(2.22 a)$ leads to a condition which is deducible from (2.9)-(2.11), and so no new condition is introduced in reality. Then rewriting equation (2.22a) as

$$
\begin{equation*}
\frac{\partial F}{\partial I_{1}}=\left(\frac{1}{R_{2}} \frac{s_{2}}{s_{1}}\right) F=g\left(I_{1}\right) F \tag{2.23}
\end{equation*}
$$

and solving it, one can obtain an explicit expression for F. Once F is known we can construct the complete form of \hat{R}_{2} from which, along with S_{2} and U_{2}, the second integral of motion can be obtained. Once I_{1} and I_{2} are known, we can proceed to find the third compatible set $\left(S_{3}, U_{3}, R_{3}\right)$ as before and obtain the third integral I_{3} to establish complete integrability.

3. Methods of finding the explicit form of R

In §2 we outlined the method of solving the determining equations. However, in practice, it is difficult to solve equations (2.6)-(2.8) straightforwardly as they constitute a set of coupled first-order nonlinear PDEs. So one has to look for some intuitive ideas to solve these equations. We solve them and obtain the forms R, U and S in the following way. For this purpose, we observe the important fact that when we rewrite the coupled equations (2.6)-(2.8) into an equation for a single variable, namely, R, the resultant equation turns out to be a linear PDE. Then we solve this ' R equation' with a suitable ansatz
(say polynomial or rational in \ddot{x}). Once R is found the remaining functions U and S can be easily deduced.

As noted, rewriting equations (2.6)-(2.8), we arrive at a third-order linear PDE for R in the form

$$
\begin{equation*}
\mathrm{D}^{3}[R]-\mathrm{D}^{2}[R \phi \ddot{x}]+\mathrm{D}\left[R \phi_{\dot{x}}\right]-\phi_{x} R=0, \quad \mathrm{D}=\frac{\partial}{\partial t}+\dot{x} \frac{\partial}{\partial x}+\ddot{x} \frac{\partial}{\partial \dot{x}}+\phi \frac{\partial}{\partial \ddot{x}} . \tag{3.1}
\end{equation*}
$$

Solving equation (3.1) with a suitable ansatz in \ddot{x} is relatively easier in many cases than solving equations (2.6)-(2.8). Once the explicit form of R is obtained, U can be deduced from equation (2.8) as

$$
\begin{equation*}
U=-\left(\frac{\mathrm{D}[R]}{R}+\phi_{\ddot{x}}\right) \tag{3.2}
\end{equation*}
$$

from which S can be fixed by using equation (2.7). Now if this set (S, U, R) forms a compatible set for the remaining equations (2.9)-(2.11), then the corresponding integral I can be found using equation (2.13). To illustrate this idea, let us look into the following examples.

(a) Example 1

Let us begin with a simple example, namely a linear third-order ODE,

$$
\begin{equation*}
\dddot{x}+\lambda x=0, \tag{3.3}
\end{equation*}
$$

where λ is an arbitrary parameter. Substituting $\phi=-\lambda x$ into (3.1), we get the following equation for R :

$$
\begin{equation*}
\mathrm{D}^{3}[R]+\lambda R=0, \quad \mathrm{D}=\frac{\partial}{\partial t}+\dot{x} \frac{\partial}{\partial x}+\ddot{x} \frac{\partial}{\partial \dot{x}}-\lambda x \frac{\partial}{\partial \ddot{x}} . \tag{3.4}
\end{equation*}
$$

We now assume an ansatz for R in the form

$$
\begin{equation*}
R=a(t, x, \dot{x})+b(t, x, \dot{x}) \ddot{x} \tag{3.5}
\end{equation*}
$$

where a and b are arbitrary functions of t, x and \dot{x}. Substituting (3.5) into (3.4) and equating the coefficients of different powers of \ddot{x} to zero, we get a set of linear PDEs for the variables a and b. Solving them one obtains three non-trivial solutions,

$$
\begin{equation*}
R_{1}=-\mathrm{e}^{k t}, \quad R_{2}=-\left(2 \ddot{x}+k \dot{x}-k^{2} x\right) \mathrm{e}^{-k t}, \quad R_{3}=-\frac{\sqrt{3} k}{2}(\dot{x}+k x) \mathrm{e}^{-k t} \tag{3.6}
\end{equation*}
$$

where $k^{3}=\lambda$. Now substituting the form of R_{i} 's, $i=1,2,3$, separately into equation (3.2), we get

$$
\begin{equation*}
U_{1}=-k, \quad U_{2}=\frac{\left(2 k^{2} \dot{x}+k \ddot{x}+k^{3} x\right)}{\left(2 \ddot{x}+k \dot{x}-k^{2} x\right)}, \quad U_{3}=-\frac{\left(\ddot{x}-k^{2} x\right)}{(\dot{x}+k x)} . \tag{3.7}
\end{equation*}
$$

Now substituting the forms of U_{i} 's, $i=1,2,3$, into (2.7), one can fix the forms of S_{i} 's, $i=1,2,3$, as

$$
\begin{equation*}
S_{1}=k^{2}, \quad S_{2}=\frac{2 k^{4} x+k^{3} \dot{x}-k^{2} \ddot{x}}{2 \ddot{x}+k \dot{x}-k^{2} x}, \quad S_{3}=-k \frac{(\ddot{x}+k \dot{x})}{(\dot{x}+k x)} . \tag{3.8}
\end{equation*}
$$

As a consequence now we have three sets of independent solutions for equations (2.6)-(2.8). Now we check the compatibility of these solutions with the remaining equations (2.9)-(2.11).

We find that the solutions $\left(S_{1}, U_{1}, R_{1}\right)$ and $\left(S_{2}, U_{2}, R_{2}\right)$ satisfy equations (2.9)(2.11), and become compatible solutions. Substituting the forms (S_{1}, U_{1}, R_{1}) and (S_{2}, U_{2}, R_{2}) separately into equation (2.13) and evaluating the integrals we get

$$
\begin{gather*}
I_{1}=\frac{1}{3 k^{2}}\left(\ddot{x}-k \dot{x}+k^{2} x\right) \mathrm{e}^{k t} \tag{3.9}\\
I_{2}=\frac{2}{3 k^{2}}\left(\ddot{x}^{2}+k^{2} \dot{x}^{2}+k^{4} x^{2}+k \dot{x} \ddot{x}-k^{2} x \ddot{x}+k^{3} x \dot{x}\right) \mathrm{e}^{-k t} . \tag{3.10}
\end{gather*}
$$

