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Abstrad-Various control algorithms have been proposed in recent years to control chaotic systems. 
These methods are broadly classified into feedback and nonfeedback methods. In this paper, we make 
a critical analysis of nonfeedback methods such as (i) addition of constant bias, (ii) addition of second 
periodic force, (iii) addition of weak periodic pulse, and (iv) entrainment control. We apply these 
methods to a simple electronic circuit, namely, the Murali-Lakshmanan-Chua circuit system and 
FitzHugh-Nagumo equation. We make a comparative study of the various features associated with 
the algorithms. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

Chaotic systems are well-known for their extreme sensitivity to small uncertainties in their 
initial conditions and this inherent nonlinear phenomenon is often undesirable in many 
practical considerations. Thus one may wish to avoid or control chaotic motion in such 
situations. In recent years, a great deal of interest has been paid to develop effective control 
algorithms [l-18]. The existing control algorithms can be classified, mainly, into two 
categories: feedback and nonfeedback. Feedback methods [l-7] are primarily devised to 
control chaos by stabilizing a desired unstable periodic orbit embedded in a chaotic attractor. 
In practice, one first tracks the desired orbit and then applies the necessary changes in the 
system parameter. The required perturbation is proportional to the deviation of the actual 
trajectory to the desired trajectory. The perturbation is generally nonperiodic and is to be 
calculated every instant. 

The nonfeedback methods [8-161 suppress chaotic motion by converting the system 
dynamics to a periodic orbit. In these methods, one does not perform changes in the system 
according to its position in phase space, but applies instead weak periodic perturbations on 
some control parameters or variables. The essential advantages of nonfeedback technique 
lies in their speed, flexibility and no online monitoring and processing requirements. The 
flexibility and speed make them especially promising for controlling systems such as chaotic 
circuits, fast electro-optical systems, and so on. The nonfeedback methods include weak 
periodic parametric perturbation [8] addition of second periodic force [9], constant bias 
[15,16], addition of weak periodic pulses, open-loop entrainment control [ll] and addition 
of weak noise signal [12,14]. 

The goal of this paper is to apply the nonfeedback methods to the simplest nonlinear 

1545 



15Jh S. RAJASEKAR PI l/l 

Table 1. This table gives the form of the various nonfeedback controls considered m the present analysis. ‘l’hc 
general form of the controlled dynamical system is i = F(x) + C(r), where C(r) i5 the perturbation introduced to 

control chaos 

Number Method Controller Special features 
- 

! C‘onstant bias C.‘(f) -: C.‘,, y constant Perturbation is constant and is easy to 
implement in dynamical systems. Before 
tmplementation system dynamics must he 
known for various values for (,,. 

, Addition of weak pcrmdtc C’(r) = 7 sin 611 Easy to implement in mechanical and elec- 
l~nrc<: &al circuit systems. Suppression of 

chaos occurs only for certain range ot 
values of r~ and R. 

Weak periodic puls+ (‘(I) r 0 x,; , rs(l rrrj Perturbation is added to the system only at 
discrete times. System dynamics must he 
,tudied in (tc,r) space in order- to choose 
suitable values of o and r to eliminate 
chaos. 

4 Entrainment control C‘(r) = (,e - F(y))Stri Any arbitrary goal dynamics g can be 
stabilized. Evolution equation of the 
chaotic system is required and a particu- 
lar solution of the system cannot he 
entrained. ,S(r) IS a switching function. 

dissipative non-autonomous circuit, namely, the circuit introduced recently by Murali, 
Lakshmanan and Chua [ 16.171 and to the FitzHugh-Nagumo (FN) equation. In Table 1. we 
summarize the form of the controllers. their most important characteristic properties and 
their notable advantages and disadvantages. 

In Section 3. WC consider the influence of the addition of constant hias and second periodic 
force 011 the chaotic dynamics. We show suppression of chaos for a range of values of 
constant bias and amplitude of the second periodic force in both the Murali-Lakshmanan- 
C’hua (MLC) circuit as well as in its dynamical equation. Section 3 is devoted to the study of 
suppression of chaos in the MLC circuit equation by weak periodic delta function force. 
Regular behaviour is found to occur for a wide range of amplitude and frequency of the 
applied force. Suppression of chaos is also observed when a weak periodic rectangular force 
IS applied to the system. In Section 4. we ihustrate the entrainment control now in the FN 
svstem. For a periodically driven MLC system. the equation of motion of the entrainment 
controlled system does not contain periodic force. This is equivalent to the study of the 
system free from the external periodic force. In such a system, chaotic motion does not exist. 
So we choose an autonomous system, namely the FitzHugh-Nagumo equation to study[ the 
entrainment control. We illustrate the entrainment of FN system dynamics to a chosen 
stationary point solution and to a periodic orbit. Finally. Section 5 contains a summary and 
conclusions. 

