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On the complete integrability and
linearization of nonlinear ordinary differential
equations. III. Coupled first-order equations

BY V. K. CHANDRASEKAR, M. SENTHILVELAN AND M. LAKSHMANAN*

Centre for Nonlinear Dynamics, Department of Physics,
Bharathidasan University, Tiruchirapalli 620 024, India

Continuing our study on the complete integrability of nonlinear ordinary differential
equations (ODEs), in this paper we consider the integrability of a system of coupled
first-order nonlinear ODEs of both autonomous and non-autonomous types. For this
purpose, we modify the original Prelle–Singer (PS) procedure so as to apply it to
both autonomous and non-autonomous systems of coupled first-order ODEs. We briefly
explain the method of finding integrals of motion (time-independent as well as time-
dependent integrals) for two and three coupled first-order ODEs by extending the PS
method. From this we try to answer some of the open questions in the original PS
method. We also identify integrable cases for the two-dimensional Lotka–Volterra
system and three-dimensional Rössler system as well as other examples including non-
autonomous systems in a straightforward way using this procedure. Finally, we develop a
linearization procedure for coupled first-order ODEs.

Keywords: nonlinear differential equations; coupled first order; integrability;
integrating factor; linearization
*A

Rec
Acc
1. Introduction

In our previous two works (Chandrasekar et al. 2005, 2006), we have studied
in some detail the extended modified Prelle–Singer (PS) procedure (Prelle &
Singer 1983; Duarte et al. 2002), so as to apply it to a class of second- and third-
order nonlinear ordinary differential equations (ODEs) and have solved several
physically interesting nonlinear systems and identified a number of important
linearization procedures. We now wish to extend the procedure to coupled
ODEs. In the present paper, we discuss the modification and applicability of
the extended PS method to a system of first-order ODEs of both autonomous
and non-autonomous types. In subsequent papers, we will extend the procedure
to coupled second- and higher order ODEs. We are motivated by certain
open questions still prevailing in the original PS method for a system of
autonomous coupled first-order ODEs. Before discussing them and describing
how we answer them, we shall have an overview of the original PS method
and its generalizations.
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We recall that in 1983 Prelle & Singer (1983) proposed an algorithmic procedure
to find the integrating factor for the system of two autonomous first-order ODEs of
the form dx=dtZPðx; yÞ, dy=dtZQðx; yÞ, whereP andQ are polynomials in x and
y with coefficients in the field of complex numbers. Equivalently it can be recast in
the form y 0Zdy=dxZQðx; yÞ=Pðx; yÞ. Once the integrating factor for the latter
equation is determined, then it leads to a time-independent integral ofmotion for the
above autonomous two coupled first-order ODEs (for the single first-order ODEs,
the first integral is nothing but the general solution). The PS method guarantees
that if the given system of two coupled first-order ODEs has a first integral in terms
of elementary functions, then this first integral can be found. This method has been
generalized to incorporate the integrals with non-elementary functions (Singer
1990, 1992; Duarte et al. 2002), and some first integrals of autonomous systems of
ODEs of higher dimensions (of dimension 3) were also calculated. Man (1994)
described a method for calculating first integrals of autonomous systems which are
rational or quasi-rational, but said that ‘The generalization of this procedure to
higher dimensions to find elementary first integrals is still an open problem’. In
addition, the question about whether the PS procedure can be extended to a non-
autonomous system of first-order ODEs has not been addressed so far. Also to our
knowledge, the problem of finding time-dependent integrals for a given system of
coupled first-order ODEs through this procedure has not been taken up so far.
Further, the problem of finding both time-dependent and time-independent
integrals for a system of first-order ODEs greater than 2 in number has not been
dealt with systematically. In addition, the problem of how to linearize a given
systemof coupledfirst-orderODEs systematically also remains to be tackled. In this
paper, we address positively all these questions and come outwith valuable answers
to these problems and demonstrate the general results with suitable examples.

Firstly, in order to extend the PS method to a non-autonomous system of
first-order ODEs with the rational form dx=dtZP1ðt; x; yÞ=Q1ðt; x; yÞ,
dy=dtZP2ðt; x; yÞ=Q2ðt; x; yÞ, where Pi(t, x, y) and Qi(t, x, y), iZ1, 2, are
analytic functions of x and y with coefficients in the field of complex numbers,
we develop a modified technique and derive determining equations for the
integrating factors R and K. Secondly, in the case of a coupled system of two
first-order ODEs, we observe that the integrals of motion I1 and I2 of the coupled
ODEs are either both time dependent or I1 may be time independent, while I2 is
time dependent (or vice versa). Based on this observation, we analyse the
problem by splitting it into two different cases, namely (i) the solutions of the
determining equations for R and K which lead to time-independent integral(s)
and (ii) the solutions that lead to time-dependent integrals. We show that the
determining equations in the time-independent integral case coincide with those
derived by Prelle & Singer (1983) in their original paper. In the second case, we
obtain the time-dependent integral, if it exists, and from this we tackle the
second problem. Using this method we find integrable cases for the two-
dimensional Lotka–Volterra (LV) equations (given as an example) with both
time-dependent and time-independent integrals as well as certain non-
autonomous systems.

For extending the method to a coupled system of more than two first-order
ODEs, we first extend the above modified PS procedure to three coupled first-
order ODEs and propose a systematic procedure to obtain the integrating factors
R, K and M. In this case we divide our analysis into five categories. We illustrate
Proc. R. Soc. A (2009)
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this theory with two physically important examples, namely the Rössler system
and the three-dimensional LV system and identify some new integrable cases.
The method is extendable straightforwardly to a system of more than three
coupled first-order ODEs. In addition to the above, we also present a method
of finding a linearizing transformation for a system of first-order ODEs. We
illustrate the theory with certain concrete examples.

The paper is organized as follows. In §2, we develop the modified PS method
applicable for a non-autonomous system of two coupled first-order ODEs. In §3,
we describe the method of solving the determining equations and how one can
obtain compatible solutions from them. In §4 we illustrate the procedure with the
LV equation as an example and identify many integrable cases in it. We also
apply the method to non-autonomous two coupled equations. In §5, we extend
the PS procedure to non-autonomous three coupled first-order ODEs and
describe methods of solving the determining equations in §6. We emphasize the
validity of the theory with two illustrative examples arising in different areas of
physics in §7. Further, in §8 we discuss the direct applicability of the modified PS
procedure to n (greater than 3) coupled first-order ODEs. In §9, we demonstrate
the method of identifying linearizing transformations with examples. Finally, we
present our conclusions in §10.
2. PS procedure for two coupled first-order ODEs

Let us consider a system of two coupled first-order ODEs of the form

_x Z
P1ðt; x; yÞ
Q1ðt; x; yÞ

; _y Z
P2ðt; x; yÞ
Q2ðt; x; yÞ

; $ Z
d

dt

� �
; ð2:1Þ

where Pi and Qi , iZ1, 2, are analytic functions of x and y with coefficients in
the field of complex numbers. Further, we assume that the ODE (2.1) admits a
first integral I(t, x, y)ZC with C constant on the solutions, so that the total
differential becomes

dI Z It dtCIx dxCIy dy Z 0; ð2:2Þ

where subscript denotes partial differentiation with respect to that variable. Let
us rewrite (2.1) in the form