However, the set $\left(S_{3}, U_{3}, R_{3}\right)$ does not satisfy the extra constraints (2.9)-(2.11), which means that the form of R_{3} may not be the 'complete form' but might be a factor of the complete form. As mentioned in $\S 2$, in order to recover the complete form \hat{R}_{3}, one may assume that $\hat{R}_{3}=F\left(I_{1}, I_{2}\right) R_{3}$, where $F\left(I_{1}, I_{2}\right)$ is a function of the integrals I_{1} and I_{2}. Now we have to determine the form of $F\left(I_{1}, I_{2}\right)$ explicitly and for this purpose we proceed as follows. Substituting

$$
\begin{equation*}
\hat{R}_{3}=F\left(I_{1}, I_{2}\right) R_{3}=-\left[\frac{\sqrt{3} k}{2}(\dot{x}+k x) \mathrm{e}^{-k t}\right] F\left(I_{1}, I_{2}\right) \tag{3.11}
\end{equation*}
$$

into equations (2.18) and (2.19), along with (2.17b), we obtain two equations for F as

$$
\begin{equation*}
F_{1}^{\prime}=0, \quad I_{2} F_{2}^{\prime}+F=0 \tag{3.12}
\end{equation*}
$$

where F_{1}^{\prime} and F_{2}^{\prime} denote partial derivatives of F with respect to I_{1} and I_{2}, respectively. Upon integrating (3.12), we get $F=1 / I_{2}$ (the integration constants are set to zero for simplicity), which fixes the form of \hat{R}_{3} as

$$
\begin{equation*}
\hat{R}_{3}=\frac{R_{3}}{I_{2}}=-\frac{\sqrt{3} k}{2} \frac{(\dot{x}+k x)}{\left(\ddot{x}^{2}+k^{2} \dot{x}^{2}+k^{4} x^{2}+k \dot{x} \ddot{x}-k^{2} x \ddot{x}+k^{3} x \dot{x}\right)} . \tag{3.13}
\end{equation*}
$$

Now one can easily check that this set $\left(S_{3}, U_{3}, \hat{R}_{3}\right)$ is a compatible solution for equations (2.6)-(2.11), which, in turn, provides I_{3} through the relation (2.13) as

$$
\begin{equation*}
I_{3}=-\frac{\sqrt{3} k}{2} t+\tan ^{-1}\left[\frac{\ddot{x}-k \dot{x}-2 k^{2} x}{\sqrt{3}(\ddot{x}+k \dot{x})}\right] . \tag{3.14}
\end{equation*}
$$

Using the explicit forms of the integrals I_{1}, I_{2} and I_{3}, the solution to equation (3.3) can be deduced directly as

$$
\begin{equation*}
x(t)=I_{1} \mathrm{e}^{-k t}+\sqrt{I_{2}} \mathrm{e}^{(k / 2) t} \cos \left(\frac{\sqrt{3} k}{2} t+I_{3}\right) \tag{3.15}
\end{equation*}
$$

The result exactly coincides with the solution presented in Polyanin \& Zaitsev (1995).
(b) Example 2

The applicability of this method to nonlinear ODEs can be illustrated by considering an equation of the form

$$
\begin{equation*}
\dddot{x}=\frac{\ddot{x}^{2}}{\dot{x}}+\frac{\dot{x} \ddot{x}}{x} . \tag{3.16}
\end{equation*}
$$

Equation (3.16) is a sub-case of the general form of a scalar third-order ODE, which is invariant under the generators of time translation and rescaling (Polyanin \& Zaitsev 1995; Feix et al. 1997). A sub-case of equation (3.16), namely, $\dddot{x}-c\left(\ddot{x}^{2} / \dot{x}\right)=0$, has been considered by both Bocharov et al. (1993) and Ibragimov \& Meleshko (2005) to show that it can be linearized to a linear thirdorder ODE through a contact transformation. On the other hand, Euler \& Euler (2004) have considered the equation $\dddot{x}-(\dot{x} \ddot{x} / x)=0$ and showed that it can be linearized through the Sundman transformation (see $\S 5 c$). Here we consider the combined form (3.16) and derive integrating factors, integrals of motion and the general solution of this equation. Further, we show that equation (3.16) itself can be linearized by the GLT (see $\S 5 d$).

As before, substituting $\phi=\left(\ddot{x}^{2} / \dot{x}\right)+(\dot{x} \ddot{x} / x)$ into (3.1), we get the following linear PDE for R :

$$
\begin{equation*}
\mathrm{D}^{3}[R]-\mathrm{D}^{2}\left[\left(\frac{2 \ddot{x}}{\dot{x}}+\frac{\dot{x}}{x}\right) R\right]-\mathrm{D}\left[\left(\frac{\ddot{x}^{2}}{\dot{x}^{2}}-\frac{\ddot{x}}{x}\right) R\right]+\frac{\dot{x} \ddot{x}}{x^{2}} R=0 \tag{3.17}
\end{equation*}
$$

where ' D ' is defined by equation (2.12). Now substituting the ansatz (3.5) into (3.17) and proceeding as before, we get

$$
\begin{equation*}
R_{1}=-\frac{1}{\dot{x} x}, \quad R_{2}=\frac{x}{\dot{x}}, \quad R_{3}=\frac{t \dot{x}^{2}-x(\dot{x}+t \ddot{x})}{2 x \dot{x}^{2}} \tag{3.18}
\end{equation*}
$$

Following the ideas given in example 1, one can deduce the corresponding forms of S_{i} 's and U_{i} 's, $i=1,2,3$, as

$$
\begin{gather*}
S_{1}=-\frac{\ddot{x}}{x}, \quad U_{1}=-\frac{\ddot{x}}{\dot{x}}, \tag{3.19}\\
S_{2}=\frac{\ddot{x}}{x}, \quad U_{2}=\frac{-2 \dot{x}}{x}-\frac{\ddot{x}}{\dot{x}}, \tag{3.20}\\
S_{3}=\frac{\dot{x} \ddot{x}(x+t \dot{x})}{x\left(-t \dot{x}^{2}+x(\dot{x}+t \ddot{x})\right)}, \quad U_{3}=\frac{x \ddot{x}(2 \dot{x}+t \ddot{x})}{\dot{x}\left(t \dot{x}^{2}-x(\dot{x}+t \ddot{x})\right)} . \tag{3.21}
\end{gather*}
$$

The solutions $\left(S_{i}, U_{i}, R_{i}\right), i=1,2$, satisfy the constraints (2.9)-(2.11), so that they lead to first and second integrals of the form

$$
\begin{equation*}
I_{1}=\frac{\ddot{x}}{\dot{x} x}, \quad I_{2}=\frac{2 \dot{x}^{2}-x \ddot{x}}{\dot{x}} \tag{3.22}
\end{equation*}
$$

Also in the present case the set $\left(S_{3}, U_{3}, R_{3}\right)$ does not satisfy the extra constraints and so one has to explore the complete form of \hat{R}_{3}. To do so, we proceed as before and obtain the forms of F and \hat{R}_{3} as $F=1 / \sqrt{I_{1} I_{2}}$ and

$$
\begin{equation*}
\hat{R}_{3}=\frac{t \dot{x}^{2}-x(\dot{x}+t \ddot{x})}{2\left(\sqrt{I_{1} I_{2}}\right) x \dot{x}^{2}} \tag{3.23}
\end{equation*}
$$

where the explicit forms of I_{1} and I_{2} are given in equation (3.22). Now one can check that the set $\left(S_{3}, U_{3}, \hat{R}_{3}\right)$ satisfies all the six equations (2.6)-(2.11) and
furnishes the third integral I_{3} through the relation (2.13) as

$$
\begin{equation*}
I_{3}=-\frac{1}{2}\left(\sqrt{I_{1} I_{2}}\right) t+\tan ^{-1} \sqrt{\frac{I_{1}}{I_{2}}} x \tag{3.24}
\end{equation*}
$$

Using the explicit forms of the integrals I_{1}, I_{2} and I_{3}, the solution to equation (3.16) can be deduced directly as

$$
\begin{equation*}
x(t)=\sqrt{\frac{I_{2}}{I_{1}}} \tan \left[\frac{1}{2}\left(\sqrt{I_{1} I_{2}} t+2 I_{3}\right)\right] \tag{3.25}
\end{equation*}
$$

As can be seen from equation (3.23), the complete compatible solution \hat{R}_{3} has \ddot{x} term which appear inside the square root sign. This form of \hat{R}_{3} can be explored only by making a suitable ansatz. Moreover, one may also face more difficulties in solving the determining equations (2.6)-(2.8). In such complicated situations, the complete solution \hat{R} can be obtained by using our procedure.