2. CONTROLLING OF CHAOS IN MLC CIRCUIT BY WEAK CONSTANT BIAS AND 
WEAK PERIODIC SIGNAL 

.I I EffiiCt i)f’ COtlStfltlt hill.\ 

The circuit realization of the simplest dissipative chaotic nonlinear circuit, namely, the MLC 
circuit, in shown in Fig. 1. It contains a linear capacitor (C), a linear inductor (L.). a linear 
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Fig. 1. Circuit diagram of the MLC circuit; R = 1360 Q, L = 18 mH, C = 10 nF and the frequency of the external 
force is WO Hz. 

resistor (R) and a nonlinear element (N) which is the Chua’s diode and an external periodic 
forcing source. The time variation of voltage u across the capacitor C and the current i,_ 
through the inductor L are represented by the set of differential equations 

c$ = iL -g(u), 

L$= -RiL-u +fsin(Qt), 

where f is the amplitude, R is the frequency of the external periodic signal and g(u) 
represents the u-i characteristic of the Chua’s diode and is given [16] by 

iN = g(u) = Ghu + 0.5(G, - Gh)(lu + B,I - (u - BJ). (lc) 

By suitably resealing the variables and parameters, these equations can be written in 
dimensionless form as [16] 

i=y -g(x), (2a J 

j = -cry - /3x + F sin(&), (2b;) 

where 

g(x) = bx + 0.5(a - b)[lx + 11 - Ix - 111. (2cj 

In these equations, U, /I, a and b are resealed circuit parameters of equations (la)-( lc). 
A variety of dynamical behaviours including chaotic motion have been observed in the 

circuit system (1) experimentally and verified numerically in equations (2a)-(2c). For 
example, chaotic behaviour is found in the circuit for the specific choice [16] of the 
parameters C = 10 nf, L = 18 mH, R = 1360 ohm, G, = - 0.76 ms, Gh = -0.41 ms, B, = 1.0 V. 
frequency of the external periodic force R/21r = 8890 Hz and f = 0.107 V,,,, as shown in Fig. 
2(a). For these experimental circuit parametric choices, the values of /3, (+, o and F in 
equations (2a)-(2c) are calculated [16] as 1.0, 1.015, 0.75 and 0.15, respectively. When 
equations (2a)-(2c) are numerically integrated for these parametric values, a double scroll 
type chaotic attractor is found to occur as shown in Fig. 2(b). We now study the suppression 
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of chaos in the circuit system ( 1) and or its equivalent dynamical equations (?a)-(2c) by the 
addition of constant bias. 

In order to suppress chaos in the MLC circuit system, it is augmented by a constant bias 
voltage source E in series with the periodic signal ,f’(t), as shown in Fig. 3. The presence of 
the bias element leads to the addition of a constant parameter (bias term) E’ = BE/B, to the 
right-hand side of equation (Zb). Suppression of chaos is studied by varying the constant bias 
III the circuit as well as in its dynamical equations (2a)-(2~). The nature of the controlled 
orbit is same in the circuit as well as in equations (2a--(2c). Suppression of chaos is found 
for a range of values of the constant bias. For example. a period-2T attractor (where 
P = l/8890 Hz) is found for E = 0.03 V while a period-T orbit is found for E = 0.05 V. These 
controlled orbits are shown in Fig. 3. To understand the route to suppression of chaos. the 
bifurcation phenomenon is studied for equations (Za!-(k). Figure S(a) shows the one- 
parameter bifurcation diagram in the (.i--E’) plane. The corresponding maximal LyapunoL 
exponent spectrum is plotted in Fig. 5(b). Suppression of chaos is by reverse period 
doubling. A similar rouk to suppression of chaos has also been found in the FitzHugh- 
Nagumo equation [ I5 1 carlicr. 

FIO-. 1. MI.{‘ circuit a-ith a constant h~as \,t>lti+gC I: 
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Fig. 4. (a) and (b) Periodic attractors of the MLC circuit with the constant bias: (a) E = 0.03 V, (b) 0.05 V. (c) and 
(d) Periodic orbits of eqns (2) with the addition of constant bias term E’ = PIT/B,: (c) E’ = 0.03. (d) E’ = 0.0~7. 