P1

Q1

dtKdx Z 0;
P2

Q2

dtKdy Z 0: ð2:3Þ

Hence, on the solutions, the 1-forms (2.2) and (2.3) must be proportional.
Multiplying the first equation in (2.3) by the integrating factor R(t, x, y) and the
second equation in (2.3) by a second integrating factor K(t, x, y) (both of which
are to be determined), we have on the solutions that

dI Z ðRf1 CKf2ÞdtKR dxKK dy Z 0; ð2:4Þ
where fihPi/Qi , iZ1, 2. Comparing equations (2.4) and (2.2), we have, on the
solutions, the relations

It Z ðRf1 CKf2Þ; Ix ZKR and Iy ZKK : ð2:5Þ
Proc. R. Soc. A (2009)
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The compatibility conditions, ItxZIxt, ItyZIyt, IxyZIyx, between the equations
(2.5) provide us the conditions

Rt Cf1Rx Cf2Ry ZKðRf1x CKf2xÞ; ð2:6Þ

Kt Cf1Kx Cf2Ky ZKðRf1y CKf2yÞ; ð2:7Þ

Ry ZKx : ð2:8Þ

Integrating equations (2.5), we obtain the integral of motion

I Z r1 Cr2K

ð
K C

d

dy

�
r1Cr2

�� �
dy; ð2:9Þ

where

r1 Z

ð
ðRf1 CKf2Þdt and r2 ZK

ð
RC

d

dx
ðr1Þ

� �
dx:

Solving the determining equations (2.6)–(2.8) consistently, we can obtain
expressions for the functions R and K. Substituting them into (2.9) and
evaluating the integrals, we can deduce the associated integral of motion. If two
independent sets of solutions R and K for (2.6)–(2.8) are found, then they give
rise to two independent integrals for the given system of first-order ODEs (2.1),
which ensures the complete integrability of the system and obtaining explicit
general solution of the system.
3. Method of solving determining equations

One may note that the determining equations (2.6)–(2.8) are over-determined
and the crux of the problem lies in finding the explicit solutions satisfying all
the three determining equations, since once a particular solution is known
then the integral of motion can be readily constructed. To solve the equations
(2.6) and (2.7), we introduce a transformation

RZSK ; ð3:1Þ
where S is a function of t, x and y, so that the determining equations (2.6)–(2.8)
now become

St Cf1Sx Cf2Sy ZKf2x Cðf2yKf1xÞSCf1yS
2; ð3:2Þ

Kt Cf1Kx Cf2Ky ZKKðSf1y Cf2yÞ; ð3:3Þ

Kx ZSKy CKSy: ð3:4Þ

One may observe that the equation for S, namely equation (3.2), is decoupled
from that of K (equations (3.3) and (3.4)) and so the set (3.2)–(3.4) may be easier
to analyse than solving the original ones (2.6)–(2.8) directly.

To begin with we observe that for the system of two coupled first-order ODEs
(2.1), there can be two independent integrals I1 and I2 such that either both of
them are time dependent or I1 may be time independent, while I2 is time
Proc. R. Soc. A (2009)
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dependent (or vice versa). So we consider these two cases separately with
corresponding solutions S and K for equations (3.2)–(3.4). The determining
equations in the time-independent integral case (see equation (3.8) below)
coincide with the determining equation derived by Prelle & Singer (1983) in their
original paper, whereas for the time-dependent integrals case, we develop an
extended procedure to capture both the integrals, if they exist, and thereby make
the PS procedure a more powerful tool in a self-contained way.
(a ) Time-independent integral

In the case ItZ0, we denote I1ZI and note that the function S can be easily
fixed with the help of the first equation in (2.5), that is,

R

K
ZS ZK

f2

f1

: ð3:5Þ

Since I is independent of t, it follows from equation (2.5) that S (and also R
and K ) is also independent of t. Indeed one can check that SZKðf2=f1Þ is a
solution of (3.2). Now substituting SZKðf2=f1Þ into (3.3), we get the following
equation for K, that is:

f1Kx Cf2Ky ZK
f2

f1

f1yKf2y

� �
: ð3:6Þ

We now make a substitution

K Z
f1

f ðx; yÞ ; ð3:7Þ

where f(x, y) is an arbitrary non-zero function of x and y. Then (3.6) takes the
simpler form

f1fx Cf2fy Z f ðf1x Cf2yÞ: ð3:8Þ

We note that by redefining fZ1=R, equation (3.8) coincides with the
determining equation derived by Prelle & Singer (1983) for the autonomous
case of (2.1). We also mention that equation (3.8) is nothing but the one obtained
by substituting the forms of S and K given in (3.5) and (3.7) into the constraint
equation (3.4). So by solving equation (3.8), we can get the complete set
R(ZSK ) and K associated with equations (3.2)–(3.4).

Even though equation (3.8) is a quasi-linear PDE in two variables, the
associated characteristic equation again leads to coupled differential equations of
the form (2.1). Thus the routine methods of finding general solution of quasi-
linear PDEs are not very useful here. Here, we find particular solutions for the
determining equation (3.8) in a different way and obtain integrable cases for
the given system. For this purpose, we assume a specific functional form for
f(x, y) with unknown functions and determine the latter consistently. A simple
but effective choice is fZ(A(x)CB(x)y)r, where A and B are functions of their
arguments, and r is a constant. Again the reason for choosing this form is as
follows. Since K is in a rational form, while taking differentiation or integration
the form of the denominator remains the same but the power of the denominator
decreases or increases by a unit order from that of the initial one. So instead of
considering f to be of the form fZA(x)CB(x)y, one may consider a more general
Proc. R. Soc. A (2009)
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form fZ(A(x)CB(x)y)r, where r is a constant to be determined. Depending on
the problem in hand, one can also assume a more general form and proceed as
in the present case.

Substituting now the form fZ(A(x)CB(x)y)r into (3.8), we arrive at the
following equation for the unknown functions A and B:

r
h
f1ðAx CBxyÞCf2B

i
Z ðf1x Cf2yÞðACByÞ: ð3:9Þ

Inserting the given form of fi’s, iZ1, 2, into the above equation (3.9) and solving
the resultant equation, one can fix the forms of A, B and r. Now plugging the
resultant form of f into equation (3.7), one can get the integrating factor K, which
in turn leads us to the other integrating factor R through the relation (3.5).
Finally, substituting R and K into equation (2.9) and evaluating the integrals,
one can deduce the time-independent integral for the given system. Since we are
dealing with a system of two first-order ODEs, this time-independent integral
itself guarantees the integrability of the given system. However, to explore the
general solution, one may seek the time-dependent second integral. We describe
the procedure in §3b.
(b ) Time-dependent integral

Now we focus our attention on the case It s0. In this case, the function S
has to be determined from equation (3.2). Since it is too difficult to solve
equation (3.2) for its general solution, we seek particular solutions for S, which is
sufficient for our purpose. In particular, we seek a simple rational expression for
S in the form

S Z
A1ðt; xÞCB1ðt; xÞy
A2ðt; xÞCB2ðt; xÞy

; ð3:10Þ

where Ai’s and Bi’s, iZ1, 2, are arbitrary functions of t and x, which are to be
determined. Of course this can be further generalized, if the need arises.
Substituting (3.10) into (3.2) and equating the coefficients of different powers of y
to zero, we get a set of determining equations for the functions Ai’s and Bi’s, iZ1,
2. Solving these determining equations, we obtain explicit expressions for the
functions Ai’s and Bi’s, iZ1, 2, which in turn fixes S through the relation (3.10).