(c) Example 3

Let us consider a Chazy class of equation of the form (Halburd 1999; Mugan \& Jrad 2002; Euler \& Euler 2004; Euler et al. 2005/2006)

$$
\begin{equation*}
\dddot{x}+4 \alpha x \ddot{x}+3 \alpha \dot{x}^{2}+6 \alpha^{2} x^{2} \dot{x}+\alpha^{3} x^{4}=0 . \tag{3.26}
\end{equation*}
$$

Substituting $\phi=-\left(4 \alpha x \ddot{x}+3 \alpha \dot{x}^{2}+6 \alpha^{2} x^{2} \dot{x}+\alpha^{3} x^{4}\right)$ into (3.1), we get

$$
\begin{equation*}
\mathrm{D}^{3}[R]+4 \alpha \mathrm{D}^{2}[x R]-6 \alpha \mathrm{D}\left[\left(\dot{x}+\alpha x^{2}\right) R\right]+4 \alpha\left(\ddot{x}+\alpha^{2} x^{3}+3 \alpha x \dot{x}\right) R=0 \tag{3.27}
\end{equation*}
$$

To solve the above equation, we assume the same ansatz (3.5) for the variable R. However, substituting this ansatz into equation (3.27) and solving the resultant equation, we obtain only trivial solutions. So we seek a rational form of ansatz for R in the form

$$
\begin{equation*}
R=\frac{a(t, x, \dot{x})+b(t, x, \dot{x}) \ddot{x}}{(c(t, x, \dot{x})+d(t, x, \dot{x}) \ddot{x})^{r}}, \tag{3.28}
\end{equation*}
$$

where r is an arbitrary number. Substituting equation (3.28) into equation (3.27) and solving the resultant PDEs we get

$$
\left.\begin{array}{c}
R_{1}=\frac{\dot{x}+\alpha x^{2}}{\left(\alpha^{2} x^{3}+3 \alpha x \dot{x}+\ddot{x}\right)^{2}}, \quad R_{2}=\frac{t\left(-2 x+\alpha t x^{2}+t \dot{x}\right)}{\left(\alpha^{2} x^{3}+3 \alpha x \dot{x}+\ddot{x}\right)^{2}} \tag{3.29}\\
R_{3}=\frac{t\left(3-3 \alpha t x+\alpha^{2} t^{2} x^{2}+\alpha t^{2} \dot{x}\right)}{\left(\alpha^{2} x^{3}+3 \alpha x \dot{x}+\ddot{x}\right)^{2}}
\end{array}\right\}
$$

The corresponding forms of S_{i} 's and U_{i} 's, $i=1,2,3$, are

$$
\left.\begin{array}{c}
U_{1}=\frac{2 \alpha^{2} x^{3}-\ddot{x}}{\alpha x^{2}+\dot{x}}, \quad S_{1}=\frac{\alpha\left(\alpha^{2} x^{4}+3 \dot{x}^{2}-2 x \ddot{x}\right)}{\alpha x^{2}+\dot{x}}, \\
U_{2}=\frac{2 x-6 \alpha t x^{2}+2 \alpha^{2} t^{2} x^{3}-t^{2} \ddot{x}}{t\left(-2 x+\alpha t x^{2}+t \dot{x}\right)}, \\
S_{2}=\frac{2 \alpha x^{2}-4 \alpha^{2} t x^{3}+\alpha^{3} t^{2} x^{4}-2 \dot{x}+3 \alpha t^{2} \dot{x}^{2}+2 t \ddot{x}(1-\alpha t x)}{t\left(-2 x+\alpha t x^{2}+t \dot{x}\right)}, \\
U_{3}=-\frac{3-12 \alpha t x+9 \alpha^{2} t^{2} x^{2}-2 \alpha^{3} t^{3} x^{3}+\alpha t^{3} \ddot{x}}{t\left(3-3 \alpha t x+\alpha^{2} t^{2} x^{2}+\alpha t^{2} \dot{x}\right)}, \\
S_{3}=\frac{\left(\alpha\left(12 \alpha t x^{2}-6 \alpha^{2} t^{2} x^{3}+\alpha^{3} t^{3} x^{4}+3 t\left(2 \dot{x}+\alpha t^{2} \dot{x}^{2}+t \ddot{x}\right)-2 x\left(3+\alpha t^{3} \ddot{x}\right)\right)\right)}{t\left(3-3 \alpha t x+\alpha^{2} t^{2} x^{2}+\alpha t^{2} \dot{x}\right)} . \tag{3.30}
\end{array}\right\}
$$

Now we proceed to find the integrals of motion. First we note that the functions $\left(S_{1}, U_{1}, R_{1}\right)$ satisfy the constraints (2.9)-(2.11) and hence they are compatible. Thus, substituting them into (2.13), the first integral I_{1} is fixed easily as

$$
\begin{equation*}
I_{1}=-t+\frac{\alpha x^{2}+\dot{x}}{\alpha^{2} x^{3}+3 \alpha x \dot{x}+\ddot{x}} . \tag{3.31}
\end{equation*}
$$

However, the set $\left(S_{2}, U_{2}, R_{2}\right)$ (and so also $\left(S_{3}, U_{3}, R_{3}\right)$) does not satisfy the extra constraints (2.9)-(2.11), which means the form of R_{2} may not be the 'complete form' but might be a factor of the complete form. As mentioned in $\S 2$, in order to recover the complete form \hat{R}_{2}, one may assume that $\hat{R}_{2}=F\left(I_{1}\right) R_{2}$. Here $F\left(I_{1}\right)$ is a function of the integral I_{1}. Now we have to determine the form of $F\left(I_{1}\right)$ explicitly and for this purpose we proceed as follows. Substituting the expression

$$
\begin{equation*}
\hat{R}_{2}=F\left(I_{1}\right) R_{2}=\frac{t\left(-2 x+\alpha t x^{2}+t \dot{x}\right)}{\left(\alpha^{2} x^{3}+3 \alpha x \dot{x}+\ddot{x}\right)^{2}} F\left(I_{1}\right), \tag{3.32}
\end{equation*}
$$

into equation $(2.22 a)$, we obtain $I_{1} F_{1}^{\prime}+2 F=0$, where F_{1}^{\prime} denotes differentiation with respect to I_{1}. Upon integrating the latter, we get $F=I_{1}^{-2}$ (the integration constant is set to zero), which fixes the form of R_{2} as

$$
\begin{equation*}
\hat{R}_{2}=\frac{t\left(-2 x+\alpha t x^{2}+t \dot{x}\right)}{\left(\alpha x^{2}-\alpha^{2} t x^{3}+\dot{x}-3 \alpha t x \dot{x}-t \ddot{x}\right)^{2}} . \tag{3.33}
\end{equation*}
$$