2.2. E&r of second weak periodic force 

One can also control chaotic dynamics by the addition of a weak second periodic force. 
We add a second periodic signal in series with the existing one of the MLC circuit (Fig. 1). 
The total forcing signal now becomes fi sin(R, t) +fi sin(R,t) and the system becomes a 
quasiperiodically driven one. The corresponding dynamical equation in dimensionless form 
is given by 

i =I’-&), Pa) 

j = -CT)’ - px + F, sin(w, t) + Fz sin(wzr), (3b) 

where F, = 0.15 and w, = 0.75. Investigation has been carried out for the circuit for a fixed 
value of the frequency of the second force and varying the amplitude F2 over a range. We fix 
R2/2rt = 8890 Hz which corresponds w2 = 0.75. Equations (3a) and (3b) are studied for 
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Fig. 5 i;l) Bifurcation diagram and (h) corresponding maximal Lyapunov exponent c)t qns (2) in the presence oi 
constant hias I,. 



Control of chaos by nonfeedback methods 1551 

0 < Fz < 0.2. Regular motion is recovered for a range of values of amplitude of the second 
force. Chaotic motion persists for 0 I F2 % 0.032. Suppression of chaos is observed for 
0.032 5 Fz 5 0.2. Figure 6 shows the bifurcation phenomenon as a function of Fz. In the chaos 
controlled region period-3T orbit is found to occur. Figure 7 shows the controlled period-3T 
orbit in the MLC circuit and in equations (3a) and (3b). 

A prime advantage of addition of periodic sinusoidal force is its easy implementability 
experimentally. A disadvantage is that, in general, one has to identify regular and chaotic 
regions in the (F2,q) parameters space to choose suitable values of F2 and w2 to realize 
periodic motion. 

3. CONTROLLING OF CHAOS BY WEAK PERIODIC DELTA-PULSES 

In the previous two sections, we have studied the controlling of chaos by constant bias and 
addition of second periodic force. In these approaches, the external perturbation is 
continuous. It is important to investigate the controlling of chaos by adding perturbations or 
disturbances at discrete times only. In this section, we show that chaos can be suppressed by 
instantaneous burst or a weak periodic S-pulses and rectangular pulses. We illustrate this 
with reference to the MLC circuit equation. 

The MLC circuit equation with a periodic a-pulses is given by 

i =y -g(x), (da) 

i, = -cry - px + F sin(wt) + (Y 2 6(r - nrT). 
N = I 

(4b) 

The added force is nonzero only at times I = nrT, n = 1,2,.... For simplicity, T is fixed as 
27r/w. The effect of the force is to shift (x,y) to (x,y + IX) at t = nzT. For fixed value of T, 
the times at which the &function force becomes nonzero and the period of the force are 
characterized by r. In the absence of the S-force, chaotic motion is observed in equations 
(4a) and (4b) for u = 1.015, p = 1, a = -1.02, b = -0.55, w = 0.75 and F = 0.1. Equations 
(4a) and (4b) are integrated using the fourth-order Runge-Kutta method with time step 
2?r/lOOw. The first 1000 drive cycles are discarded as transient. Figure 8 shows the 
bifurcation diagram as a function of (Y. where the value of r is fixed at 0.5. That is, the 
&force is nonzero and its amplitude become a twice during one period of the external force 
F sin wt at T/2 and T. Chaotic behaviour persists for (Y I 0.0145. An interesting point here is 
the suppression of chaos by inverse period-doubling phenomenon. Period 8T, 4T, 2T 
motions are found in the intervals 0.015-0.016, 0.0165-0.0175 and 0.0180-0.0675, respec- 
tively. For cy 2 0.068, period-T attractor is found. For r = 0.25, regular motion is found for 
(Y 2 0.067. Next, (Y is kept at 0.02 and the period of the applied force is varied. The value of r 
is increased from small value in steps of 0.01 up to 1. Regular behaviour is observed for 
0.01 5 r 5 0.054. The above observation indicates that one can effectively suppress chaos by 
applying periodic weak &force with properly chosen amplitude and period. 

In numerical simulation, an instantaneous burst can be easily implemented. However, in a 
real experimental system this is difficult. What happens if the &force is nonzero within a 
small interval nrT f r’, where t’ is small? This practical problem has also been investigated. 
Instead of choosing s(t) nonzero exactly at t = nzT, it is chosen nonzero at one of the times 
nsT, nzT f Ar, randomly for each value of n. Here At is the time step used in the numerical 
integration algorithm. Figure 9 shows the bifurcation diagram for r = 0.5. This figure can be 
compared with Fig. 8. Here again, regular motion is observed for (Y > 0.0145 as in the case 



