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ABSTRACT

A theory of the insulator-metal transition in transition-metal com-
pounds is developed in terms of the collapse of the effective energy gap which
is a function of the thermally excited electron-hole pairs. This dependence
is shown to arise from the hole-lattice interaction. The reaction of the
lattice is found to be equivalent to generating an internal positive pressure
(strain). Estimates show that the observed typical behaviour of the conduc-
tivity jump and the change of volume at the transition temperature can
be explained by the present theory.

1. INTRODUCTION

THE experimental behaviour of several transition-metal oxides and chalco-
genides such as VO, (V1_x Crx)2 03 , VO2 , Fe304 , NiS, Ti203, etc., has received
considerable theoretical attention in the recent past (Ramirez, Falicov and
Kimball, 1970). These compounds exhibit insulator to metal transition as
a function of increasing temperature and pressure (Mott, 1969; Adler and
Brooks, 1967; Falicov and Kimball, 1969). For these systems the conven-
tional Bloch-Wilson band picture would predict a metal-like behaviour at
the absolute zero of temperature in that the metal ions contain partially
filled 3d shells which should be broadened into sub-bands by the overlap
effects. However, some of these are known to exist in a low-temperature
insulating phase. The latter phase shows antiferromagnetic ordering of the
metal ions (V203 , NiS). The magnetic ordering is, however, not necessarily
correlated with resistive properties. Further, the insulator-metal (IM)
transition with increasing temperature and pressure can either be a smooth
transition involving a large resistivity change (Ti 203) or an abrupt transition
involving conductivity jump of several orders of magnitude, e.g., VO, V 203,

V0, NiS. The latter is essentially a first-order transition. It may be accom-
panied by a change in volume, crystal symmetry and long-range magnetic
order. The most striking example of such systems is V 203, pure and doped
(Feinleib and Paul, 1967;. McWhan and Rice, .1969). Thus the samples
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having the composition (Vl. x Crx O3 with x > 0.009 exhibit a first-order
transition from the low temperature insulating antiferromagnetic phase to a
high temperature metallic (non-magnetic) phase at 150° K with a 3.5 per
cent reduction in volume. This transition for the doped system (unlike
pure V203) does not show any change in crystal symmetry (Dernier, 1970).
It has been claimed by some authors that (V 1__ Crx) 2 03 is the system which
exhibits true Mott type IM transition (McWhan and Rice, 1970). Several
mechanisms of the Mott transition have been put forward and they differ
as to the nature of the thermodynamic "driving force" causing the transi-
tion (Doniach, 1969). Before discussing the various mechanisms of transi-
tion, a few words abcut the nature of ti .e insulating phase are in order. In
the insulating (semi-conducting) phase these materials are assumed to have
intrinsic band gaps arising from the following. First there may be the usual
one-electron Hartree-Fock band structure wherein a filled band is separated
from an unfilled band by an energy gap owing to the occurrence of extra
periodicity (and consequent halving of the Brillouin zone) introduced by
antiferromagnetic ordering or lowering of crystal symmetry (Slater, 1951;
Adler and Brooks, 1967). Secondly, the gap may be related with electron-
electron correlation when two electrons sit on the same atom in the same
orbital (Hubbard, 1964). This is the so-called Mott-Hubbard gap. As a
result- of this, a single otherwise half-filled band gets split up into a filled band
and an unfilled band separated by a gap of the order of correlation energy.
For the occurrence of the insulator-metal transition the energy gap must
diminish as a function of increasing temperature and pressure. To this
end various mechanisms have been invoked. While no single mechanism
seems to account for the behaviour of all these substances, a notion common
to several of these appears to be that of an excitation-dependent gap. The
important feature of this excitation-dependent gap is that it allows a ffirst-
order phase transition. This can arise from the following effects:

(i) Adler-Brooks model (1967) wherein this gap arises from the free
carrier concentration-dependent crystal distortion or magnetization.

(ii) Falicov-Kimball model (1969) wherein the attractive electron-hole
interaction gives an effective gap decreasing linearly with carrier
concentration.

(iii) The Fronlich (1966)-Hyland (1968) model where the carrier concen-
tration-dependent screening of the long-range repulsive Coulomb
interaction . reduces the effective gap. This presumably is a weak
effect and will show up only at a very high carrier- concentration.
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Finally, it shouldbe noted that the spin and Qrbital. entropy _ difference
between the .insulating _phase and the metes =phase_ may further enhance
the thermodynamic driving force.