Now one can easily check that this set $\left(S_{2}, U_{2}, \hat{R}_{2}\right)$ is a compatible solution for equations (2.6)-(2.11), which, in turn, provides I_{2} through the relation (2.13) as

$$
\begin{equation*}
I_{2}=-\frac{-2 \alpha t x^{2}+\alpha^{2} t^{2} x^{3}+x\left(2+3 \alpha t^{2} \dot{x}\right)+t(-2 \dot{x}+t \ddot{x})}{\left(\alpha x^{2}-\alpha^{2} t x^{3}+\dot{x}-3 \alpha t x \dot{x}-t \ddot{x}\right)} . \tag{3.34}
\end{equation*}
$$

As in the previous examples, the set $\left(S_{3}, U_{3}, R_{3}\right)$ does not satisfy the constraints (2.9)-(2.11) and hence one should seek a complete form for R_{3}, which we denote as \hat{R}_{3}, in the form

$$
\begin{equation*}
\hat{R}_{3}=F\left(I_{1}, I_{2}\right) R_{3}=F\left(I_{1}, I_{2}\right) \frac{t\left(3-3 \alpha t x+\alpha^{2} t^{2} x^{2}+\alpha t^{2} \dot{x}\right)}{\left(\alpha^{2} x^{3}+3 \alpha x \dot{x}+\ddot{x}\right)^{2}} . \tag{3.35}
\end{equation*}
$$

Substituting (3.35) into equations (2.18) and (2.19), we obtain the following equations for F, i.e. $I_{1} F_{1}^{\prime}+2 F=0, F_{2}^{\prime}=0$, where again $F_{1}^{\prime}=\partial F / \partial I_{1}$ and $F_{2}^{\prime}=\partial F / \partial I_{2}$. Upon integrating the equations, we get the explicit form of F as $F=1 / I_{1}^{2}$, which, in turn, fixes the form of \hat{R}_{3} as

$$
\begin{equation*}
\hat{R}_{3}=\frac{t\left(3-3 \alpha t x+k^{2} t^{2} x^{2}+\alpha t^{2} \dot{x}\right)}{3 \alpha\left(\alpha x^{2}-\alpha^{2} t x^{3}+\dot{x}-3 \alpha t x \dot{x}-t \ddot{x}\right)^{2}} . \tag{3.36}
\end{equation*}
$$

Now the set $\left(S_{3}, U_{3}, \hat{R}_{3}\right)$ satisfies all the six equations (2.6)-(2.11) and the relation (2.13) gives the form of third integral I_{3} as

$$
\begin{equation*}
I_{3}=\frac{\left(6+3 \alpha^{2} t^{2} x^{2}-\alpha^{3} t^{3} x^{3}+3 \alpha t^{2} \dot{x}-3 \alpha t x\left(2+\alpha t^{2} \dot{x}\right)-\alpha t^{3} \ddot{x}\right)}{6 \alpha\left(\alpha x^{2}-\alpha^{2} t x^{3}+\dot{x}-3 \alpha t x \dot{x}-t \ddot{x}\right)} . \tag{3.37}
\end{equation*}
$$

Thus, we have obtained the explicit forms of the integrals I_{1}, I_{2} and I_{3} and hence the solution to equation (3.3) is obtained directly as

$$
\begin{equation*}
x(t)=\frac{\frac{\alpha t^{2}}{2}+I_{1} t+I_{1} I_{2}}{\frac{\alpha^{2} t^{3}}{6}+\alpha I_{1} \frac{t^{2}}{2}+\alpha I_{1} I_{2} t+I_{1} I_{3}} . \tag{3.38}
\end{equation*}
$$

Recently, equation (3.26) has been shown to belong to the Riccati hierarchy of linearizable ODEs (Euler et al. 2005/2006).

Interestingly, one can also derive the solution (3.38) through an alternate way. For example, instead of solving the ' R equation' with rational ansatz, one can look for equations in other variables, i.e. either in U or in S. For example, from equation (2.7) we get

$$
\begin{equation*}
S=-\left(\mathrm{D}[U]+\phi_{\dot{x}}-U \phi_{\dot{x}}-U^{2}\right) . \tag{3.39}
\end{equation*}
$$

Substituting equation (3.39) into equation (2.6), we get a nonlinear PDE for U :

$$
\begin{equation*}
\mathrm{D}^{2}[U]-3 U \mathrm{D}[U]-U \mathrm{D}\left[\phi_{\dot{x}}\right]+\mathrm{D}\left[\phi_{\dot{x}}\right]-\phi_{x}-\phi_{\dot{x}} \phi_{\dot{x}}+\phi_{\bar{x}}^{2} U+2 \phi_{\dot{x}} U^{2}-\phi_{\dot{x}} U+U^{3}=0 . \tag{3.40}
\end{equation*}
$$

Now one can look for solutions of equation (3.40) with polynomial in \ddot{x}. Once U is known one can make use of equations (2.8) and (3.39) to get the forms of corresponding S and R, respectively. It turns out that for some cases, like the present example (3.26) (see the actual forms of U in equation (3.30)), solving equation (3.40) is easier than solving equation (3.1). However, this can be decided only by actual calculation.

4. Linearization

In $\S 2$ and 3 , we discussed the complete integrability of third-order ODEs by investigating sufficient number of integrals of motion. However, one can also establish the complete integrability of the given nonlinear ODE by transforming it into a linear free particle second-order ODE or into a third-order linear ODE of the form $\mathrm{d}^{3} w / \mathrm{d} z^{3}=w^{\prime \prime \prime}=0$. Unlike the second-order ODEs, the third-order nonlinear ODEs can be linearized through a wide class of transformations, namely, invertible point transformation (Steeb 1993; Ibragimov \& Meleshko 2005), contact transformation (Bocharov et al. 1993; Duarte et al. 1994; Ibragimov \& Meleshko 2005), generalized Sundman transformation (Berkovich \& Orlova 2000; Euler et al. 2003; Euler \& Euler 2004) and their generalizations. In the following, we describe a procedure to deduce these transformations from the first integral itself and illustrate our ideas with relevant examples.
(a) Transformation from third-order nonlinear ODEs to second-order free particle equation

Let us suppose that the ODE (2.1) admits a first integral,

$$
\begin{equation*}
I_{1}=F(t, x, \dot{x}, \ddot{x}) \tag{4.1}
\end{equation*}
$$

where F is a function of t, x, \dot{x} and \ddot{x} only. Now extending our earlier proposal for second-order ODEs (Chandrasekar et al. 2005) to the third-order equations (2.1), let us split the function F into a product of two functions, such that one involves a perfect differentiable function $(\mathrm{d} / \mathrm{d} t) G_{1}(t, x, \dot{x})$ and another function $G_{2}(t, x, \dot{x}, \ddot{x})$, i.e.

$$
\begin{equation*}
I_{1}=F\left(\frac{1}{G_{2}(t, x, \dot{x}, \ddot{x})} \frac{\mathrm{d}}{\mathrm{~d} t} G_{1}(t, x, \dot{x})\right) \tag{4.2}
\end{equation*}
$$