I .o 

0.5 

0 

K 

-0.5 

-1.0 

-1.5 

0 IO 

0.05 

I 0 
E 

“1 

-0.05 

-0. IO 

S. RAJASEKAR <I 111 

(a) 

_I I 

(i 0 02 0.04 0.06 0.08 0.10 

0 0.04 0.06 

F2 

0.08 0.10 

Fig. 6. (a) Bifurcation diagram of eqns (3), with CT = l.Dlj, /3 = I, F;I =0.15. L~J, =0.7_5. a = --1X)2. h 7 -0.55. 
I,, 7 = 0.75. (h) Ihc maximal Lykpunov exponent spectrum m (A,,, ,, - F.) plane. 
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Fig. 7. Controlled period-XT attractors of (a) thr MLC circuit. (b) eqns (3) for FT = 0.06. 

x 

when 6(r) is nonzero at t = nsT. Thus, small deviations in the times at which the force 6(t) is 
nonzero seem to have no negative effect on the suppression of chaos. However, the system 
shows noisy type inverse period-doubling phenomenon. 

Further. the effect of phase difference 4 between the periodic external force F sin wt and 
8(t) is also studied. For various values of r and LY, the dynamics of the MLC equation is 
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Fig. 8. Bifurcation diagram of eqns (4) as a function of (Y. with (T = 1.015. p = 1. a = -1.02. 6 = - 0.55. (0 = 0.75. 
F=O.l. r=O.j, T=2w/w. 



studied by varying &. Interestingly, the behaviour of the system whether it is chaotic or 
periodic is unaltered by the presence of 4. The only effect observed is an infinitesimal shift 
in the values of the state variables in the Poincare map. 

The possibility of controlling chaos by weak periodic rectangular force of short width has 
also been studied. For this analysis. the delta function force is replaced by a rectangular 
force s(t). where g(f) = (Y, for 0 5 r 5 0.02T. 0.38T 5 t 4 O.S!T and 0.98T I t 5 T, with I mod 
T. Otherwise. g(r) = 0. Chaotic motion is found to persist for (Y ~0.004. For u >0.003. 
suppression of chaos by inverse period-doubling bifurcation is found to occur. 

A prime advantage of the addition of periodic pulse train is that the perturbation is 
discontinuous. that is. the system is disturbed only at specific discrete values of time. 

4. ENTRAINMENT CONTROL IN THE F’ITZHUGH-NAGUMO EQUATION 

In this section. we describe the suppression of chaos by entrainment control. For the 
purposes of illustration. we choose the FitzHugh-Nagumo (FN) equation [15] 

I H’. i5a) 

ri’ 1. ’ i ,‘I7 4. R i(El! (5hj 

I? L_ (C/l1 )I I’ t- tl - /IA! I. (5c) 

as the reference system. Equations (5a)-(5c) describe the propagation of nerve pulses in a 
neuronal membrane with I,’ and R being the voltage across the membrane and the recovery 
variable, respectively, and 11, h. c and u are constant parameters. We fix these parameters in 
a chaotic region and study the suppression of chaos by entraining the FN system dynamics 
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to a chosen stationary point solution and to a limit cycle motion. First, we briefly discuss the 
basic idea of entrainment control [lo, 111. 

Let us consider a system of the form 

f = E(x), (6) 

where x = (x,,x~,... ,.x~)~ and E(x) is differentiable. To entrain the dynamics of equation (6) 
to a desired goal orbit g which is not a particular solution of equation (6), we add the action 
F(g,g) to the right-hand side of equation (6) so that it becomes 

where s(t) is a switching function. For example, s(t) = 0 if t < to and s(t) can be 1 (switched 
on) or 0 (switched off) if f 2 fo. The time to is when .S(t) is first turned on (S(f,) = 1). The 
goal orbit must be confined to convergent regions Ck of phase space of equation (6), that is, 

g(t) E Ck = {X 1 IA(x - dE;/dx,l = 0, Re A ~0, for all A;i,j = l,...,n}. (8) 

The function g(f) is a ‘goal dynamics’ towards which x(f) would tend if the switch remains on 
for all time. That is, if s(t) = 1, for all f > t,,, then the goal is to entrain the system’s dynamics 
to g(t). as defined by 

lim Isv(f) - g(f)1 = 0, (9) 
,6+X 

for all x(O) E Ck. If g(f) or x(t) is not in Ckr any control equation (7) will have an undesired 
effect. For x(f) = g(t) to be a solution of equation (7), the function F(g,g) is the Hubler 
action [7,10.11]. and F(g,g) must be of the form 

Fk.kT) = R - E(g). (10‘1 

The convergent regions can be determined analytically using the Routh-Hurwitz theorem, 
without explicitly determining the roots A(x) of the characteristic determinant. 

