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On the Markov Chain Monte Carlo (MCMC) method
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Abstract. Markov Chain Monte Carlo (MCMC) is a popular method used to
generate samples from arbitrary distributions, which may be specified indirectly.
In this article, we give an introduction to this method along with some examples.
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1. Introduction

In this article, we give an introduction to Monte Carlo techniques with special emphasis on
Markov Chain Monte Carlo (MCMC). Since the latter needs Markov chains with state space
that is R or R

d and most text books on Markov chains do not discuss such chains, we have
included a short appendix that gives basic definitions and results in this case.

Suppose X is a random variable (with known distribution, say with density f ) and we are
interested in computing the expected value

E[g(X)] =
∫
g(x)f (x)dx (1)

for a given function g. If the functions f, g are such that the integral in (1) cannot be computed
explicitly (as a formula for the indefinite integral may not be available in closed form) then
we can do as follows.

Assuming that we can generate a random sample from the distribution of X, generate a
random sample of size n:

x1, x2 . . . xn,

from this distribution and compute

an = 1

n

n∑
i=1

g(xi).

Then by the law of large numbers, an approximates E[g(X)].
Moreover, the central limit theorem gives the order of error; the error here is of the order of

O(n− 1
2 ).
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As of now we have not said anything about the random variableX – it could be taking values
in R or R

d for any dimension d. The important thing to note is that the order of error does not
depend upon the dimension. This is very crucial if d is high as most of the numerical analysis
techniques do not fare well in higher dimension. This technique of generating x1, x2, . . . xn to
approximate quantities associated with the distribution ofX is called Monte Carlo simulation
or just Simulation.

The most crucial part of the procedure described above is the generation of a random sample
from the distribution of X. We deal here with the case where the state space is a subset of R

or R
d and the distribution is given by its density f .

We assume that we have access to a “good” random number generator which gives us a way
of generating a random sample from Uniform (0,1). For example, one could use the Mersenne
Twister random number generator (see http://www.math.keio.ac.jp/∼matumoto/emt.html).

There is a canonical way of generating a univariate random variable from any distributionF :
Let F−1 be the “inverse” of F and let U be a sample from Uniform (0,1). ThenX = F−1(U)

is a random sample from F .
Often, the distribution is described by a density and a closed form for the distribution func-

tion F is not available, and so the method described above fails. Another method is “trans-
formation” of variables: Thus, if we have a method to generate N(0, 1) random variables,
then to generate a sample from t distribution with k degrees of freedom, we can generate
independent samples X, Y1, . . . , Yk from N(0, 1) and then take

t = X

/(
k∑
j=1

Y 2
j /k

)1/2

Indeed, the common method to generate samples from N(0, 1) also uses the idea of trans-
formation of variables: Generate U , V from Unifrom (0,1), U,V independent) and define

X = [−2 log(U)]1/2 cos(2πV )

Y = [−2 log(U)]1/2 sin(2πV ).

Then X, Y are independent samples from N(0, 1).
Of course, transformation of variables is a powerful method, but given a distribution, it is

not clear how to use this method. So even when density is known we may have difficulty in
generating samples from the distribution corresponding to it.

There are many situations where f may not be explicitly known but is described indirectly.
For example, f may be known only upto a normalizing constant. Another possibility is that the
distribution of interest is a multivariate distribution that is not known, but all the conditional
distributions are specified.

Suppose we know f1(x) = Kf (x) but do not explicitly know K . Of course, K equals
the integral of f1. Numerically computing K and then proceeding to numerically compute∫
g(x)f (x)dx can inflate the error. It would be much better if just knowing f1, we can device

a scheme to generate random sample from f = (1/K)f1 and thereby compute
∫
g(x)f (x)dx

approximately.

Bayesian framework: Suppose that given θ,X has a density p(x | θ) and the prior on θ is
given by a density π(θ). Then the posterior density π(θ | x) of θ given an observationX = x

is given by

π(θ | x) = [p(x | θ)π(θ)]
/[∫

p(x | θ)π(θ)dθ
]
.



On the Markov Chain Monte Carlo (MCMC) method 83

Often it is difficult to obtain exact expression for∫
p(x | θ)π(θ)dθ,

but given p(x | θ), π(θ) we know π(θ | x) upto a normalizing constant!
Note that once there is a method to generate samples from the posterior density, there is no

need for a practitioner to restrict the choice of prior to a conjugate prior (roughly, these are
priors for which the the posterior can be computed in closed form). Even though the posterior
density of θ may not be available in closed form, all quantities of interest could be obtained
by simulation.

2. Rejection sampling

In 1951 von Neumann gave a method to generate samples from a density f = (1/K)f1

knowing only f1 if there is a density h such that (it is possible to generate samples from h and)

f1(x) ≤ Mh(x) ∀x.

The algorithm, given below, is known as rejection sampling.

(1) Generate a random sample from the distribution with density h. Let it be y.
(2) Accept y as the sample with probability [f1(y)/Mh(y)].
(3) If step (2) is not a success, then go to step (1).

Here f (or f1) is called the target density and h(x) is called a majorizing function or an
envelope or in some contexts the proposal density. We can repeat the steps (1)–(3) several
times to generate i.i.d. samples from f .

The algorithm can be described as follows (as pseudo-code). (Here and in the sequel, succes-
sive “calls” to the random number generator are assumed to yield independent observations.)
The following algorithm generates a random sample z1, . . . , zN from the distribution f .

Rejection sampler algorithm:

i = 0
do
{

i = i + 1
k = 0
do
k = k + 1;
Generate uk from Uniform (0,1) and xk from h

} while
(
uk >

f1(xk)

Mh(xk)

)
zi = xk

} while i ≤ N

We will now prove that the algorithm described above yields a random sample from f .
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Theorem 1 (Rejection sampling). Suppose we are given f1, such that f1(x) = Kf (x) for
a density f . Suppose there exists a density h(x) and a constant M such that

f1(x) ≤ Mh(x) ∀x. (2)

Let Xk be i.i.d. with common density h,Uk be i.i.d. Uniform (0,1). Let B be given by

B = {(x, u) : u ≤ f1(x)/Mh(x)}
and τ be the first m such that (Xm,Um) ∈ B and let W = Xτ . Then W has density f .