Suppose G_{2} is a total time derivative of another function, say z, i.e. $\mathrm{d} z / \mathrm{d} t=G_{2}(t, x, \dot{x}, \ddot{x})$, then (4.2) can be further rewritten in the form

$$
\begin{equation*}
I_{1}=F\left(\frac{1}{\frac{\mathrm{~d} z}{\mathrm{~d} t}} \frac{\mathrm{~d} G_{1}}{\mathrm{~d} t}\right)=F\left(\frac{\mathrm{~d} G_{1}}{\mathrm{~d} z}\right) \tag{4.3}
\end{equation*}
$$

Now identifying the function $G_{1}(t, x, \dot{x})=w$ as the new dependent variable, equation (4.3) can be recast in the form $I_{1}=F(\mathrm{~d} w / \mathrm{d} z)$. In other words, we obtain

$$
\begin{equation*}
\hat{I}_{1}=\frac{\mathrm{d} w}{\mathrm{~d} z} \tag{4.4}
\end{equation*}
$$

where \hat{I}_{1} is a constant, from which one can get $\mathrm{d}^{2} w / \mathrm{d} z^{2}=0$. Rewriting w and z in terms of old variables, namely,

$$
\begin{equation*}
w=G_{1}(t, x, \dot{x}), \quad z=\int_{o}^{t} G_{2}\left(t^{\prime}, x, \dot{x}, \ddot{x}\right) \mathrm{d} t^{\prime} \tag{4.5}
\end{equation*}
$$

we can get a linearizing transformation to transform the third-order nonlinear ODE into the second-order free particle equation. Then to deduce the general solution, one has to carry out one more integration.
(b) Transformation from third-order nonlinear equation (2.1) to third-order linear $O D E w^{\prime \prime \prime}=0$

Next, we aim to transform equation (2.1) into a third-order linear ODE and so we try to rewrite the first integral as a perfect second-order derivative. We note that this can be done when one is able to evaluate the following integral explicitly:

$$
\begin{equation*}
\hat{w}=\int_{o}^{t} G_{1}\left(t^{\prime}, x, \dot{x}\right) G_{2}\left(t^{\prime}, x, \dot{x}, \ddot{x}\right) \mathrm{d} t^{\prime}=G_{3}(t, x, \dot{x}) \tag{4.6}
\end{equation*}
$$

where G_{1} and G_{2} are defined as in equation (4.2). Note that in the function G_{3}, the \ddot{x} dependence has been integrated out. The reason for making such a specific decomposition is that in this case equation (4.2) can be rewritten as a simple second-order ODE for the variable \hat{w} (see equation (4.8)). We pursued a similar kind of approach in the integrable force-free Duffing-van der Pol oscillator equation (Chandrasekar et al. 2004), which has now been generalized in the present case. Here one can rewrite (4.1) as a perfect second-order derivative as follows. Differentiating (4.6) with respect to t, we obtain $\mathrm{d} \hat{w} / \mathrm{d} t=G_{1} G_{2}$. Rewriting the left-hand side in the form

$$
\begin{equation*}
\frac{\mathrm{d} z}{\mathrm{~d} t} \frac{\mathrm{~d} \hat{w}}{\mathrm{~d} z}=G_{1} G_{2} \tag{4.7}
\end{equation*}
$$

and using the identities already used in equation (4.5), namely $\mathrm{d} z / \mathrm{d} t=G_{2}$ and $G_{1}=w$, in equation (4.7), the latter becomes

$$
\begin{equation*}
\frac{\mathrm{d} \hat{w}}{\mathrm{~d} z}=w \tag{4.8}
\end{equation*}
$$

Differentiating (4.8) with respect to z and using the identity $\mathrm{d} w / \mathrm{d} z=\hat{I}_{1}$ (vide equation (4.4)), one gets $\mathrm{d}^{2} \hat{w} / \mathrm{d} z^{2}=\hat{I}_{1}$. In other words, we have

$$
\begin{equation*}
\frac{\mathrm{d}^{3} \hat{w}}{\mathrm{~d} z^{3}}=0 \tag{4.9}
\end{equation*}
$$

so that \hat{w} and z are the required transformation variables.

(c) The nature of transformations

In $\S 4 a, b$, we demonstrated how to construct linearizing transformations from the first integral and how they effectively change the given third-order nonlinear ODE to either second or third-order linear equation. Depending upon the explicit form of the transformations, we can call them point, contact, generalized Sundman or GLTs. To demonstrate how different kinds of transformation arise, let us consider the transformation, $\hat{w}=G_{3}, z=\int_{o}^{t} G_{2} \mathrm{~d} t^{\prime}$ (vide equations (4.5) and (4.6)), which takes the given nonlinear ODE into a linear equation. Now, in the above transformation, suppose z is a perfect differentiable function and \hat{w} and z do not contain the variable \dot{x} and \ddot{x}, then we call the resultant transformation, namely, $\hat{w}=f_{1}(x, t)$ and $z=f_{2}(x, t)$, as a point transformation. Further, if the transformation admits the variable \dot{x} also explicitly, then it becomes the contact transformation. In this case, we have $w=f_{1}(t, x, \dot{x})$ and $z=f_{2}(t, x, \dot{x})$. On the other hand, if $\hat{w}=G_{3}(t, x)$ and $z=\int_{o}^{t} G_{2}\left(t^{\prime}, x\right) \mathrm{d} t^{\prime}$, then the transformation is said
to be a generalized Sundman transformation. Note that in the latter case, the new independent variable is in an integral form. Besides the above, as pointed out earlier, we find that there exists another kind of transformation, namely, GLTs, in which the new dependent and independent variables take the form $\hat{w}=G_{3}(t, x, \dot{x})$ and $z=\int_{o}^{t} G_{2}\left(t^{\prime}, x, \dot{x}, \ddot{x}\right) \mathrm{d} t^{\prime}$, respectively.
(d) Connection between the functions G_{1}, G_{2} and G_{3}

Finally, we explore the connection between the functions G_{1}, G_{2} and G_{3}. As we have seen above, for the given equation to be linearizable, it should be transformable to the form (4.8). Rewriting the latter in terms of the variables, G_{1}, G_{2} and G_{3}, we get

$$
\begin{equation*}
G_{3 t}+\dot{x} G_{3 x}+\ddot{x} G_{3 \dot{x}}=G_{1}(t, x, \dot{x}) G_{2}(t, x, \dot{x}, \ddot{x}) \tag{4.10}
\end{equation*}
$$

Note that the left-hand side of equation (4.10) contains the variable \ddot{x} linearly. So the right-hand side should also be linear in \ddot{x}. Consequently, we can write

$$
\begin{equation*}
G_{2}(t, x, \dot{x}, \ddot{x})=G_{21}(t, x, \dot{x}) \ddot{x}+G_{22}(t, x, \dot{x}) \tag{4.11}
\end{equation*}
$$

Using (4.11) we can rewrite equation (4.10) in the form

$$
\begin{equation*}
\frac{\left(G_{3 t}+\dot{x} G_{3 x}\right)\left(1+\frac{\ddot{x} G_{3 \dot{x}}}{G_{3 t}+\dot{x} G_{3 x}}\right)}{G_{22}\left(1+\frac{\ddot{x} G_{22}}{G_{22}}\right)}=G_{1} \tag{4.12}
\end{equation*}
$$

Since the right-hand side is independent of \ddot{x}, we have from (4.12) that

$$
\begin{equation*}
G_{21}\left(G_{3 t}+\dot{x} G_{3 x}\right)=G_{22} G_{3 \dot{x}} \quad \text { and } \quad G_{1}=\frac{G_{3 \dot{x}}}{G_{21}} \tag{4.13}
\end{equation*}
$$

It may be noted that a similar condition that has been derived by Bocharov et al. (1993) and Ibragimov \& Meleshko (2005) for the case G_{2} is a perfect differential function. In other words, our procedure indicates that more generalized transformations are possible in the case of third-order ODEs. By imposing the condition (4.11) it becomes clear that whatever the type of linearizing transformation, the new independent variable should be at the maximum linear in \ddot{x}.