Now substituting the forms of S into equation (3.3) and solving the resultant
equation, one can obtain the corresponding forms of K. To solve the determining
equation for K, we again seek the same form of ansatz (3.7) but with explicit t
dependence on the coefficient functions, that is, KZSd=ððAðt; xÞCBðt; xÞyÞrÞ,
where Sd is the denominator of S. Once S and K are determined, then one has to
verify the compatibility of this set (S, K ) with the extra constraint equation
(3.4). Now substituting R’s (ZSK ) and K’s into equation (2.9) and evaluating
the integrals, one can construct the associated integrals of motion.

We note here that for a given equation (2.1) one may also get two time-
dependent integrals or one time-dependent and one time-independent integrals
(discussed earlier), which in turn automatically guarantees the complete
integrability of the given system and provides us with an explicit solution by
algebraic manipulation. On the other hand, under certain circumstances, one may
get only one time-dependent integral and one can transform this time-dependent
integral into a time-independent one and thereby establish the integrability.
Proc. R. Soc. A (2009)
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4. Two coupled ODEs: application

(a ) Example: two-dimensional LV system

Our motivation is to identify integrable cases and deduce both time-dependent
and time-independent integrals for a given system of two coupled first-order
ODEs through the extended PS procedure in a self-contained way.

To demonstrate this, we consider the celebrated two-dimensional LV system

_x Z xða1Cb11xCb12yÞZf1; _y Z yða2 Cb21xCb22yÞZf2; ð4:1Þ
where the ai’s and bij’s, i, jZ1, 2, are six real parameters. This system was
originally introduced by Lotka (1920) and Volterra (1931) to model two species
competition. However, in recent years this model has appeared widely in applied
mathematics and in a large variety of physics topics such as laser physics, plasma
physics, convective instabilities, neural networks, etc. (Minorsky 1962; Brenig
1988; Murray 1989). The integrability properties of the system (4.1) alone have
been analysed by many authors; see for example Cairo & Llibre (2000) and
references therein.

In the following, we identify integrable cases in (4.1), through our procedure.

(i) Time-independent integral (ItZ0)

In this case the function S can be fixed easily in the form (vide equation (3.5))

S ZK
f2

f1

ZK
yða2Cb21xCb22yÞ
xða1Cb11xCb12yÞ

: ð4:2Þ

To explore the integrating factor K, we need to fix the form f first; see equation
(3.7). For this purpose we substitute the fi’s, iZ1, 2, into (3.9) so that one gets
the following equation for the unknown functions A and B which constitute the
function f :

r
h
xða1 Cb11xCb12yÞðAx CBxyÞCyða2 Cb21xCb22yÞB

i
Z ða1Ca2Cðb21C2b11ÞxCðb12C2b22ÞyÞðACByÞ: ð4:3Þ

Equating the coefficients of various powers of yi, iZ0, 1, 2, and solving the
resultant differential equations for A and B, we arrive at the following two
general expressions that involve the system parameters:

b21ðb12K b22Þðb12b21K b11ðb12K2b22ÞÞða1ðb11K b21Þb22Ca2b11ðb22K b12ÞÞZ 0;

a1b22ðb11K b21Þ2ða2b12K a1b22ÞCa2
2b11ðb12K b22Þðb12b21K b11b22ÞZ 0

)

ð4:4Þ
and

r Z
ðb11b12Cb12b21K2b11b22Þ

b11ðb12K b22Þ
or r Z

ðb11b12Cb12b21K2b11b22Þ
ðb12b21K b11b22Þ

: ð4:5Þ

Any consistent solution that comes out from the above expression (4.4) gives us
an integrating factor, which in turn leads us to an integral of motion. In this
sense, (4.4) forms an integrability condition of some generality, which in fact
encompasses all known integrable cases with time-independent integrals
Proc. R. Soc. A (2009)
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(Cairo & Llibre 2000; Llibre & Valls 2007). For example, while analysing
the above equation, we find that one can straightforwardly recover several
known integrable cases such as (i) b11Zb22Z0, rZ1, (ii) b22Zb12, b11Zb21, rZ1,
(iii) a1Za2, b12Z3b22, b11ZKb21, rZK1, and (iv) a1Za2Z0, r as given in
equation (4.5), and so on straightforwardly from equations (4.4) and (4.5) and
construct the associated integral of motion, which in turn coincides with the
existing results. However, as we are interested in constructing an integral of
motion with more general parametric choice, we do not fix any relation between
parameters (other than the general relation) and proceed further.

The respective forms of A and B are (for b22b12(b22Kb12)s0),

AZ ððrK1ÞgðxÞCrb22ða1 Cb11xÞÞxðð2KrÞb22Cb12Þ=rb12 ; B Z rb22b12x
ðð2KrÞb22Cb12Þ=rb12 ;

ð4:6Þ
so that

f Z xðð2KrÞb22Cb12Þ=b12
�
ðrK1ÞgðxÞCrb22ða1 Cb11xCb12yÞ

�r
; ð4:7Þ

where

gðxÞZ a2b12K2a1b22C
b22

ðb22K b12Þ
ðb12b21Cb11ðb12K2b22ÞÞx

� �
: ð4:8Þ

Making use of the explicit forms of S and f, vide equations (4.2) and (4.7),
respectively, with the parametric restrictions (4.4), the integrating factors K and
R can be fixed as RZKðf2=f Þ and KZf1=f . Substituting the forms R and K into
(2.9) and evaluating the integrals, we arrive at the following time-independent
integrals for (4.1) for the parametric cases (4.4) for different values of r, namely

I Z
x

f

ðrK1Þ
r2

gðxÞ2 C
h
b22ða1Cb11xCb12yÞ

�
a2b12K a1b22ð

�

C
b22

ðb12K b22Þ
ðb11b22K b12b21ÞxCb12b22yÞ

�i�
; rs0; 2; ð4:9Þ

I Z
2b22ða1Cb11xCb12yÞ

b12hðx; yÞ
Klog

h
xKðb22=b12Þhðx; yÞ

i
; r Z 2; ð4:10Þ

I Z xKð2b22=b12Þyð2a1 C2b11xCb12yÞ; r Z 0; ð4:11Þ
where h(x, y)Za2C(b11Cb21)xC2b22y and g(x) is given in (4.8).

For b22b12(b22Kb12)Z0, one obtains known integrable cases, following the
same procedure as above. For example, let us consider the first case, which we
cited above as the known case b22Zb11Z0. For this case, one can find a trivial
solution for equation (4.3) as AZ0 and BZx with rZ1 so that f becomes fZxy.
The respective integrating factors R and K read as RZKðða2Cb21xÞ=xÞ and
KZðða1Cb12yÞ=yÞ, so that the associated integral of motion takes the form
IZb21xKb12yCa2 log xKa1 log y. This integral is well known and has been
popular in the literature for a long time (e.g. Minorsky 1962; Prelle & Singer
1983; Murray 1989). Similarly for the case b22Zb12 and b11Zb21, we obtain
the integral of motion of the form IZxa2yKa1ða1a2Ca1b22yCa2b11xÞða1Ka2Þ.
In the case b12Z0, equation (4.1) becomes uncoupled and the general solution for
this case can easily be obtained.
Proc. R. Soc. A (2009)
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(ii) Time-dependent integrals (Its0)

Now let us concentrate on the case It s0. In this case S has to be determined
from equation (3.2), that is,

St Cxða1Cb11xCb12yÞSx Cyða2Cb21xCb22yÞSy ZKb21y

Cðða2 Cb21xC2b22yÞKða1 C2b11xCb12yÞÞSCb12xS
2: ð4:12Þ

As we have mentioned earlier, to obtain a particular solution for the above
equation (4.12), we seek a simple ansatz for S of the form (3.10). Substituting
(3.10) into (4.12) and solving the resulting equation, we obtain non-trivial forms
of S for the following specific parametric restrictions (we omitted the uncoupled
case b12b21Z0):