Proof. Take Zk = (Xk, Uk). Note that

P(τ = m) = P(Z1 /∈ B, . . . Zm−1 /∈ B,Zm ∈ B)
= P(Z1 /∈ B)m−1P(Zm ∈ B)
= (1 − P(Z1 ∈ B))m−1P(Z1 ∈ B),

and hence P(τ < ∞) = 1. Now

P(Zm ∈ A | τ = m) = P(Zm ∈ A | Z1 /∈ B, . . . Zm−1 /∈ B,Zm ∈ B)
= P(Zm ∈ A | Zm ∈ B)
= P(Z1 ∈ A | Z1 ∈ B),

and hence

P(Zτ ∈ A) =
∑
m

P (Zm ∈ A | τ = m)P (τ = m)

=
∑
m

P (Z1 ∈ A | Z1 ∈ B)P (τ = m)

= P(Z1 ∈ A | Z1 ∈ B).
Taking A = (−∞, a] × [0, 1] for a ∈ R, we have (using {Zτ ∈ A} = {W ≤ a}),

P(W ≤ a) = P(X1 ≤ a | Z1 ∈ B)

= P(X1 ≤ a, Z1 ∈ B)
P (Z1 ∈ B)

=
{∫ a

−∞

∫ 1

0
1B(x, u)h(x)dudx

}/{∫ ∞

−∞

∫ 1

0
1B(x, u)h(x)dudx

}

=
{∫ a

−∞

f1(x)

Mh(x)
h(x)dx

}/{∫ ∞

−∞

f1(x)

Mh(x)
h(x)dx

}

=
{∫ a

−∞
f1(x)dx

}/{∫ ∞

−∞
f1(x)dx

}

=
∫ a

−∞
f (x)dx.
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We have used
∫ 1

0 1B(x, u)du = f1(x)/Mh(x) and also that f1 is proportional to the density
f . This completes the proof.

Let us examine what happens if we use the rejection sampling algorithm when the envelope
condition (2) is not true:

The integral
∫ a
−∞

∫ 1
0 1B(x, u)h(x)dudx now equals,

∫ a

−∞
min

(
f1(x)

Mh(x)
, 1

)
h(x)dx,

which simplifies to∫ a

−∞

1

M
min(f1(x),Mh(x))dx.

Thus the density of the output W is proportional to,

f ∗
1 (x) = min(f1(x),Mh(x)),

rather than to f1(x).
Rejection method is a good method if a suitable envelope can be found for the target

density. Suppose the target density is f (x) and f1(x) = Kf (x) is known. Suppose g(x) is
the proposal or majorizing density and suppose that

f (x) ≤ Mg(x),

(so that f1(x) ≤ KMg(x)). The probability of accepting a sample is (1/M) and the distri-
bution of number of trials needed for one acceptance is geometric. Thus, on the average M
trials would be needed for accepting one sample. This can be a problem if M is large.

3. Markov Chain Monte Carlo

The Monte Carlo methods discussed above were based on generating independent samples
from the specified distribution. Metropolis and others in a paper published in Journal of
Chemical Physics in 1953 use a very different approach for simulation. The paper deals with
computation of certain properties of chemical substances, and uses Monte Carlo techniques
for the same – but in a novel way:

For the distribution of interest whose density is π , they construct a Markov Chain {Xn} in
such a way that the given distribution π is the stationary distribution for the chain. The chain
constructed is aperiodic and irreducible so that the stationary distribution is unique. Then the
ergodic theorem ensures that

1

N

N∑
n=1

g(Xn) →
∫
g(x)π(x)dx,

as N → ∞. This can be used to estimate
∫
g(x)π(x)dx.

Given a distribution π how does one construct a Markov Chain with π as the stationary
distribution?
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The answer to this question is surprisingly simple. We begin with a simple example. The 3-
dimensional analogue of this example was introduced in statistical physics to study behaviour
of a gas whose particles have non-negligible radii and thus cannot overlap.

Consider an N ×N “chessboard”. Each square is assigned a 1 or 0.
1 means the square is occupied and 0 means that the square is unoccupied. Each such

assignment is called a configuration. A configuration is said to be feasible if all the neighbours
of every square that is occupied are unoccupied. (Every square that is not in the first or last
row or column has 8 neighbours.)

Thus a configuration is feasible if for every pair of adjacent squares, at most one square
has a 1.

For a feasible configuration (denoted by �), let n(�) denote the number of 1’s in �. The
quantity of interest to physicists is the average of n(�) where the average is taken over the
uniform distribution over all the feasible configurations.

The total number of configurations is 2N∗N and even when N = 25, this number is 2625,
thus it is not computationally feasible to scan all configurations. Hence, count the feasible
configurations and take the average of n(�).

Assume that a powerful computer can sequentially scan the configurations �, decide if it is
feasible and, if so, count n(�) in one “cycle”, and suppose the clock speed is 1000 GHz. Sup-
pose there are a million such machines working in parallel. Then in one second, 210+30+20 =
260 configurations will be scanned. In one year, there are 24×3600×365 = 31536000 which
is approximately 225 = 33554432 seconds. Thus, we can scan 285 configurations in one year,
when we have a million computers working at 1000 GHz speed. It will still take 2540 years.
Even if the size is 10, the number of configurations is 2100 and it would take 215 = 32768
years.

It is easy to see that when N = 25, the total number of feasible configurations is at least
2169. To see this, assign 0 to all squares that have one of the coordinates even (the squares are
indexed from 1 to 25). In the remaining 169 positions, we can assign a 1 or 0. It is clear that
each such configuration is feasible and the total number of such configurations is 2169.

Let π denote the discrete uniform distribution on the set of feasible configurations:

π(�) = 1/M,

where M is the total number of feasible configurations. We construct a Markov Chain {Xk}
on the set of feasible configurations in such a way that it is aperiodic and irreducible and π
is the stationary distribution for the chain.

Then as N → ∞
1

N

N∑
k=1

n(Xk) →
∑

n(�)π(�).