(e) Transformation to fourth and higher-order linear ODEs

In $\S 4 a-d$, we have concentrated only on transforming a nonlinear third-order ODE either to a second-order or third-order linear equation only. However, one could also linearize certain third-order nonlinear ODEs to fourth-order linear ODEs. For example, equation (3.26) is linearizable to a fourth-order ODE of the form $\mathrm{d}^{4} w / \mathrm{d} z^{4}=0$, under the non-local transformation $x=\dot{w} / \alpha w$. This is not an isolated example and one can linearize a class of equations through this procedure. Besides the above one, we can also consider linearizing transformations, in which the new dependent variable, \hat{w}, is a non-local one. This choice leads us to classify another large class of equations, which we leave for future work.

5. Application

In this section, we consider specific examples to demonstrate the method given in §4.

(a) Example 1: point transformation

Let us consider a non-trivial example which was discussed by Steeb (1993) in the context of invertible point transformations, namely,

$$
\begin{equation*}
\dddot{x}+\frac{3 \dot{x} \ddot{x}}{x}-3 \ddot{x}-\frac{3 \dot{x}^{2}}{x}+2 \dot{x}=0 \tag{5.1}
\end{equation*}
$$

The first integral, which can be obtained using the formulation in §2, can be written as

$$
\begin{equation*}
I_{1}=\left(\dot{x}^{2}+x \ddot{x}-x \dot{x}\right) \mathrm{e}^{-2 t} \tag{5.2}
\end{equation*}
$$

Rewriting (5.2) in the form (4.2), we get $I_{1}=\mathrm{e}^{-t}(\mathrm{~d} / \mathrm{d} t)\left(x \dot{x} \mathrm{e}^{-t}\right)$, so that

$$
\begin{equation*}
w=x \dot{x} \mathrm{e}^{-t}, \quad z=\mathrm{e}^{t} \tag{5.3}
\end{equation*}
$$

As we noted earlier, one could transform (5.1) to the second-order free particle equation, $\mathrm{d}^{2} w / \mathrm{d} z^{2}=0$, by utilizing the transformation (5.3). Integrating the equation $\mathrm{d}^{2} w / \mathrm{d} z^{2}=0$, we get $w=I_{1} z+I_{2}$. Using (5.3) into this expression, the general solution of equation (5.1) can be obtained (after an integration) as

$$
\begin{equation*}
x(t)=\left(I_{1} \mathrm{e}^{2 t}+I_{2} \mathrm{e}^{t}+I_{3}\right)^{1 / 2} \tag{5.4}
\end{equation*}
$$

where $I_{i}, i=1,2,3$ are the integration constants.
Further, using equation (4.6), we get $\hat{w}=\int x \dot{x} \mathrm{~d} t=x^{2} / 2$. Then we can directly check that the point transformation,

$$
\begin{equation*}
\hat{w}=\frac{x^{2}}{2}, \quad z=\mathrm{e}^{t} \tag{5.5}
\end{equation*}
$$

transforms equation (5.1) to the form $\mathrm{d}^{3} \hat{w} / \mathrm{d} z^{3}=0$. As we mentioned earlier, since \hat{w} and z involve only x and t, they are just point transformations. Integrating the linear equation $\mathrm{d}^{3} \hat{w} / \mathrm{d} z^{3}=0$, we get

$$
\begin{equation*}
\hat{w}=\frac{I_{1}}{2} z^{2}+I_{2} z+I_{3} \tag{5.6}
\end{equation*}
$$

Rewriting \hat{w} and z in equation (5.6) in terms of the original variables x and t by using the transformation (5.5), we get the same solution as equation (5.4).

(b) Example 2: contact transformation

Let us consider an equation of the form

$$
\begin{equation*}
\dddot{x}=\frac{x \ddot{x}^{3}}{\dot{x}^{3}} . \tag{5.7}
\end{equation*}
$$

Bocharov et al. (1993) have shown that equation (5.7) can be linearized through contact transformation. However, the explicit linearizing transformation is yet to
be reported, which is also a difficult problem. Here we derive the explicit form of the linearizing transformation through our procedure.

The first integral can be easily deduced using the results of $\S 2$ as

$$
\begin{equation*}
I_{1}=\frac{\dot{x}^{2}-x \ddot{x}}{\dot{x} \ddot{x}} \tag{5.8}
\end{equation*}
$$

Rewriting (5.8) in the form (4.2), we get

$$
I_{1}=\frac{\dot{x}}{\ddot{x}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{x}{\dot{x}}\right)
$$

so that we have $w=x / \dot{x}$ and $z=\log \dot{x}$. The latter transforms equation (5.7) to the second-order free particle equation $\mathrm{d}^{2} w / \mathrm{d} z^{2}=0$, so that $w=I_{1} z+I_{2}$, where I_{1} and I_{2} are integration constants. Rewriting w and z in terms of the old variables, we get $x=\left(I_{1} \log (\dot{x})+I_{2}\right) \dot{x}$. Unlike the earlier example, it is difficult to integrate this equation further and obtain the general solution. Therefore, one can look for variables which transform the third-order nonlinear ODE (5.7) to a third-order linear ODE, so that the non-trivial integration can be avoided. Now using equation (4.6), we get $\hat{w}=\int\left(x \ddot{x} / \dot{x}^{2}\right) \mathrm{d} t=t-(x / \dot{x})$. The new variables,

$$
\begin{equation*}
\hat{w}=\frac{t \dot{x}-x}{\dot{x}}, \quad z=\log \dot{x} \tag{5.9}
\end{equation*}
$$

transform equation (5.7) to the form (4.9). Unlike the earlier example, \hat{w} and z admit the variable \dot{x} explicitly and so they become contact transformation for the given equation.