ðiÞ a1 Z a2; b21K b11 2K
b12
b22

� �
Z 0; ð4:13Þ

ðiiÞ b21 Z b11; b12 Z b22; ð4:14Þ

ðiiiÞ b21 Z
b22b11
b12

; ð4:15Þ

ðivÞ a1 Z a2; b21K b11 2K
b12
b22

� �
s0; ð4:16Þ

and the respective S forms are

ðiÞ S Z
b11
b22

; ðiiÞ S ZK
y

x
;

ðiiiÞ S ZK
b22y

b12x
; ðivÞ S ZK

yðb21xCb22yÞ
xðb11xCb12yÞ

:

9>>=
>>; ð4:17Þ

Now substituting the above forms of S into equation (3.3) and solving the
resultant equation, we obtain the corresponding forms of K. By making use of the
ansatz mentioned in §3b, we obtain following expressions for K:

ðiÞ K ZK
a2b22e

Ka2t

ða2 Cb11xCb22yÞ2
; ðiiÞ K Z

x

y2
eða2Ka1Þt;

ðiiiÞ K ZKxKðb22=b12Þ exp
a1b22
b12

Ka2

� �
t

� �
;

ðivÞ K Z
ðb11xCb12yÞexp a2ðb12Kb22Þ

b12
ðrK2Þt

� �
xððrK2Þb22Þ=b12

ðrK1Þ
r

ðb12b21Cb11ðb12K2b22ÞÞ
ðb12Kb22Þx Kb11xKb12y

� �r ;

9>>>>>>>>>>=
>>>>>>>>>>;

ð4:18Þ

with r being given in equation (4.5). It may be noted that the set (4.13)–(4.16)
also includes the known time-dependent integrable cases.

Once R(ZSK ) and K are determined, then one has to verify the compatibility
of this solution with the extra constraint (2.8), which indeed gets satisfied in each
one of the above four cases. Substituting the resultant integrating factors into
(2.9) and evaluating the integrals, we obtain the associated time-dependent
integrals of motion in the forms
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ðiÞ ðaÞ I Z
eKa2tðb11xCb22yÞ
ða2 Cb11xCb22yÞ

; a2s0; ð4:19Þ

ðbÞ I Z
1Cðb11xCb22yÞt

ðb11xCb22yÞ
; a2 Z 0; ð4:20Þ

ðiiÞ I Z
x

y
expðða2K a1ÞtÞ; ð4:21Þ

ðiiiÞ I Z exp
a1b22
b12

K a2

� �
t

� �
xKðb22=b12Þy; ð4:22Þ

ðivÞ ðaÞ I Z ðrK1Þ
r

d3x

d1
K e2

� �Kr ðrK1Þ
r2

d 2
3x

2 Ce2d1

�

!ðb11b22xCb212yK b12e1Þ
#
xððrK2Þb22Þ=b12 exp

a2d1
b12

ðrK2Þt
� �

; rs0; 2;

ð4:23Þ

ðbÞ I Z log
h
2xKðb22=b12Þyd1

i
K

b21x

b12y
K

a2d1
b12

t; r Z 2; ð4:24Þ

ðcÞ I Z exp K
2a2d1
b12

t

� �
xKð2b22=b12Þ

�
b211d2x

2Cb212d1y
2Cb11b12e4x

�
; r Z 0;

ð4:25Þ
where

d1 Z ðb12Kb22Þ; e1 Z ðb21xCb22yÞ; d2 Z ðb12K2b22Þ;
d3 Z ðb12b21 Cb11d2Þ; e2 Z ðb11xCb12yÞ;

d1 Z ðb12Kb22Þ; e1 Z ðb21xCb22yÞ; d2 Z ðb12K2b22Þ;
d3 Z ðb12b21Cb11d2Þ; e2 Z ðb11xCb12yÞ;

e3 Z ððb11Kb21ÞxC2d1yÞ; e4 Z ðb21xC2d1yÞ:

9>>>>>>>=
>>>>>>>;

ð4:26Þ

Finally we note that our method not only gives us a rather general set of
integrable parametric relations (which includes all known cases) but also
provides two independent integrals from which one can deduce the general
solution for some cases.
(iii) General solutions/integrability

Interestingly, we find that for certain parametric choices, we have two
independent integrals (time independent as well as time dependent) and
consequently one can express the general solution explicitly by using both of
them. For example, let us consider the parametric choice given in (4.13) and the
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associated time-dependent integrals given in (4.19) and (4.20). For this
parametric choice, that is, a1Za2, b21b 22Kb11(2b22Kb12)Z0, we can also find
the following time-independent integral from (4.9):

I2 Z
y

x
ða1 Cb11xCb22yÞðb12=b22ÞK1: ð4:27Þ

Using the integrals I and I2, the general solution for the two-dimensional LV
system, (4.1), for the parametric choice (4.13), can be written as

xðtÞZ a1â1e
a1tI

b11â1g1Cb22I2ðg1Þb12=b22
;

yðtÞZ a1e
a1tII2

ðb11â1ðg1Þ2Kðb12=b22ÞCb22I2g1Þ
; a1s0

9>>>=
>>>;

ð4:28Þ

and

xðtÞZ 1

I2ðg2Þb12=b22K b11g2
; yðtÞZ I2ðg2Þððb12=b22ÞK1Þ

b22ðb11g2K I2ðg2Þb12=b22Þ
; a1 Z 0; ð4:29Þ

where â1Za
ðb12=b22ÞK1
1 , g1Zð1KIea1tÞ and g2Z(tCI ), respectively. Further, for

the parametric choice given in (4.14), that is, b21Zb11, b12Zb22, we obtain the
general solution of the form

xðtÞZ a1a2e
a1t

IIKa2

1

� �1=ða1Ka2ÞK g3ðtÞ
; yðtÞZ a1a2e

a2t

ðI IKa2

1 Þ1=ða1Ka2ÞK g3ðtÞ
; ð4:30Þ

where g3ðtÞZða1b22e
a2tCa2b11I1e

a1tÞ. Depending on the signs and magnitudes of
the system parameters a1, a2, b11, b12 and b22, the above solutions describe
normalized interacting populations that asymptotically decay or grow or saturate.

Similarly for all the other integrable cases identified in this section, one can
derive the general solutions that are physically and mathematically relevant,
often after some manipulations. The details will be presented elsewhere.

(b ) Application to non-autonomous system of first-order ODEs

As we have mentioned in §1, one of our motivations is to show that the
procedure developed in §3 is applicable to non-autonomous systems as well.