The transition function p(�,�) is described as follows: Fix 0 < p < 1. Given a feasible
configuration �, choose a square s (out of the N2 squares) with equal probability. If any of
the neighbours of s is occupied (has 1) then� = �; if all the neighbours of s are unoccupied
(have 0) then with probability p, flip the “state” of the square s and otherwise do nothing.
(Since the chain is slow moving, it would be better to take p close to 1.)

Let us observe that the chain is irreducible. First note that the transition function is sym-
metric:

p(�,�) = p(�,�).
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If �,� differ at more than one square, then the above equality holds as both the probabilities
are zero. The same is true if they differ at one square, then all the adjacent squares must have
0 and then both the terms above are

p/(N ×N).

Thus the transition function is symmetric.
Thus to prove that the chain is irreducible suffices to prove that the null configuration

(where every square has a 0) leads to any other square. If a configuration has exactly one 1
then it is clear that it can be reached from the null configuration in one step. It follows that
any feasible configuration � can be reached from null configuration in n(�) steps. Hence, the
chain is irreducible.

Sincep(�, �) > 0 for every feasible�, it follows that the chain is aperiodic. Thus the chain
is a finite state Markov Chain that is irreducible and aperiodic. Hence it is positive recurrent
and admits a unique stationary distribution. Note that

∑
�

π(�)p(�,�) =
∑
�

1

M
p(�,�)

=
∑
�

1

M
p(�,�)

= 1

M
= π(�).

Thus π is the unique stationary distribution.
Hence as L → ∞,

1

L

L∑
k=1

n(Xk) →
∑

n(�)π(�), (3)

where {Xk} is the Markov Chain described above. Thus to approximate
∑
n(�)π(�), we

can choose a large L and take (1/L)
∑L

k=1 n(Xk) as an approximation. Even better, to reduce
dependence on initial state X0,we can first choose J,L integers, and then take

1

L

J+L∑
k=J+1

n(Xk)

as an approximation for
∑
n(�)π(�).

Thus by generating the Markov Chain as described above, we can estimate the “average
number” of occupied sites. This is an example of the MCMC technique.

How large should J,L be for

1

L

J+L∑
k=J+1

n(Xk)

to give a good approximation to
∑
n(�)π(�)?

Consider a simple random walk on N = 2100 points placed on a (large) circle, so that

pij = 0·5 if j = i + 1 mod (N) or j = i − 1 mod (N),
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and zero otherwise. Here also, the chain is irreducible and the transition probability matrix
is doubly stochastic and thus the unique invariant probability distribution is the uniform
distribution on theN points. Let h be a function on {0, 1, 2, . . . , N−1} andXn be the Markov
Chain. Since in L steps, this Markov Chain will at most move L steps to the right and L steps
to the left, (and with very high probability, does not go more than 10 × √

L steps away from
X0), it is clear that L must be much larger than N for the “ergodic average”

1

L

J+L∑
k=J+1

h(Xk),

to be a good approximation of

1

N

N−1∑
j=0

h(j).

Therefore, in this case, the MCMC technique does not yield a good answer.
One has to be careful in choosing an appropriate L. As a thumb rule, letM be the smallest

integrer such that

P(XM = j | X0 = i) > 0 ∀ states i, j.

Then J should be of the order ofM andL should be much larger. In the “chessboard example”
with N = 25, we can see that M ≤ 2 × 169.

In the “chessboard example” with N = 25, what J,L would suffice? To see this, we can
generate the Markov Chain and compute the approximation several times, say 1000 times,
and compute the variance of the estimate for various choices of J,L (table 1).
It can be seen that J = 1000 and L = 100000 gives a very good approximation.

Table 1. Monte Carlo results for Uniform distribution.

J L Mean Variance

1000 1000 89·618 7·17764
1000 2000 89·8109 3·6315
1000 4000 89·9856 2·31912
1000 5000 90·0753 1·79497
1000 10000 90·2991 0·918608
1000 20000 90·3284 0·475608
1000 40000 90·389 0·243295
1000 50000 90·4042 0·21296
1000 100000 90·4365 0·0999061
1000 200000 90·4486 0·0527094
1000 400000 90·4464 0·0261528
1000 500000 90·4449 0·0207095
1000 1000000 90·4499 0·00986929
1000 2000000 90·4519 0·00535309
1000 4000000 90·4486 0·00245182
1000 5000000 90·4506 0·00195814
1000 10000000 90·4515 0·00104744
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What if for the “chessboard example” we were interested in computing∑
n(�)π(�),

with stationary invariant distribution π(�) that is no longer the uniform distribution, but
another distribution – say

π(�) = c exp{−Kn(�)}
where K is a constant and c is normalising constant.

One possibility is to estimate c−1 by (for suitable J,L),

J+L∑
k=J+1

exp{−Kn(Xk)},

and then estimate
∑
n(�) exp{−Kn(�)} by

J+L∑
k=J+1

n(Xk) exp{−Kn(Xk)},

so that the required approximation is[
J+L∑
k=J+1

n(Xk) exp{−Kn(Xk)}
]/[

J+L∑
k=J+1

exp{−Kn(Xk)}
]
.

Here again, we can generate the estimate for J,L several times and compute the variance
of the estimate (table 2).

Table 2. Monte Carlo results for Gibbs distribution: Ratio Method.

J L Mean Variance

1000 1000 82·2744 12·4061
1000 2000 80·6866 8·93338
1000 4000 79·4026 7·99263
1000 5000 78·9912 7·55298
1000 10000 78·055 6·26682
1000 20000 76·8683 5·64003
1000 40000 75·9593 4·79803
1000 50000 75·6392 4·37511
1000 100000 74·6713 4·81159
1000 200000 73·9778 3·99164
1000 400000 73·1445 3·85673
1000 500000 72·9314 3·8598
1000 1000000 72·2698 3·81293
1000 2000000 71·6584 3·49804
1000 4000000 71·0077 3·54857
1000 5000000 70·8849 3·3355
1000 10000000 70·304 3·60938
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Here, we can see that the variance of the estimate does not go down as expected, even when
we take L = 1000000 and more.

Instead, can we construct a Markov Chain {Xn} whose invariant distribution is π(�) so
that (3) is valid?

Let p(�,�) denote the transition function described in the earlier discussion. Recall that
it is symmetric.

Let

α(�,�) = min

{
1,
π(�)

π(�)

}
.