Integrating the linear third-order equation (4.9), we get $\hat{w}=\left(I_{1} / 2\right) z^{2}+I_{2} z+I_{3}$, where $I_{i}, i=1,2,3$ are integration constants. Now replacing \hat{w} and z in terms of the old variables and using the previous result $x=\left(I_{1} \log (\dot{x})+I_{2}\right) \dot{x}$, one can obtain the general solution for equation (5.7) in the form

$$
\begin{equation*}
x(t)=\left(-I_{1} \pm \sqrt{I_{1}^{2}+I_{2}^{2}-2 I_{1}\left(I_{3}-t\right)}\right) \exp \left(-\frac{I_{1}+I_{2} \mp \sqrt{I_{1}^{2}+I_{2}^{2}-2 I_{1}\left(I_{3}-t\right)}}{I_{1}}\right) \tag{5.10}
\end{equation*}
$$

(c) Example 3: generalized Sundman transformation

Next we consider the hydrodynamic type equation of the form (Berkovich \& Orlova 2000; Euler \& Euler 2004)

$$
\begin{equation*}
\dddot{x}=\frac{\ddot{x} \dot{x}}{x} \tag{5.11}
\end{equation*}
$$

which admits a first integral in the form $I_{1}=\ddot{x} / x$ and the latter can be rewritten as

$$
I_{1}=\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} t} \dot{x}=\frac{\mathrm{d} w}{\mathrm{~d} z}
$$

from which we identify $w=\dot{x}$ and $\mathrm{d} z=x \mathrm{~d} t$. By utilizing the new variables, one can transform (5.11) to the second-order free particle equation, $\mathrm{d}^{2} w / \mathrm{d} z^{2}=0$. However, from equation (4.6), we get $\hat{w}=\int x \dot{x} \mathrm{~d} t=x^{2}$. Then the Sundman
transformation,

$$
\begin{equation*}
\hat{w}=x^{2}, \quad \mathrm{~d} z=x \mathrm{~d} t \tag{5.12}
\end{equation*}
$$

transforms equation (5.11) to the form (4.9), namely $\mathrm{d}^{3} \hat{w} / \mathrm{d} z^{3}=0$.
To derive the solution, we proceed as follows. Rewriting the first integral I_{1} in the integral form, we get

$$
I_{1}=\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} t} \dot{x} \Rightarrow \dot{x}=I_{1} \int x \mathrm{~d} t
$$

Now using the identity (5.12) in the latter expression, we get $w=I_{1} z$. From equation (4.6) (for the present case $G_{1}=w$ and $G_{2}=\mathrm{d} z / \mathrm{d} t$) we have

$$
\begin{equation*}
\hat{w}=\int w \mathrm{~d} z=\int I_{1} z \mathrm{~d} z=\frac{I_{1}}{2} z^{2}+I_{2} \tag{5.13}
\end{equation*}
$$

where I_{2} is the integration constant. Using (5.12) in (5.13), we obtain $x^{2}=\left(I_{1} / 2\right) z^{2}+I_{2}$, which, in turn, leads to a differential equation which connects the variables z and t in the form (using the relation $\mathrm{d} z=x \mathrm{~d} t$)

$$
\begin{equation*}
\mathrm{d} z=\sqrt{\frac{I_{1}}{2} z^{2}+I_{2}} \mathrm{~d} t \tag{5.14}
\end{equation*}
$$

Integrating (5.14), we obtain $z=\sqrt{I_{2} / 2}\left(\mathrm{e}^{\sqrt{I_{1}}\left(t+I_{3}\right)}-\mathrm{e}^{-\sqrt{I_{1}}\left(t+I_{3}\right)}\right)$, where I_{3} is the integration constant. Substituting the latter in the relation $x^{2}=\left(I_{1} / 2\right) z^{2}+I_{2}$, we arrive at the general solution for (5.11) in the form

$$
\begin{equation*}
x(t)=\sqrt{I_{2}} \cosh \sqrt{I_{1}}\left(t+I_{3}\right) \tag{5.15}
\end{equation*}
$$

We note that the solution for equation (5.11) has been already derived in an alternate way from the Sundman transformation (5.12) by Euler \& Euler (2004). However, the procedure which we described in the above is new and can also be used for more general linearizing transformations, as we see below.

(d) Example 4: generalized linearizing transformation

As we noted earlier, some nonlinear ODEs can be linearized only through more general non-local form of transformations, which we designate here as GLTs. We illustrate the GLT with the same example discussed as example 2 in §3, which admits a first integral of the form $I_{1}=\dot{x} x / \ddot{x}$ (vide equation (3.16)). Rewriting this first integral in the form (4.2), we get

$$
I_{1}=\frac{x}{\ddot{x}} \frac{\mathrm{~d}}{\mathrm{~d} t}(x),
$$

so that

$$
\begin{equation*}
w=x, \quad \mathrm{~d} z=\frac{\ddot{x}}{x} \mathrm{~d} t \tag{5.16}
\end{equation*}
$$

which can be effectively used to transform the nonlinear ODE (3.16) to the equation $\mathrm{d}^{2} w / \mathrm{d} z^{2}=0$. Using equation (4.6), we get $\hat{w}=\int \ddot{x} \mathrm{~d} t=\dot{x}$. Then the GLT becomes

$$
\begin{equation*}
\hat{w}=\dot{x}, \quad \mathrm{~d} z=\frac{\ddot{x}}{x} \mathrm{~d} t \tag{5.17}
\end{equation*}
$$

which can be used to transform equation (3.16) to the form $\hat{w}^{\prime \prime \prime}=0$. Note that in the present case, the new independent and dependent variables admit \ddot{x} and \dot{x} terms, respectively, and that the transformation is non-local. Indeed, no such linearizing transformations have been reported in the literature at least to our knowledge. We also now establish a method of finding the general solution for this case.

Integrating once the equation $\mathrm{d}^{2} w / \mathrm{d} z^{2}=0$, we get $w=I_{1} z$ from which we obtain

$$
\begin{equation*}
x=I_{1} z \tag{5.18}
\end{equation*}
$$

On the other hand, equation (4.6) provides us with a relation (after using (5.16) and (5.17))

$$
\begin{equation*}
\dot{x}=\frac{I_{1}}{2} z^{2}+I_{2} \tag{5.19}
\end{equation*}
$$

Now using (5.18) in (5.19), we obtain

$$
\begin{equation*}
\left(\frac{2 I_{1}}{I_{1} z^{2}+2 I_{2}}\right) \mathrm{d} z=\mathrm{d} t \tag{5.20}
\end{equation*}
$$

The variables are now separated out and one can integrate (5.20) and obtain

$$
\begin{equation*}
z=\sqrt{\frac{2 I_{2}}{I_{1}}} \tan \sqrt{\frac{I_{2}}{I_{1}}}\left(t+I_{3}\right) \tag{5.21}
\end{equation*}
$$

Now substituting (5.21) into (5.18), we get

$$
\begin{equation*}
x(t)=\sqrt{2 I_{1} I_{2}} \tan \sqrt{\frac{I_{2}}{I_{1}}}\left(t+I_{3}\right) \tag{5.22}
\end{equation*}
$$

which is effectively the same as (3.25).
Finally, we note that the procedure given above can be profitably utilized for other examples which are also linearized by GLTs.

(e) Example 5: an elementary non-trivial system of hydrodynamic type

Finally, to show the importance of the GLT and how this transformation gives additional information about the linearization of nonlinear third-order ODEs, we consider the following specific example which was discussed in the literature (Berkovich 1996; Berkovich \& Orlova 2000):

$$
\begin{equation*}
\dddot{x}=\frac{\ddot{x} \dot{x}}{x}-4 \alpha x^{2} \dot{x}, \quad \alpha: \text { parameter } . \tag{5.23}
\end{equation*}
$$

Equation (5.23) is nothing but the dynamical equation of the Euler-Poinsot case of a rigid body written in terms of a single variable (Berkovich 1996; Berkovich \& Orlova 2000). For a more general integrable version of this equation, see Euler \& Leach (2003). As we have seen earlier, this equation is linearizable in the case $\alpha=0$ through generalized Sundman transformation. However, we wish to show here that the general equation (5.23) itself is linearizable through the GLT.