(i) Example 1: complex Riccati equation

To demonstrate this point in brief, let us consider the following first-order non-
autonomous equations:

_x Za1ðtÞxKa2ðtÞyCb1ðtÞðx2Ky2ÞK2b2ðtÞxy Zf1ðt; x; yÞ;
_y Za1ðtÞyCa2ðtÞxCb2ðtÞðx2Ky2ÞC2b1ðtÞxy Zf2ðt; x; yÞ;

)
ð4:31Þ

where ai(t) and bi(t), iZ1, 2, are arbitrary functions of t. Equation (4.31)
describes the dynamics of two interacting species with time-modulated
parameters. This coupled equation is essentially the real form of the complex
Riccati–Bernoulli equation _zZaðtÞzCbðtÞz2, where zZxCiy, a(t)Za1(t)Cia2(t)
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and b(t)Zb1(t)Cib2(t). Substituting the form of fi’s, iZ1, 2, into the
determining equation (3.2) and solving the latter, we obtain the following
forms for S (generalizing the ansatz (3.10)):

S1 Z
ðy2Kx2ÞcosðuðtÞÞK2xy sinðuðtÞÞ
ðx2Ky2ÞsinðuðtÞÞK2xy cosðuðtÞÞ ;

S2 Z
ðy2Kx2ÞsinðuðtÞÞC2xy cosðuðtÞÞ
ðy2Kx2ÞcosðuðtÞÞK2xy sinðuðtÞÞ ;

9>>>=
>>>;

ð4:32Þ

where uðtÞZ
Ð
a2ðtÞdt. Now inserting the above forms of S1 and S2 into equation

(3.3) and solving the resultant equations, we obtain the following inte-
grating factors:

K1 Z
exp

Ð
a1ðtÞdt

� �
ðx2 Cy2Þ2

ððy2Kx2ÞsinðuðtÞÞC2xy cosðuðtÞÞÞ;

K2 Z
exp

Ð
a1ðtÞdt

� �
ðx2 Cy2Þ2

ððx2Ky2ÞsinðuðtÞÞC2xy cosðuðtÞÞÞ:

9>>>=
>>>;

ð4:33Þ

Substituting the complete sets (Ri(ZSiKi),Ki), iZ1, 2, into equation (2.9) and
evaluating the integrals, we obtain

I1 Z
exp

Ð
a1ðtÞdt

� �
ðx2Cy2Þ ðx cosðuðtÞÞCy sinðuðtÞ))Cg1ðtÞ;

I2 Z
exp

Ð
a1ðtÞdt

� �
ðx2 Cy2Þ ðx sinðuðtÞÞKy cosðuðtÞÞÞCg2ðtÞ;

9>>>=
>>>;

ð4:34Þ

where

g1ðtÞZ
ð
ðb1ðtÞcosðuðtÞÞKb2ðtÞsinðuðtÞÞÞexp

ð
a1ðtÞdt

� �
dt;

g2ðtÞZ
ð
ðb2ðtÞcosðuðtÞÞCb1ðtÞsinðuðtÞÞÞexp

ð
a1ðtÞdt

� �
dt:

9>>>=
>>>;

ð4:35Þ

From the integrals I1 and I2, the general solution for the equation (4.31) can be
fixed easily in the form

xðtÞZ
exp

Ð
a1ðtÞdt

� �
g3ðtÞ

�
ðI1Kg1ðtÞÞcosðuðtÞÞCðI2Kg2ðtÞÞsinðuðtÞÞ

�
;

yðtÞZ
exp

Ð
a1ðtÞdt

� �
g3ðtÞ

�
ðI1Kg1ðtÞÞsinðuðtÞÞKðI2Kg2ðtÞÞcosðuðtÞÞ

�
;

9>>>=
>>>;

ð4:36Þ

where g3(t)Z(I1Kg(t))2C(I2Kg(t))2. Again depending on the nature of the
system parameters, the above solutions represent oscillatory or decaying or
growing populations.
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


597Integrability and linearization

 on October 22, 2010rspa.royalsocietypublishing.orgDownloaded from 
(ii) Example 2: a predator–prey equation

To demonstrate the theory for non-autonomous systems further, we consider
another example that is a non-autonomous predator–prey equation,

_x Za1xCg1e
Kb1txy Zf1; _y Za2yCg2e

Kb2txy Zf2; ð4:37Þ

where ai , bi and gi , iZ1, 2, are arbitrary parameters. Substituting the form of
fi’s, iZ1, 2, into the determining equation (3.2) and solving the latter, we obtain
the following form for S for the parametric choice b1Zb2Zb:

S1 ZK
ða2KbÞyCg2e

Kbtxy

ða1KbÞxCg1e
Kbtxy

: ð4:38Þ

Now inserting the above form of S1 into equation (3.3) and solving the resultant
equation, we obtain

K1 Z
ða1KbÞCg1e

Kbty

y
: ð4:39Þ

Substituting the forms R1(ZS1K1) and K1 into equation (2.9) and evaluating the
integrals, we obtain

I1 Z ðg2xKg1yÞeKbt Cða2KbÞlog xKða1KbÞlog yKða2Ka1Þbt: ð4:40Þ

Unfortunately we could not find a second integral in this case. However, for the
further parametric restriction, namely a1Za2Za, we obtain S2 of the form

S2 ZK
g2

g1

: ð4:41Þ

Substituting S2 into equation (3.3) and solving the resultant equation, we obtain

K2 Zg1e
Kat: ð4:42Þ

Plugging the forms R2(ZSK ) and K2 into equation (2.9), we obtain I2 as

I2 Z ðg2xKg1yÞeKat: ð4:43Þ

From the integrals I1 and I2, the general solution for the equation (4.37) with
a1Za2Za and b1Zb2Zb can be fixed easily in the form

xðtÞZ I2e
at

g2Kg1 exp
ðI1KI2 expððaKbÞtÞÞ

bKa

� �� � ;
yðtÞZ I2 e

at

ðg2 exp
ðI1KI2 expððaKbÞtÞÞ

aKb

� �
Kg1Þ

:

9>>>>>=
>>>>>;

ð4:44Þ

It is obvious that depending upon the signs and magnitudes of the parameters
a and b, the general solution either decays or grows or saturates in the
asymptotic limit.
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5. PS procedure for three coupled first-order ODEs

Next, we focus our attention on a system of three coupled first-order ODEs of
the form

_x Z
P1ðt; x; y; zÞ
Q1ðt; x; y; zÞ

; _y Z
P2ðt; x; y; zÞ
Q2ðt; x; y; zÞ

; _z Z
P3ðt; x; y; zÞ
Q3ðt; x; y; zÞ

; ð5:1Þ

where Pi’s and Qi’s, iZ1, 2, 3, are analytic functions in x, y and z with coefficients
in the field of complex numbers. Further, we assume that the ODE (5.1) admits a
first integral I(t, x, y, z)ZC, with C constant on the solutions so that the total
differential becomes

dI Z It dtCIx dxCIy dyCIz dz Z 0: ð5:2Þ
Now let us rewrite the equation (5.1) in the form

P1

Q1

dtKdx Z 0;
P2

Q2

dtKdy Z 0;
P3

Q3

dtKdz Z 0: ð5:3Þ

Hence, on the solutions, the 1-forms (5.2) and (5.3) must be proportional.
Multiplying the first, second and third equations in (5.3) by the functions
R(t, x, y, z), K(t, x, y, z) and M(t, x, y, z), respectively, which act as the
integrating factors of the corresponding equations, we have on the solutions that

dI Z ðRf1 CKf2 CMf3ÞdtKR dxKK dyKM dz Z 0; ð5:4Þ
where fihPi/Qi , iZ1, 2, 3. Comparing equations (5.4) and (5.2), we have, on the
solutions, the relations

It Z ðRf1CKf2 CMf3Þ; Ix ZKR; Iy ZKK ; Iz ZKM : ð5:5Þ

The compatibility conditions between the equations (5.5) provide us the
following determining equations for the integrating factors R, K and M:

Rt Cf1Rx Cf2Ry Cf3Rz ZKðRf1x CKf2x CMf3xÞ; ð5:6Þ

Kt Cf1Kx Cf2Ky Cf3Kz ZKðRf1y CKf2y CMf3yÞ; ð5:7Þ

Mt Cf1Mx Cf2My Cf3Mz ZKðRf1z CKf2z CMf3zÞ; ð5:8Þ

Ry ZKx ; Rz ZMx ; Kz ZMy: ð5:9Þ
On the other hand integrating equations (5.5), we obtain the integral of motion,