Define

q(�,�) = p(�,�)α(�,�),

if � 	= � and

q(�, �) = 1 −
∑
� 	=�

q(�,�).

For configurations �,�, if π(�) ≤ π(�),

q(�,�) = p(�,�),

and

q(�,�) = p(�,�)[π(�)/π(�)],

and hence

π(�)q(�,�) = π(�)q(�,�). (4)

By interchanging roles of �,�, it follows that (4) is true in the other case: π(�) ≤ π(�) as
well. As a consequence of (4), it follows that π is an invariant distribution for the transition
function q. (Equation (4) is known as the “detailed balance equation”.) Since p is irreducible,
aperiodic, it follows that so is q and hence that π is the unique invariant measure and that the
q chain is ergodic (table 3).

Observe that here the variance reduces as expected and the mean is very stable for L =
100000 as in the uniform distribution case. Thus we have reason to believe that this method
gives a good approximation while the earlier method is way off the mark even with L =
10000000.

This construction shows that given any symmetric transition kernel p(�,�) such that the
underlying Markov Chain is an irreducible aperiodic chain which is easy to simulate from
p(�, ·), we can create a transition kernel q for which the stationary invariant distribution is π .
As we will see, it is easy to simulate fromq(�, ·) - first we simulate a move from the distribution
p(�, ·) (to say � ) and then accept the move with probability α(�,�), otherwise we stay
put at �. As in rejection sampling, “the move with probability α(�,�)” is implemented by
simulating an observation, say u, from uniform (0,1) distribution and then accepting the move
if u < α(�,�), otherwise, not to move from � in that step.

Let us now move to continuous case (see Robert & Casella 1999; Roberts & Rosenthal
2004). For now, let us look at real valued random variables. Again, we are given a target
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Table 3. Monte Carlo results for Gibbs distribution: MCMC technique.

J L Mean Variance

1000 1000 66·3028 9·1541
1000 2000 66·4575 5·76939
1000 4000 66·4792 2·93947
1000 5000 66·625 2·56194
1000 10000 66·5286 1·36421
1000 20000 66·6623 0·678447
1000 40000 66·6348 0·326311
1000 50000 66·6676 0·267248
1000 100000 66·6442 0·127588
1000 200000 66·6476 0·0629443
1000 400000 66·6632 0·0309451
1000 500000 66·66 0·0256965
1000 1000000 66·6581 0·0138524
1000 2000000 66·6539 0·00687151
1000 4000000 66·655 0·00344363
1000 5000000 66·6546 0·00289359
1000 10000000 66·6586 0·00133429

function f1(x) = Kf (x) with f being a density, K is not known and we want to generate
samples from f . The starting point is to get a Markov Chain with good properties (irreducible,
aperiodic) with the probability transition density function q(x, y) (assumed to be symmetric,
and such that it is possible to simulate from q(x, ·) for every x. q is called the “proposal”).
Then define (as in the finite case)

α(x, y) = min{1, f1(y)/f1(x)},
(with the usual convention: α(x, y) = 0 if f1(y) = 0 and α(x, y) = 1 if f1(y) > 0 but
f1(x) = 0) and then

p(x, y) = q(x, y)α(x, y).

It is easy to check that

α(x, y)/α(y, x) = f1(y)/f1(x),

and hence that the “detailed balance equation” holds:

f (x)p(x, y) = f (y)p(y, x) ∀ x, y. (5)

We can now define a Markov Chain {Xn} that has f as its stationary distribution as follows:
Given thatXn = x, the chain does not move (i.e.,Xn+1 = x) with probability 1−β(x)where

β(x) =
∫
p(x, y)dy

and given that it is going to move, it moves to a point y chosen according to the density

p(x, y)/β(x).
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The transition kernel P(x,A) for this chain is given by, for a bounded measurable function g∫
g(z)P (x, dz) = (1 − β(x))g(x)+

∫
g(z)p(x, z)dz. (6)

This can be implemented as follows: given Xk = x, we first “propose” a move to a point y
chosen according to the law q(x, ·) and then choose u according to the Uniform distribution
on (0, 1) and then set Xk+1 = y if u < α(x, y) and Xk+1 = x if u ≥ α(x, y). Once again we
can verify the “detailed balance equation”

f (x)p(x, y) = f (y)p(y, x) ∀ x, y,
and hence (on integration w.r.t. x) it follows that∫

f (x)p(x, y)dx = β(y)f (y), (7)

and hence using (6), (7) and Fubini’s theorem we can verify that∫ (∫
g(z)P (x, dz)

)
f (x)dx =

∫
(1 − β(x))g(x)f (x)dx

+
∫ (∫

g(y)p(x, y)dy

)
f (x)dx

=
∫
(1 − β(x))g(x)f (x)dx

+
∫
g(y)β(y)f (y)dy

=
∫
g(y)f (y)dy.

Thus, f (x) is the density of a stationary invariant distribution of the constructed Markov
Chain. Note that here the transition probability function is a mixture of a point mass and a
density w.r.t. the Lebesgue measure.

Let us note that in the procedure described above, if f1(Xk) > 0 then f1(Xk+1) > 0 and
hence if we choose the starting point carefully (so that f1(X0) > 0), we move only in the
set {y : f1(y) > 0}. Usually, the starting point X0 is chosen according to a suitable initial
distribution.

We can choose the “proposal” chain in many ways. One simple choice: Take a continuous
symmetric density q0 on R with q0(0) > 0 and then define

q(x, y) = q0(y − x).

The chain {Wn} corresponding to this is simply the random walk where each step is chosen
according to the density q0, which is chosen so that it has a finite mean (which then has
to be zero since q0 is symmetric) and such that efficient algorithm is available to generate
samples from q0. We also need to specify a starting point, which could be chosen according
to a specified density g0.
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The resulting procedure is known as the Metropolis–Hastings Random Walk MCMC. Here
is the algorithm as a psuedo-code: to simulate {Xk : 0 ≤ k ≤ N} –

(1) Generate X0 from the distribution with density q0 and set n = 0;
(2) n = n+ 1;
(3) generate Wn from the distribution with density q0;
(4) Yn = Xn +Wn proposed move;
(5) generate Un from uniform (0,1);
(6) if Un ∗ f1(Xn) ≤ f1(Yn), then Xn+1 = Yn, otherwise Xn+1 = Xn;
(7) if n < N , go to (2) else stop.