In the FN equation, i.e. equations (5a)-(5c), chaotic motion is observed [15] for LI = 0.6. 
h = 0.5, c = 0.1 and 14 = 0.72. Suppose that we wish to suppress the chaotic dynamics by 
entraining the system to a chosen goal orbit g(f). Now the system with the entrainment 
control is written as 

v = w + (& - gn,)S(t), (lla) 

ld’ = -V + (V”/3) + R - u W + (& + gL. - g’J3 - g, + ug,,)S(f), (llb) 

f? = -(c/u)( V + CI - bR) + (& + (c/u)(gv + a - bgR))S(f). (llc) 

The convergent regions of the phase space of the uncontrolled FN system are the connected 
region Ck in which all the roots of the polynomial equation (see equation (8)) 

A”+a,A2+a2A+a,=0. 

where a, = (u’ - bc)/u. ~1~ = 1 - V” - bc, a3 = (c + bc(V2 - l))lu, have negative real parts. 
The necessary and sufficient conditions for all Re A to be less than zero are given by the 
Routh-Hurwitz conditions ~1, > 0. ala2 - a3 > 0. a3 > 0. These are given by 

u2> bc, V2 < u2 + h2c2 - bcr? -c, I/’ > (b - 1)/b. (12) 
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(b) 
I__-_ 

l‘hese conditions involve only !,’ and are independent of N’ and K. For the parametric values 
tixed ahove. the conditions are satisfied for I’ +I ( -~-0.X?. 11).X4) and u’ and R arbitrary. 

First. we choose the goal dynamics as a stationary solution given h> 

which lies in the convergent region. -rhc switching function is choscln as 

( 14) 

Fhe controlled system is integrated with a step size of Ar = 0.05. Initial conditions used are 
t \~(O).W((t).R(O)) = ( --0.75.0:-0.5). Figure IO(a) shows the response of the system. The 
system is allowed to evolve chaotically for some time and then control is initiated when the 
trajectory reached the point tl. lyin, o in the con\:ergent region. marked in Fig. 10(a). I.Jndrr 
the action of the control. chaotic motion is suppressed and the long time evolution is 
entrained to the goal dynamics g. The desired control to ,g is not achieved when it is chosen 
outside the convergent region. The response of thr system to the switchins function of the 
f~Wll1 

where A ‘= 0. is also studied. Figure 10(b) illustrates the smooth entrainment to the goal orbit 
,L: tor A y 0.1. The desired entrainment is ohscrved ior A .) (1. 

Crmv’ersinn of thr system dynamics to a periodic motion has also hern studied. We choose 
t.hc desired g>al orbit ax 

Yl := - 0.h i- 0. I cos !. (If%) 

Sll ,i;,. (Ifih) 

I',.: = 0.5 1 (i.lsin: I Ihc) 
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Fig. 1 I. Response of the FN system to the periodic goal orbit (16). 

Figure 11 shows the entrainment to this periodic orbit where s(t) is given by equation (14). 
From the above study, it is clear that chaotic motion in a system can be suppressed by 

entraining the system to a desired goal orbit. An interesting observation is that the control is 
nonfeedback. From equation (6), we note that if a term in E(x) is an explicit function of 
time only then this term will not appear in the controlled equation (7). Thus, the method is 
more suitable to autonomous systems than nonautonomous systems. 

A prime advantage of open-loop entrainment control is that control is always guaranteed 
if the desired goal and the initial conditions are in the convergent region of the phase space 
of the given system. A prime disadvantage is that to implement entrainment control the 
evolution equation must be known. 

5. SUMMARY AND CONCLUSIONS 

In this paper, we have briefly discussed the controlling of chaos in the MLC circuit by 
different nonfeedback methods and suppression of chaos by entrainment control in the FN 
equation. The various nonfeedback methods considered here show different regions of 
applicability and efficacy. A prime advantage of the addition of periodic perturbations is that 
they can be easily implemented in many experimental systems as shown for the MLC circuit. 
Since the addition of a second periodic force and weak periodic pulses have two parameters, 
namely, amplitude and period, one has to identify regular and chaotic regions in the 
two-parameters space to choose suitable values of amplitude and period of the perturbation 
to realize periodic motion. In contrast to this, in the constant bias method we have a single 
parameter which greatly reduces the analysis of controlled system. Interestingly, a chaotic 
system can be entrained to any arbitrary goal dynamics lying in the convergent region of the 
phase space of a system and the desired goal may be a fixed point or periodic orbit or even a 
quasiperiodic orbit. 
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