I Z r1 Cr2Cr3K

ð
M C

d

dz
ðr1Cr2 Cr3Þ

� �
dz; ð5:10Þ

where

r1 Z

ð �
Rf1 CKf2CMf3

�
dt; r2 ZK

ð
RC

d

dx
ðr1Þ

� �
dx;

r3 ZK

ð
K C

d

dy
ðr1Cr2Þ

� �
dy:
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Naturally, for the complete integrability of equation (5.1), we require three
independent integrals and so three independent sets of integrating factors
(Ri , Ki ,Mi), iZ1, 2, 3.
6. Method of solving determining equations

The determining equations (5.6)–(5.9) are more complicated than the two-
dimensional case discussed in §3 and so to simplify the determining equations, we
introduce the transformations

RZSM and K ZUM ; ð6:1Þ

where S and U are functions of t, x, y and z, so that the equations (5.6)–(5.9)
become

D½S�ZSðSf1z CUf2z Cf3zÞKðSf1x CUf2x Cf3xÞ; ð6:2Þ

D½U �ZUðSf1z CUf2z Cf3zÞKðSf1y CUf2y Cf3yÞ; ð6:3Þ

D½M �ZKMðSf1z CUf2z Cf3zÞ; ð6:4Þ

Mx ZSMz CMSz ; My ZUMz CMUz ; ð6:5Þ

UxKSy ZSUzKUSz ; DZ
v

vt
Cf1

v

vx
Cf2

v

vy
Cf3

v

vz
: ð6:6Þ

One may note that two of the determining equations are still in coupled form and
the transformations are natural extensions of the two coupled case. Of course, one
may also consider alternate possibilities, that is, either RZŜK and MZÛK or
KZ ~SR and MZ ~UR. However, such possibilities again lead to the same results.

In the two coupled case (2.1), we divided our analysis into two categories, vide
§3a (time-independent integrals) and §3b (time-dependent integrals). However,
in the present case, we divide our analysis into five categories, that is, (i) IxZ0
and It, Iy, Izs0, (ii) IyZ0 and It, Ix, Izs0, (iii) IzZ0 and It, Ix, Iys0, (iv) ItZ0
and Ix, Iy, Izs0 and (v) It, Ix, Iy, Izs0. We intend to proceed in this way because
we observed the absence of a dynamical variable in some integrals in certain
specific dynamical systems of the type (5.1). We try to identify these cases first.
In fact, proceeding in this way, we are able to formulate a condition on the
system variables and if the given system satisfies this condition, one can conclude
that the given dynamical system has the integral without that respective
variable. Since we have four variables, t, x, y and z, we consider each one of the
cases separately and treat none of the variables being absent as the fifth
independent case.

Since we are dealing with a system of coupled three first-order ODEs, the
complete integrability is guaranteed by the presence of two time-independent
integrals (whereupon the system can be reduced to a single quadrature) or three
time-dependent ones (in which case, the solution can be obtained in an algebraic
way; Bountis et al. 1984). In the following, we will search for such integrals.
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(a ) Case 1: IxZ0 and It, Iy, Izs0

In the case IxZ0, we have RZ0 (vide equation (5.5)), which in turn implies
that (i) either SZ0 and Ms0 or (ii) Ss0 and MZ0 as can be seen from (6.1). In
the former case, SZ0, Ms0, one can easily fix the form of U, from equations
(6.2) and (6.6) as

U ZK
f3x

f2x

; Ux Z 0: ð6:7Þ

On the other hand the choice MZ0 and Ss0 when RZ0 leads to the case where
one of the dynamical variables becomes uncoupled (see equations (5.6)–(5.9)),
which effectively results in a system of two coupled first-order ODEs, which we
have already discussed. So this choice is not considered further. Inserting the
above form (6.7) into (6.3), we arrive at the condition

f3xðf2xt Cf2f2xy Cf3f2xzKf2zf3xKf2xf2yÞ
Kf2xðf3xt Cf2f3xy Cf3f3xzKf2xf3yKf3xf3zÞZ 0: ð6:8Þ

The condition (6.8) gives us the integrable cases for which the system possesses
the integrals of motion with IxZ0. Now substituting (6.7) into (6.4), we
obtain the following determining equation for M:

D½M �ZM
f3x

f2x

f2zKf3z

� �
: ð6:9Þ

Again to solve equation (6.9) one has to make a suitable ansatz for M. Choosing
appropriate ansatz for M and solving the equation (6.9), one can get an explicit
form for M. Once M is known, the integrating factors can be fixed from the
relations KZUM and RZSMZ0. Now plugging the forms of R, K and M into
equation (5.10) and evaluating the integrals, one can construct the integrals of
motion for the given system.

(b ) Case 2: IyZ0 and It, Ix, Izs0

The determining equations and conditions can be fixed in a similar manner
for this case, IyZ0 and It, Ix, Izs0, with the replacement (S, U, M, f1, f2, f3,
x, y, z)/(U, S,M, f2, f1, f3, y, x, z) in the above analysis.

(c ) Case 3: IzZ0 and It , Ix, Izs0

In the present case with the form of the integrating factors RZSM and
KZUM, IzZ0 implies MZ0 and so RZ0 and KZ0 as well, leading to an integral
of motion, which turns out to be constant. Therefore in this case, we consider
the other possibility RZŜK and MZÛK and proceed as above. The final
results are obtained with the replacement ðS;U ;M ;f1;f2;f3; x; y; zÞ / ðÛ ;Ŝ;
K ;f3;f1;f2; z; x; yÞ in case 1.

(d ) Case 4: ItZ0 and Ix, Iy, Izs0

Next, in the time-independent case ItZ0, the first equation in (5.5) gives

S Z
R

M
ZK

ðf3Cf2UÞ
f1

: ð6:10Þ
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Substituting this form of S into (6.3) and (6.4), we get the following form of
determining equations for U and M:

D½U �Z f3Cf2U

f1

ðUf1yKf1zÞCUðUf2z Cf3zKf2yÞKf3y; ð6:11Þ

D½M �ZM
f3 Cf2U

f1

f1zKf2zUKf3z

� �
: ð6:12Þ

To solve the equations (6.11) and (6.12) we adopt the following methodology.
To start with, in order to solve (6.11), we consider U in the form

U Z
A1ðx; yÞCB1ðx; yÞz
A2ðx; yÞCB2ðx; yÞz

; ð6:13Þ

where Ai’s and Bi’s, iZ1, 2, are arbitrary functions of x and y. Substituting (6.13)
into (6.11) and equating the coefficients of different powers of z to zero, we get a
set of determining equations for the functions Ai’s and Bi’s, iZ1, 2. Solving these
determining equations, we obtain explicit expressions of the functions Ai’s and
Bi’s, iZ1, 2, and consequently the associated function U.