Then the generated Markov Chain {Xk : 0 ≤ k ≤ N} has f as its stationary distribution.
Like in the discrete case, here too for a function g such that

∫ |g(x)|f (x)dx

lim
N→∞

1

N

N∑
i=1

g(Xi) =
∫
g(x)f (x)dx.

However, since the aim is to approximate the integral based on a finite sample, we ignore an
initial segment of the change with the hope that the distribution of the chain may be closer
to the limiting distribution. Also, in order to reduce “dependence” between successive values
(we are going to have lots of instances where the chain does not move), one records the chain
after suitable “Gap” G. Thus we record

Zk = XB+kG,

for suitable “Burn In” B, “Gap” G for k = 1, 2, . . . L and then use

1

N

N∑
i=1

g(Zi),

as an approximation to∫
g(x)f (x)dx.

Example: Target is a mixture of two normals, with equal weights,

f1(x) = exp{−(x − 4)2/8} + exp{−(x − 16)2/8}.

This is bi-modal, with the two distributions having almost disjoint supports. The mean of f
is 10 and variance is 40 (so that standard deviation is 6·324).

The “random walk proposal” distribution is taken as double exponential with parameters
0,1 (we must ensure that the mean of the proposal is 0), the “burn in” is taken as 5000, “gap”
as 50. We generate 10 samples of size 10000 and the mean, standard deviation and variance
in each of the sample is given in table 4.

The above algorithm is an adaptation of the Metropolis algorithm. Hastings in 1970 sug-
gested a modification that does not require the “proposal” kernel to be symmetric. This allows
us to consider the “proposal” chain to be an i.i.d sequence. Thus the chain is just a sequence
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Table 4. Monte Carlo results for Mixture of Normal distributions.

Mean SD VAR

10·173955 6·283718 39·485116
9·719518 6·317257 39·90773
9·783166 6·326743 40·02768
9·799898 6·300697 39·698783

10·124491 6·308687 39·799526
10·100052 6·326426 40·023664

9·309102 6·297279 39·655727
10·258374 6·322546 39·974584

9·819395 6·3241 39·994238
10·204787 6·303478 39·733837

of independent random variables Wn with common distribution having a density q1 and take
the transition function as

q(x, y) = q1(y).

The multiplier α(x, y) is now given by the formula

α(x, y) = min{1, [f1(y)q1(x)]/[f1(x)q1(y)]},
and the transition kernel p(x, y) is given by

p(x, y) = q(x, y)α(x, y).

As in the random walk case, we can define a Markov Chain {Xn} that has f as its stationary
distribution as follows.

Given that Xn = x, the chain does not move (i.e. Xn+1 = x) with probability 1 − β(x)

where

β(x) =
∫
p(x, y)dy,

and given that it is going to move, it moves to a point y chosen according to the density

p(x, y)/β(x).

This can be implemented as follows: given Xk = x, we first “propose” a move to a point y
chosen according to the law q(x, ·) and then choose u according to the uniform distribution
on (0, 1) and then set Xk+1 = y if u < α(x, y) and Xk+1 = x if u ≥ α(x, y). Once again we
can verify the “detailed balance equation”

f (x)p(x, y) = f (y)p(y, x) ∀ x, y,
and as in the random walk case, it follows that f (x) is the density of a stationary invariant
distribution of the constructed Markov Chain. Note that here the transition probability function
is a mixture of a point mass and an absolutely continuous density.
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Metropolis–Hastings independence chain: Here is the algorithm as a psuedo-code: to sim-
ulate {Xk : 0 ≤ k ≤ N} –

(1) Generate X0 from the distribution with density q0 and set n = 0;
(2) n = n+ 1;
(3) generate Wn from the distribution with density q0;
(4) Yn = Wn proposed move;
(5) generate Un from uniform (0,1);
(6) if Un ∗ f1(Xn)q1(Yn) ≤ f1(Yn)q1(Xn), then Xn+1 = Yn otherwise Xn+1 = Xn;
(7) if n < N , go to (2) else stop.

Then the generated Markov Chain {Xk : 0 ≤ k ≤ N} has f as its stationary distribution.
When we have two Markov chains with the same stationary distribution, we can generate

yet another chain where at each step we move according to one chain say with probability
0·5 and the other chain with probability 0·5.

This has an advantage that if for the given target, even if one of the two chains is well
behaved then the “hybrid” chain is also well behaved.

How does the algorithm behave for fat-tailed distributions?
We ran the programme (Hybrid version) for Cauchy and found that even with 50000 sample

size, burn in of 50000 and Gap of 20; the results were not encouraging. And this when the
Cauchy distribution is taken with median 0, and the proposal and RW proposal also have
mean 0 (double exponential (0,8) and Uniform (−5, 5) respectively).

To see if burn in and gap (same sample size) improves the situation, we ran the hybrid
algorithm with a burn in of 50,000,000 and a gap of 10000. Five samples each of size 50000
meant a total of 2,750,000,000. This took 7293 seconds (little more than 2 hours).

Also, with burn in of 50,000,000 and gap of 20000, total samples generated were
5,250,000,000 (over 5 billion). The time taken was a little under 4 hours.

With both these runs, the outputs seem to be stable. It appears that for fat-tailed distribution,
we need large burn in and large gap.

Gibbs sampler

Suppose it is given that X, Y are real-valued random variables such that the conditional
distribution of Y given X is normal with mean 0·3Y and variance 4 and the conditional
distribution of X given Y is normal with mean 0·3X and variance 4. Does this determine the
joint distribution of X, Y uniquely?

More general question: Let π(x, y) be the joint density ofX, Y ; f (y; x) be the conditional
density of Y given X = x and g(x; y) be the conditional density of X given Y = y. Do
f (y; x), g(x; y) determine π(x, y) ?

Consider the one-step transition function P((x, y), A) with density

h((u, v); (x, y)) = f (v; x)g(u; v).
This corresponds to the following: starting from (x, y), first update the second component
from y to v by sampling from the distribution with density f (v; x) and then update the first
component from x to u by sampling from the distribution with density g(u; v).