From the first integral $I_{1}=(\ddot{x} / x)+2 \alpha x^{2}$ associated with equation (5.23), one can identify the GLT

$$
\begin{equation*}
\hat{w}=x^{2}, \quad \mathrm{~d} z=\frac{2 \dot{x} x}{\sqrt{\dot{x}^{2}+\alpha x^{4}}} \mathrm{~d} t \tag{5.24}
\end{equation*}
$$

which transforms equation (5.23) to the form (4.9). Note that for the choice $\alpha=0$, the independent variable becomes $\mathrm{d} z=2 x \mathrm{~d} t$ and so it becomes the generalized Sundman transformation, equation (5.12), identified in the literature (Berkovich \& Orlova 2000; Euler \& Euler 2004). Now following the steps given in example 4, one can deduce the general solution for equation (5.23) in terms of Jacobian elliptic function as

$$
\begin{equation*}
x(t)=\left(I_{1}\left(c-(c-b) s n^{2} \sqrt{\alpha I_{1}(c-a)}\left(t-t_{0}\right), m\right)+I_{2}\right)^{1 / 2} \tag{5.25}
\end{equation*}
$$

where $a+b+c=\left(2 I_{1}-3 \alpha I_{2}\right) /\left(4 \alpha I_{1}\right), a b+a c+c b=\left(3 \alpha I_{2}^{2}-2 I_{1} I_{2}\right) /\left(4 \alpha I_{1}^{2}\right), a b c=$ $-I_{2}^{3} / 4 I_{1}^{3}, m^{2}=(b-c) /(a-c)$ and I_{2} and t_{0} are integration constants.

6. Conclusion

In this paper, we have discussed a method of finding the integrals of motion and general solution associated with third-order nonlinear ODEs through the modified PS method by a non-trivial extension of our earlier work on secondorder ODEs (Chandrasekar et al. 2005). We illustrated the validity of the method with suitable examples. Further, we introduced a technique which can be utilized to derive linearizing transformations from the first integral. Interestingly, we showed that different types of transformations, namely, point, contact, Sundman and GLTs can be derived in a unique way from the first integral. We also indicated a procedure to derive general solution for the third-order ODEs when GLTs occur. We believe that the GLT introduced in this paper will be highly useful to tackle new systems, such as equation (5.23). Finally, the modified PS method can also be extended to higher-order ODEs and coupled systems of ODEs. As far as the linearization of higher-order ODEs is concerned, it is still an open and challenging problem. As we pointed out in §1, one can unearth a wide variety of linearizing transformations for the higher-order ODEs besides formulating the necessary and sufficient condition for linearizing these equations in each form of transformation. We hope to address some of these aspects shortly.

The work of V.K.C. is supported by Council of Scientific and Industrial Research in the form of a Senior Research Fellowship. The work of M.S. and M.L. forms part of the National Board of Higher Mathematics, Department of Atomic Energy, Government of India and Department of Science and Technology, Government of India, research projects.

References

Berkovich, L. M. 1996 The method of an exact linearization of n-order ordinary differential equations. J. Nonlin. Math. Phys. 3, 341-350.
Berkovich, L. M. \& Orlova, I. S. 2000 The exact linearization of some classes of ordinary differential equations for order $n>2$. Proc. Inst. Math. NAS Ukraine 30, 90-98.

Bluman, G. W. \& Anco, S. C. 2002 Symmetries and integration methods for differential equations. New York: Springer.
Bocharov, A. V., Sokolov, V. V. \& Svinolupov, S. I. 1993 On some equivalence problems for differential equations. ESI Preprint 54, 1-12.
Chandrasekar, V. K., Senthilvelan, M. \& Lakshmanan, M. 2004 New aspects of integrability of force-free Duffing-van der Pol oscillator and related nonlinear systems. J. Phys. A 37, 4527-4534. (doi:10.1088/0305-4470/37/16/004)
Chandrasekar, V. K., Senthilvelan, M. \& Lakshmanan, M. 2005 On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A 461, 2451-2476. (doi:10.1098/rspa.2005.1465)
Duarte, L. G. S., Moreira, I. C. \& Santos, F. C. 1994 Linearization under non-point transformations. J. Phys. A 27, L739-L743. (doi:10.1088/0305-4470/27/19/004)
Duarte, L. G. S., Duarte, S. E. S., da Mota, A. C. P. \& Skea, J. E. F. 2001 Solving the second-order ordinary differential equations by extending the Prelle-Singer method. J. Phys. A 34, 3015-3024. (doi:10.1088/0305-4470/34/14/308)
Euler, N. \& Euler, M. 2004 Sundman symmetries of nonlinear second-order and third-order ordinary differential equations. J. Nonlin. Math. Phys. 11, 399-421.
Euler, N. \& Leach, P. G. L. 2003 First integrals and reduction of a class of nonlinear higher order ordinary differential equations. J. Math. Anal. Appl. 287, 473-486. (doi:10.1016/S0022-247X(03)00544-4)
Euler, N., Wolf, T., Leach, P. G. L. \& Euler, M. 2003 Linearisable third-order ordinary differential equations and generalised Sundman transformations: the case $x^{\prime \prime \prime}=0$. Acta Appl. Math. 76, 89-115. (doi:10.1023/A:1022838932176)
Euler, M., Euler, N. \& Leach, P. G. L. 2005/2006 The Riccati and Ermakov-Pinney hierarchies. Report no. 08, Institut Mittag-Leffler, Sweden.
Feix, M. R., Geronimi, C., Cairo, L., Leach, P. G. L., Lemmer, R. L. \& Bouquet, S. 1997 On the singularity analysis of ordinary differential equations invariant under time translation and rescaling. J. Phys. A 30, 7437-7461. (doi:10.1088/0305-4470/30/21/017)
Halburd, R. 1999 Integrable relativistic models and the generalized Chazy equation. Nonlinearity 12, 931-938. (doi:10.1088/0951-7715/12/4/311)
Ibragimov, N. H. \& Meleshko, S. V. 2005 Linearization of third-order differential equation by point and contact transformations. J. Math. Anal. Appl. 308, 266-289. (doi:10.1016/j.jmaa.2005.01. 025)

Mugan, U. \& Jrad, F. 2002 Painlevé test and higher order differential equation. J. Nonlin. Math. Phys. 9, 282-310.
Olver, P. J. 1995 Equivalence, invariants, and symmetry. Cambridge: Cambridge University Press.
Polyanin, A. D. \& Zaitsev, V. F. 1995 Handbook of exact solutions for ordinary differential equations. London: CRC press.
Prelle, M. \& Singer, M. 1983 Elementary first integrals of differential equations. Trans. Am. Math. Soc. 279, 215-229.
Steeb, W. H. 1993 Invertible point transformations and nonlinear differential equations. London: World Scientific.

[^0]: * Author for correspondence (lakshman@cnld.bdu.ac.in).