Now substituting the forms of U into equation (6.12) and solving the resultant
equation, we obtain the corresponding form ofM. To solve the determining equation
forM, we again seek the ansatz of the form MZUd=ððAðx; yÞCBðx; yÞzÞrÞ where
Ud is the denominator of U. Once U and M are fixed, then one has to verify the
compatibility of this set (S, U,M ) with the constraint equations (6.5) and (6.6).
Now substituting R(ZSK ), K(ZUM ) and M ’s into equation (5.10), one can
construct the associated integrals. Finally, one can proceed with a more generalized
ansatz than (6.13), if the need arises.
(e ) Case 5: It, Ix, Iy, Izs0

Solving the determining equations (6.2)–(6.4) is naturally more tedious with
none of the variables (t, x, y, z) absent in I, when compared with the earlier cases.
To start with, one may use the following simple ansatz to solve the determining
equations (5.6)–(5.8):

RZA1ðt; x; yÞCB1ðt; x; yÞz; K ZA2ðt; x; yÞCB2ðt; x; yÞz;
M ZA3ðt; x; yÞCB3ðt; x; yÞz;

)
ð6:14Þ

where Ai’s and Bi’s, iZ1, 2, 3, are arbitrary functions of t, x and y. Depending
on the nature of the equation (5.1), one may work with more general forms
such as a rational one.
7. Three coupled ODEs: applications

(a ) Example: Rössler system

Let us consider the Rössler (1976) system

dx

dt
ZKyKz Zf1;

dy

dt
Z xCa1y Zf2;

dz

dt
Za2CxzCa3z Zf3; ð7:1Þ
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where ai’s, iZ1, 2, 3, are arbitrary parameters. Several works have been devoted
to the study of the dynamics of this equation. Very recently, Llibre & Zhang
(2002) and Zhang (2004) have studied equation (7.1) using the so-called Darboux
method and obtained conditions for integrability. We now apply our above
method to system (7.1) and explore new integrals, if they exist.

(i) IxZ0 and It, Iy, Izs0

Substituting (7.1) into (6.8), we get

za1 Ca2 Z 0: ð7:2Þ
From equation (7.2) we conclude that a1Za2Z0, so that from (6.7) we get
UZKz. The determining equation for M turns out to be

Mt CxMy CzðxCa3ÞMz ZKMðxCa3Þ; ð7:3Þ

in which we have taken MxZ0 (since IxZ0). A simple solution for (7.3) is
MZ1/z. Making use of the explicit forms of U and M and with the parametric
restriction a1Za2Z0, we conclude that RZ0, KZK1, MZ1/z. Now
substituting the functions R, K and M into equation (5.10) and evaluating the
integrals, we obtain the following integral of motion:

I Z yCa3tKlogðzÞ: ð7:4Þ
The integral (7.4) with a3Z0 has already been given by Llibre & Zhang (2002)
and Zhang (2004). The integral (7.4) with a3s0 is new to the literature, at least
to our knowledge.

(ii) IyZ0, It, Ix , Izs0 and IzZ0, It , Ix, Iys0

Proceeding appropriately we could not find any integrable case in the Rössler
system belonging to these categories.

(iii) ItZ0 and Ix, Iy, Izs0

In this case the function S can be fixed in the form (vide equation (6.10))

S Z
a2CðxCa3ÞzCðxCa1yÞU

yCz
: ð7:5Þ

Substituting (7.1) into (6.11), we get

D½U �Z a2 CðxCa3ÞzCðxCa1yÞU
yCz

ðU K1ÞCðxCa3Ka1ÞU : ð7:6Þ

Substituting (6.13) into (7.6) and solving the resultant equations, we obtain
non-trivial forms of U for the specific parametric restriction a1Za2Za3Z0
and then making use of the U forms into (7.5) we obtain (S1, U1)Z(x, y),
(S2, U2)Z(0, Kz). Now substituting the forms of U into equation (6.12) and
solving the resultant equation, we obtain M1ZK1 and M2ZKeKy. Now
inserting the integrating factors Ri’s(ZSiMi), Ki’s(ZUiMi) and Mi’s, iZ1, 2,
into (5.10) and evaluating the integrals, we arrive at the expressions

I1 Z x2Cy2 C2z; I2 Z zeKy: ð7:7Þ
These two integrals have already been known (Llibre & Zhang 2002; Zhang 2004).
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(iv) It, Ix, Iy, Izs0

In this case, substituting fi’s, iZ1, 2, 3, into (5.6)–(5.8) and solving the
resultant system of equations with the ansatz (6.14), we obtain the integrating
factors for the parametric choice a1Za3Z0, that is, RZKx, KZKy, MZK1
and the corresponding integral of motion takes the form

I Z ðx2 Cy2 C2zK2a2tÞ: ð7:8Þ
The integral (7.8) has also been reported by Zhang (2004).

We conclude this section by mentioning that our studies reveal that the
system (7.1) possesses a time-dependent integral for the parametric choice a3s0.

(b ) Example 2: three-dimensional LV system

Let us consider a three-dimensional LV model for competition between three
populations whose dynamical evolution is determined by the following equations
(Cairo 2000):

_x Z xða1 Ca1xCb1yCc1zÞ; _y Z yða2Ca2xCb2yCc2zÞ;
_z Z zða3 Ca3xCb3yCc3zÞ;

)
ð7:9Þ

where ai , ai , bi and ci , iZ1, 2, 3, are arbitrary parameters. Needless to say, the
three-dimensional LV system is one of the challenging problems and a testing
ground for several analytical methods. In the following, we identify the integrals
of motion for certain specific parametric choices in (7.9) using the procedure
given above. For the purpose of demonstration, in the following we present our
results only for a couple of cases and a detailed analysis will be presented separately.

(i) Case 1

For the parametric choice aiZa, biZb, and ciZc, iZ1, 2, 3, we find the
following three complete sets of integrating factors (Ri , Ki , Mi), iZ1, 2, 3:

R1 Z 0; K1 Z
expðða3Ka2ÞtÞz

y2
; M1 ZK

expðða3Ka2ÞtÞ
y

;

R2 Z
expðða3Ka1ÞtÞz

x2
; K2 Z 0; M2 ZK

expðða3Ka1ÞtÞ
x

;

R3 ZK
ea1thðy; zÞ

x2
; K3 Za3

ea1t

ax
; M3 Za2

ea1t

ax
;

9>>>>>>>>>=
>>>>>>>>>;

ð7:10Þ

where h(y, z)Z(a2a3Cba3yCca2z). Now substituting the functions R, K and M
into equation (5.10), one can obtain the following integrals of motion:

I1 Z
expðða2Ka3ÞtÞz

y
; I2 Z

expðða1Ka3ÞtÞz
x

;

I3 Z
ea1tða1a2a3 Ca2a3axCa1a3byCa1a2czÞ

x
:

9>>=
>>; ð7:11Þ

From the integrals I1, I2 and I3, we can deduce the general solution for the
equation (7.9) for the parametric choice aiZa, biZb, and ciZc, iZ1, 2, 3, of
the form
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


V. K. Chandrasekar et al.604

 on October 22, 2010rspa.royalsocietypublishing.orgDownloaded from 
xðtÞZ a1a2a3I1e
a1t

I3I1Kðaa2a3I1e
a1t Cba1a3I2e

a2t Cca1a2I1I2e
a3tÞ ;

yðtÞZ a1a2a3I2e
a2t

I3I1K aa2a3I1e
a1t Cba1a3I2e

a2t Cca1a2I1I2e
a3tð Þ ;

zðtÞZ a1a2a3I1I2e
a3t

I3I1K aa2a3I1e
a1t Cba1a3I2e

a2t Cca1a2I1I2e
a3tð Þ :

9>>>>>>>>=
>>>>>>>>;

ð7:12Þ

For the above choice of parameter, the system (7.9) is a completely integrable one.