Let us note that if f ∗, g∗ denote the marginal densities of X, Y respectively, then

f (y; x) = [π(x, y)]/[f ∗(x)], g(x; y) = [π(x, y)]/[g∗(y)],



96 Rajeeva L Karandikar

and hence ∫ ∫
h((u, v); (x, y))π(x, y)dydx =

∫ ∫
f (v; x)g(u; v)π(x, y)dydx

=
∫
f (v; x)g(u; v)

[∫
π(x, y)dy

]
dx

=
∫
f (v; x)g(u; v)f ∗(x)dx

=
∫
g(u; v)π(x, v)dx

= g(u; v)g∗(v)

= π(u, v).

Now if f (y; x) and g(x; y) are continuous and (strictly) positive for all x, y, then this chain
is ψ irreducible and aperiodic (see appendix for definition) and has a stationary distribution
π(x, y) which must then be unique.

This answers the question posed above in the affirmative. Further, if we have algorithms to
generate samples from the univariate densities f (y; x) and g(x; y), this gives an algorithm to
(approximately) generate samples from π(x, y) – run the chain for a sufficiently long time.
This is an MCMC algorithm.

Note that we could have instead taken

h((u, v); (x, y)) = f (v; u)g(u; y),
or

h((u, v); (x, y)) = 0·5(f (v; x)g(u; v)+ f (v; u)g(u; y)).
In either case, the resulting Markov Chain would have π(x, y) as its stationary invariant
distribution.

This can be easily generalized to higher dimensions. The resulting MCMC algorithm is
known is Gibbs sampler that is useful in situations where we want to sample from a multivariate
distribution which is indirectly specified- the distribution of interest π is a distribution on R

d

(for d > 1) and it is prescribed via its full conditional distributions.
Let X = (X1, X2, . . . , Xd) have distribution π and x = (x1, x2, . . . xn). Let

X−i = (X1, X2, . . . Xi−1, Xi+1 . . . , , Xd)

x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn).

The conditional density of Xi given X−i = x−i is denoted by

fi(xi; x−i ).

As in the case when n = 2, the collection {fi : 1 ≤ i ≤ d} completely determines π
if each fi is a strictly positive continuous function. It should be noted that if instead of the
full conditional densities fi (conditional density of ith component given all the rest), the
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conditional densities of the ith component, given all the preceding components, is available
for i = 2, 3, . . . d along with the density of the first component, then it is easy to simulate a
sample: first we simulate X1, then X2 and so on till Xd .

If we only know fi, 1 ≤ i ≤ n, Gibbs sampler is an algorithm to generate a sample from
π . In d-dimensions, we can either update the d components sequentially in some fixed order
or at each step choose one component (drawing from uniform distribution on {1, 2, . . . d}).

Let x = (x1, x2, . . . xd) be a point from the support of the joint distribution. Set X0 = x.
Having simulated X1, X2, . . . Xn, do the following to obtain Xn+1 –

(1) choose i from the discrete uniform distribution on {1, 2, . . . , d};
(2) simulate w from the conditional density fi(xi;Xn−i );
(3) set Xn+1

i = w and Xn+1
j = Xnj , for j 	= i.

Note that at each step, only one component is updated. It can be shown that the Markov
Chain has π as its unique invariant measure and hence for large n, Xn can be taken to be a
sample from π .

For more details on MCMC, see Robert & Casella (1999) and references therein.

4. Perfect sampling

We have seen some algorithms to simulate Markov chains in order to estimate quantities
associated with their limiting distribution. One of the difficulties in this is to decide when to
stop, i.e. what sample size to use so as to achieve close approximation.

Propp & Wilson (1996) proposed a refinement of the MCMC yielding an algorithm that
generates samples exactly from the stationary distribution.

This algorithm is called Perfect Sampling or Exact Sampling. The algorithm is based on the
idea of coupling of Markov chains. Propp & Wilson (1996) called this algorithm Coupling
from the past. It consists of simulating several copies of the Markov Chain with different
starting points, all of them coupled with each other.

Let us now focus on finite state Markov chains. Given a transition matrix P(i, j), we can
construct a function ψ such that X0 = i0, and

Xn+1 = ψ(Xn,Un),

where {Uk} is a sequence of independent simulations from uniform (0,1) yields a Markov
Chain with transition matrix P and starting at i0. This gives us an algorithm for simulating a
Markov Chain.

There is no unique choice of the function given the matrix P . For example, given one
function ψ , one can define φ(x, u) = ψ(x, 1 − u) and then

Yn+1 = φ(Yn, Un),

also yields a Markov Chain with the same transition probabilities.
For the case of a finite state Markov Chain, one choice is: We can assume that the state

space is E = {1, 2, . . . , N}. Let us define

q(i, j) =
j∑
k=1

p(i, k).
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Define

ψ(i, u) = 1 if u ≤ q(i, 1),

ψ(i, u) = 2 if q(i, 1) < u ≤ q(i, 2),

. . .

ψ(i, u) = j if q(i, j − 1) < u ≤ q(i, j),

. . .

ψ(i, u) = N if q(i, N − 1) < u.

Then it follows that for a uniform (0,1) random variable U , the distribution of ψ(i, U) is
{p(i, j), 1 ≤ j ≤ N}.

Now fix i0 and let {Un : n ≥ 1} be i.i.d. uniform (0,1). Let {Xn} be defined by

Xn+1 = ψ(Xn,Un).

Then {Xn} is a Markov Chain with transition probability matrix P and initial state i0.
Let {Un : n ≥ 1} be i.i.d. uniform (0,1), and {Vn : n ≥ 1} also be i.i.d. uniform (0,1). Let

i0 and j0 be fixed.
Define {Xn : n ≥ 0}, {Yn : n ≥ 0} and {Zn : n ≥ 0} as follows: X0 = i0, Y0 = j0, Z0 = j0

Xn+1 = ψ(Xn,Un), n ≥ 1,

Yn+1 = ψ(Yn, Vn), n ≥ 1,

Zn+1 = ψ(Zn,Un), n ≥ 1.

All the three processes are Markov chains with transition probability matrix P andX starts
at i0 while Y and Z both start at j0.

{Xn : n ≥ 0} and {Yn : n ≥ 0} are independent chains, while {Yn : n ≥ 0}, {Zn : n ≥ 0}
have the same distribution. Hence, if we were required to simulate a chain starting at j0 we
can use either {Yn : n ≥ 0} or {Zn : n ≥ 0}.

Since the same sequence {Un : n ≥ 1} is used in generating the chains X and Z, they are
obviously correlated.
X and Z above are said to be coupled.
Now let us fix a transition probability matrix P . Instead of starting the chain at n = 0, we

can start the chain at n = −10000 or n = −100000000!
If the chain begins at n = −∞ (in the infinite past, this can be made precise) with the

stationary distribution π , then at each step its marginal distribution is π .

The Propp–Wilson algorithm: We will to generate samples from uniform (0,1) and for
reasons to be made clear later, number them as U−0, U−1, . . . , U−m, . . . . Let m = 1.

(1) For each starting point i ∈ E, generate a chain Xi,mn ,−m ≤ n ≤ 0:

X
i,m
−m = i

X
i,m
n+1 = ψ(Xi,mn , Un) 0 ≤ −m < n ≤ 0.
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(2) if Xi,m0 = X
j,m

0 for all i, j (i.e., if all the N chains meet) then stop and return W = X
1,m
0 .

Otherwise, set m=m+1 and goto 1.

Note that the chain {Xi,m−k : −m ≤ −k ≤ 0} uses the random variables {U−m, . . . U−1, U0}.
Thus as we go from m to m + 1, only one new uniform (0,1) is generated and we reuse the
m samples generated earlier.

If the Propp–Wilson algorithm terminates with probability one, then the sample returned
has exact distribution π .

To see this, suppose that for the given realization of U−0, U−1, . . . , U−m, . . . ., the algo-
rithm has terminated with m = 17600 and has returned a sample W .

Let us examine what would happen if we do not stop, but keep generating the N chains.
Takem = 17601. We will argue that X1,17601

0 is stillW . The chain X1,17601 now starts at 1:
(X

1,17601
−17601 = 1) and goes to some state i, X1,17601

−17600 = i. From then on, it follows the trajectory
of the chain Xi,17600 which was initialized at m = 17600 at the state i (since both the chains
begin at i and use the same set of uniform variables U−17600, . . . , U0 ). HenceX1,17601

0 = W .
The same argument can be repeated and we can conclude that if we ran the algorithm for

any m > 17600, all the N chains Xi,m will meet at time 0 and the common value will be W .
Thus,

lim
m→∞X

i,m
0 = W ∀ i.

It can be shown that the distribution of W is the stationary distribution π .
Generating N chains in order to generate one sample seems tedious. Suppose that P is

such that

q(i, j) ≥ q(i + 1, j) ∀j, 1 ≤ j < N,∀i.

This means, conditional distribution of Xn+1, given Xn = i + 1, stochastically dominates
the conditional distribution of Xn+1, given Xn = i. The chain is then called stochastically
monotone.

Under this condition, it can be checked that for the canonical choice of the function ψ
described earlier,

ψ(i, u) ≤ ψ(i + 1, u),

and hence that for i ≤ k

ψ(i, u) ≤ ψ(k, u)

Thus, by induction it follows that if i0 < j0 and X, Z are defined by

Xn+1 = ψ(Xn,Un), n ≥ 1,

Zn+1 = ψ(Zn,Un), n ≥ 1,

then

Xn ≤ Zn ∀n ≥ 1.



100 Rajeeva L Karandikar

If the Markov Chain is stochastically monotone, then instead of generating all the chains
and checking if they meet, we can generate only two chains

X1
n, X

N
n ,

since

X1
n ≤ Xi,mn ≤ XNn ∀ i.

(This is true becasue we are generating coupled chain via the special function ψ .) So if X1

and XN meet, all the chains meet.
Thus even for a large state space, it is feasible to run the Propp–Wilson algorithm to generate

an exact sample from the target stationary distribution. See Propp & Wilson (1996).
The natural ordering on the state space has no specific role. If there exists an ordering

with respect to which the chain is stochastically monotone, we can generate chains starting
at minimum and maximum and then stop when they meet.

A great deal of research is going on on this theme.

Appendix A

Markov chains on a general state space: For more details on material in this appendix
including proofs etc. see (Meyn & Tweedie 1993). Suppose E is a locally compact separable
metric space and suppose P(x,A) is a “probability transition function” on E:

• for each x, P(x, ·) is a probability measure on E (equipped with its Borel sigma field
B(E));

• for each A ∈ B(E), P(·, A) is a Borel measurable function on E.

Example. E = R and for x ∈ R, A ∈ B(R)

P (x,A) =
∫
A

[1/
√

2π ] exp{−[1/2](y − x)2}dx.

Let {Xn} be the Markov Chain with P as the transition probability kernel. Let Px be the
distribution of the chain whenX0 = x. The n-step transition probability function is defined by

Pn(x,A) = Px(Xn ∈ A).
Also for x ∈ E, A ∈ B(E) let,

L(x,A) = Px(Xn ∈ A for some n ≥ 1).

U(x,A) =
∞∑
n=1

Px(Xn ∈ A).

Q(x,A) = Px(Xn ∈ A infinitely often).

Let

ηA =
∞∑
n=1

IA(Xn).
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Then

U(x,A) = Ex(ηA)

and

Q(x,A) = Px(ηA = ∞).

L(x,A) is the probability of reaching the setA starting from x,U(x,A) is the average number
of visits to the set A starting from x and Q(x,A) is the probability of infinitely many visits
to the set A starting from x.

The Markov Chain is said to be “φ-irreducible” if there exists a positive measure λ on
(E,B(E)) such that for all A ∈ B(E), with λ(A) > 0

P(x,A) > 0 ∀ x ∈ E.
λ is said to be a “irreducibility measure”.

For a φ-irreducible Markov Chain there exists a “maximal irreducibility” measure ψ such
that ψ dominates every other “irreducibility measure” of the chain. The phrase “The Markov
Chain is φ-irreducible with maximal irreducibility measure ψ” is often written as “The
Markov Chain is ψ-irreducible”.