(ii) Case 2

For the parametric choice aiZa, iZ1, 2, 3, a3/3ZKa2/2Za1, c1ZKc3,
b1ZKb3 and c2Zb2Z0, we obtain two complete sets of integrating factors of the
form

R1 Z eK4aty2z; K1 Z 2eK4atxzy; M1 Z eK4atxy2;

R2 Z a1ay 6a1xK3c1zC2b1 yK
c1
a
z

 ! !
eK3at;

K2 Za 3a2
1x

2 Cb21y
2Ca1xð4b1yK c1z 3C

4

a
b1y

 ! !
eK3at;

M 2 ZKa1c1xyð3aC2b1yÞeK3at:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð7:13Þ

Now substituting the integrating factors R, K andM into equation (5.10), one can
obtain the corresponding integrals of motion, namely

I1 Z eK4atxy2z;

I2 Z eK3at aa1xy 3c1zK3a1xK2b1yC
2

a
b1c1yz

� �
K

1

3
b21y

3

� �
: ð7:14Þ

We could not find the third integrating factor (R3, K3,M3) within our ansatz,
(6.14), and further detailed exploration is needed to conclude whether it exists or
not, and to find the third integral if it exists.
8. PS procedure for n (greater than 3) coupled first-order ODEs

The above procedure to find integrating factors and integrals can be extended in
principle to a system of n coupled first-order ODEs (nO3). In this case, we get n
determining equations for the n integrating factors along with n(nK1)/2
constraint equations, which one can solve algorithmically by following the above
procedure. Further, the same procedure can also be applied in principle to any
higher order as well as coupled higher order equations. This is because, any
higher order equation can always be rewritten equivalently as a system of first-
order ODEs. For example, the second-order equation €xZ f ð _x ; x; tÞ can be written
in the first-order form as _xZy, _yZ f ðy; x; tÞ. Then the determining equations for
this first-order form, namely equations (3.2)–(3.4), can be related to the
determining equations (2.6)–(2.8) given by us earlier (Chandrasekar et al. 2005)
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for the second-order form €xZ f ð _x ; x; tÞ. However, one has to note that each one of
the procedures has its own merits and demerits, for example in constructing non-
standard Hamiltonian structures. Similarly, a straightforward first-order form
for the third-order equation fflxZ f ð€x ; _x ; x; tÞ is _xZy, _yZz, _zZ f ðx; y; z; tÞ. In
this case as well the determining equations for the first-order form can be
related to that of the third-order ODEs as given by us earlier (Chandrasekar
et al. 2006). Again analysing third-order equations as such has its own practical
advantages. This analogy can also be extended to coupled higher order equations
as well in principle, though in the actual analysis one may have to make a
judicious choice of which one of the methods is advantageous for investigating
the integrability aspects.
9. Linearization

In this section, we describe a procedure to deduce the linearizing transformations
from the known integrals and illustrate the theory with an example.

Let us assume that equation (2.1) admits the following integral:

I ZFðx; y; tÞ: ð9:1Þ
Now let us split the function F1 in the form

I ZF1

1

G2ðt; x; yÞ
d

dt
G1ðt; x; yÞ

� �
: ð9:2Þ

Now we identify the function G1 as the new dependent variable and the integral
of G2 over time as the new independent variable, that is,

w ZG1ðt; x; yÞ; tZ

ðt
0
G2ðt 0; x; yÞdt 0: ð9:3Þ

We note here that the integration on the right-hand side of (9.3) leading to t can
be performed provided the function G2 is an exact derivative of t, that is,
G2Zðd=dtÞtðt; x; yÞZ _xtxC _ytyCtt. In terms of the new variables, equation
(9.2) can be modified to the form

I ZF1

dw

dt

� �
: ð9:4Þ

Inverting the relation (9.4) suitably, one can obtain a linear equation,

dw

dt
ZÎ ; ð9:5Þ

where Î is a constant. Or equivalently

dw

dt
Z u Z Î ;

du

dt
Z 0: ð9:6Þ

Equation (9.6) is the corresponding linear equation of (2.1). From equations (9.3)
and (9.6), we have the following linearizing transformation for (2.1):

w Z Ĝ1ðt; x; yÞ; u ZFðx; y; tÞ; tZ

ðt
0
Ĝ2ðt 0; x; yÞdt 0: ð9:7Þ
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In this case, the new variables w, u and t help us to transform the given system of
coupled first-order nonlinear ODEs into a linear system of coupled first-order
ODEs, which in turn leads to the solution by trivial integration. The above
procedure can also be extended to more than two coupled first-order ODEs
straightforwardly and we do not present the details here.

(a ) Example 1

To illustrate the underlying ideas, let us consider the two-dimensional LV
system (4.1) with the specific parametric choice, b11Zb21 and b12Zb22, namely

_x Z xða1 Cb11xCb22yÞ; _y Z yða2 Cb11xCb22yÞ: ð9:8Þ
Let us consider the following first integral for equation (9.8), namely

I Z
y

x
expðða1K a2ÞtÞ: ð9:9Þ

Now rewriting equation (9.9) using (9.8) in the form (9.2), we get

I ZK
1

b22
eKa2t

d

dt

1

x
C

b11
a1

� �
ea1t

� �
: ð9:10Þ

Then

w Z
1

x
C

b11
a1

� �
ea1t; tZK

b22
a2

ea2t: ð9:11Þ

From equations (9.11), (9.9) and (9.6), we have the following linearizing
transformation for (9.8):

w Z
1

x
C

b11
a1

� �
ea1t; u Z

y

x
expðða1K a2ÞtÞ; tZK

b22
a2

ea2t: ð9:12Þ

In this case the new variables w, u and t help us to transform the given system
of coupled first-order nonlinear ODE, (9.8), into a linear system of coupled
first-order ODEs of the form (9.6). The general solution can then be straight-
forwardly deduced.

(b ) Example 2

Similarly, for the specific parametric choice a1Za2Z0, b12ZKb22, and
b21Z3b11, equation (4.1), that is,

_x Z xðb11xCb12yÞ; _y Z yð3b11xK b12yÞ; ð9:13Þ
can be transformed to linear equation of the form (9.6) by the following
linearizing transformations (for the integral see equation (4.20)):

w Z
1

2
t2K

ðb12yCb11xÞ
2b11xðb12yK b11xÞ2

; u Z tC
1

b11xK b12y
; tZ t: ð9:14Þ

10. Conclusion

In this paper, we have modified the PS procedure such that it is applicable to
both autonomous as well as non-autonomous systems of coupled first-order ODEs.
We have also developed systematic procedures for finding both time-independent
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and time-dependent integrals for them. From this analysis, we have answered the
following open questions. (i) How can the PS method be extended to a non-
autonomous system of coupled first-order ODEs? (ii) How to find the second or
the time-dependent integrals for the given coupled first-order ODEs? (iii) How
can this procedure be generalized to higher dimensions in order to find first
integrals? We have also shown that the determining equations for the time-
independent integral in the two coupled equations of our method coincide with
the determining equations derived by Prelle and Singer in their original paper.
We have illustrated this procedure with physically interesting examples, namely
the two-dimensional LV system, Rössler system and three-dimensional LV
system and identified several integrable cases. Further, we have developed a
linearization procedure for coupled first-order ODEs. Finally, we note that the
procedures that we have developed in this paper, namely both the extended PS
procedure and linearization, can also be extended to any number of coupled first-
order ODEs.

The work of M.S. forms part of a research project sponsored by National Board for Higher
Mathematics, Government of India. The work of M.L. forms part of a Department of Science
and Technology, Government of India-sponsored research project and is supported by a DST
Ramanna Fellowship.
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