If E is a finite state space and P is a transition probability matrix such that there is one
communicating class F and the rest of the states (belonging to E ∩ FC) are transient. Then
the chain is ψ-irreducible with maximal irreducibility measure ψ being the uniform measure
on F (or any measure equivalent to it).

Aψ-irreducible Markov Chain is said to be “recurrent” if for allA ∈ B(E)withψ(A) > 0,

U(x,A) = ∞ ∀ x ∈ E.
(Recall:U(x,A) is the average number of visits to the setA starting from x.) Aψ-irreducible
Markov Chain is said to be “transient” if ∃An ∈ B(E), n ≥ 1 such that E = ∪nAn and
Mn < ∞,

U(x,An) ≤ Mn ∀x ∈ An.
As in the countable state space case, we have a dichotomy: A ψ-irreducible Markov Chain

is either recurrent or transient.
A ψ-irreducible Markov Chain is said to be “Harris recurrent”, if for all A ∈ B(E) with

ψ(A) > 0,

Q(x,A) = 1 ∀x ∈ A.
Every recurrent chain is essentially Harris recurrent. We now make this precise.

A set H ⊆ E is said to be absorbing if

P(x,H) = 1 ∀ x ∈ H.
A set H ⊆ E is said to be full if

ψ(HC) = 0.

If H is a full absorbing set, we can restrict the chain to H retaining all its properties.
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Theorem A1. If a ψ-irreducible chain is recurrent, then it admits a full absorbing set H
such that restricting to H , the chain is “Harris recurrent”.

A set A is said to be an “atom” if ψ(A) > 0 and

P(x, B) = P(y, B) ∀ B ∈ B(E), x, y ∈ A.
In this case, we can lump all the states inA together and treat the setA as a singleton, retaining
the Markov property for the reduced chain.

If the chain has an atom A, then everytime the chain reaches A, the chain “regenerates”
itself and thus we can mimic the usual arguments in countable state space case for recurrence,
ergodicity etc.

Athreya et al (1996) showed how to create a “pseudo atom” for a large class of chains and
use it to study the chain. We outline the underlying idea in a special case.

A set C is said to be “small”, if there exists m ≥ 1 and a positive measure ν such that

Pm(x,A) ≥ ν(A) ∀x ∈ C, ∀A ∈ B(E). (A1)

Let C be a small set with m, ν satisfying (A1). Let d be the g.c.d. of the set of integers k
such that there exists δk > 0 with

P k(x,A) ≥ δkν(A) ∀ x ∈ C, ∀ A ∈ B(E).
It can be shown that d does not depend on the small set C, or the measure ν. The chain is said
to be “aperiodic” if d = 1.

It is said to be “strongly aperiodic” if (A1) holds for m = 1 and some C, ν. Consider
a “strongly aperiodic” ψ-irreducible chain with a small set C. Thus we have a probability
measure ν such that for δ > 0

P(x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ B(E). (A2)

The Athreya–Ney and Nummelin idea is as follows (Athreya & Ney 1978; Nummelin
1978):

Define a chain (Yn, ηn) taking values in E × {0, 1} as follows:
If ηk = 1, we draw a sample from ν; if Yk ∈ C, ηk = 0, we draw a sample from

[P(x, ·)− δν(·)]/(1 − δ),

and if Yk 	∈ C, ηk = 0, we draw a sample fromP(x, ·) and set it as Yk+1. Further, if Yk+1 	∈ C,
we set ηk+1 = 0 and if Yk+1 ∈ C, we set ηk+1 = 0 with probability 1 − δ and equal to 1 with
probability δ.

It can be seen that the event Yk 	∈ C, ηk = 1 will never occur. Clearly E × {1} is an atom
of the “split chain” (Yn, ηn). A little calculation shows that the marginal chain Yn is also a
Markov Chain with transition probability function P . As a result, successive hitting times of
E × {1} are regeneration times for the chain Yn. Note that since ψ(A) > 0 and the chain is
ψ-irreducible,

P(x,A) > 0, ∀ x ∈ E.
The Athreya-Ney-Neumalin idea also works if we have a set C with ψ(C) > 0 and a

positive measure ν such that
∞∑
m=1

(1/2m)Pm(x,A) ≥ ν(A) ∀x ∈ C, ∀A ∈ B(E).
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The Markov Chain is said to be “Feller” (or “weak Feller”) if for all bounded continuous
f , the function,

h(x) =
∫
f (y)P (x, dy),

is continuous. The chain is said to be “strong Feller” if for all bounded measurable f , h
defined above is continuous.

A probability measure π is said to be invariant or stationary if∫
P(x,A) π(dx) = π(A) ∀ A ∈ A ∈ B(E).

A bounded function f on E is said to be “harmonic” if∫
P(x, dy)f (y) = f (x).

If the Markov Chain is ψ-irreducible aperiodic and if a invariant probability measure π
exists, then it is recurrent and every bounded harmonic function is constant π a.s. Further,
in this case the chain is Harris recurrent if and only if every bounded harmonic function is
constant (everywhere).

Ergodic theorem: If the Markov Chain is ψ-irreducible aperiodic and if a invariant proba-
bility measure π exists, then for a bounded measurable function g on E, for all x outside a
π -null set,

1

N

N∑
j=1

g(Xj ) →
∫
g dπ, Px − a.s.

Further if the chain is Harris recurrent, then the relation above holds for all x.
Suppose E = R

d or a connected subset of R
d . Assume that there exists a continuous

function u on E × E and a probability measure λ on (E,B(E)) such that

P(x,A) =
∫
A

u(x, y) λ(dy)+ (1 − β(x))δ{x}(A),

for all x ∈ E, A ∈ B(E) with

β(x) =
∫
u(x, y)λ(dy).

Suppose that

u(x, y) > 0 ∀x ∈ E, y ∈ E.
Then the Markov Chain {Xn} is ψ-irreducible aperiodic. For such a chain, if there exists a

positive function f such that

f (y) =
∫
u(x, y)f (x)λ(dx),
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then (upto normalization) f is the density of the unique stationary invariant distribution, the
chain is Harris positive recurrent and for any bounded g

1

N

N∑
i=1

g(Xi) →
∫
g(x)f (x)λ(dx).

The Markov chains appearing in the Metropolis–Hastings algorithm often satisfy these
conditions.
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