In all these treatments a certain kind of the reaction of the lattice (i.e.,
change of volume but no change of symmetry) to an electronic excitation
from localised to delocalised states has not been taken into account. In
what follows, we shall take explicit cognizance of such a lattice reaction to
the creation of a hole when an electron is excited to a delocalised state. It
will be shown that the hole-lattice interaction gives rise to two distinc
effects. First the well-known lowering of lattice energy and secondly an
excitation-dependent hole energy shift. The latter is an intensive effect and
is a consequence of the fact that the localised hole energy is a parametric
function of the lattice configuration co-ordinates of the surrounding and
increases when the lattice closes in towards the hole site. In effect, the crea-
tion of a hole amounts to generating a positive pressure (strain) in the vicinity
of the hole. This will be found to be the essential point of our mechanism.

2. FORMULATION OF MODEL HAMILTONIAN

In the present model we consider a situation described by localised
atomic states at the respective metal-ion sites. These atomic states are singly
occupied at the absolute zero of temperature. The electronic configurations
involving double occupancy of such states are projected out in that the
Hubbard correlation gap is much too large. There is, however, an empty
band of delocalised states (Bloch states) separated from - the above valence
states by an energy gap. These empty sub-bands may arise due to .crystal
field splitting effects (Austin and Mott, 1970). Alternatively, the 4s band
may lie between the localised 3d-like states and Hubbard's upper band. This
seems to be the case for the ideal Mott-Hubbard insulator NiO (Adler, 1970).
We shall address ourselves to systems such as (V1_x Crx)2 03 where the present
picture is easily applicable. The physics of the present model may be des-
cribed as follows. At a finite temperature some electrons from the localised
valence states may get promoted to the extended band states leaving localised
holes at the original sites. Now, we envisage a strong hole-lattice interaction
in view of the polar nature of the system. This will result in a displacement
of the lattice around the hole. For simplicity we shall consider here the
interaction of the hole with the totally symmetric phonon mode (breathing
mode) only to be of importance. In addition to a shift in the lattice reference
energy, the `closing in' of the surrounding atoms will lead to a decrease in
the hole energy rendering the electron-hole excitation more favourable. This
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implies an effective reduction of the excitation gap. Also, a further reduction
effect will come from electron-hole interaction as considered by Falicov and
co-workers (1969, 1970). We assume that the interaction between the lattice
and band electrons is relatively weaker and will not be considered.

The above situation is adequately described by the model Hamiltonian
in the second quantization representation as

H=Ho +HL,

where

Ho =	 EkCkt Ck +	 E ((Qt)) bit bi
k	 {

_ N G f ei (k-k').Ri Ck't Ckb:tbt
. '

and

HL _ 	 h Wg (qt Pc1 + 1) + x (i) 1'q Eiq.Ri
 (flqt — P-a) (bit bi),

¢	 ¢i

(2)

where Ckt, Ck are fermion creation, annihilation operators of electrons in
the conduction band in the Bloch state I k) with quasi particle energy Ek, k
being the wave vector; (bit, bi) are the hole creation, annihilation operators
at the site Ri, E ((Qi)) is the hole energy which depends parametrically on
the mean configuration co-ordinates Qi of the neighbouring atoms. The
sign in front of the hole-lattice interaction term has been chosen to correspond
to attraction. The third term of Eq. (1) gives the electron-hole Coulomb
interaction of strength G (> 0) ; fl gt, flq are the phonon creation, annihilation
operators; wq is the mode-branch frequency, q is the wave vector. In the
above expressions, the spin indices have been suppressed as no spin flip terms
are involved. The last term of Eq. (2) is the dynamical hole-phonon inter-
action with I'cq representing the interaction matrix element. The fundamental
energy gap between the localised states and the minimum of the conduction
band is given by

L = (6k + E ((Qt)))min > 0.

We eliminate the dynamical hole-lattice interaction [last term of Eq. (2)]
exactly by a well-known canonical transformation given by

HT = ets H e-
is,	 (3)
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where S is chosen to be

S=E (CgPq+Pgt Cq *)	 (4)
a

with

eq = E h q e—iq.x; (bit bi)	 (5)

Thus the transformed lattice Hamiltonian H LT becomes
HLT = eis HL a-is

= L P2 wq (flqt Pq + 2^ — 	 Wq^ (bit bi).	 (6)
Q 	 s,a

As regards the various terms in H o they are affected as follows. EEkCk tCk
remains unaltered and so does the electron-hole interaction term.

For the term involving single particle hole energy, we have

ens (E E ((Qi)) bit bi) e-is
i

= E E ((eis Qie-is)) bit bi
4

= E E ((QiT))1bittbi•
i (7)

The above form is obtained because E ((Qi)) depends parametrically on the
mean configurational co-ordinates of the neighbouring atoms. To derive
an explicit form for the above dependence, we choose, for simplicity, a simple
cubic lattice and consider only the totally symmetric mode (Qis) constituted
from the longitudinal acoustic (LA) mode for the hole-lattice interaction.
(For more realistic situations, e.g., two atoms per unit cell, longitudinal optical
modes will be more effective.) Thus we get

(QiT) = (Qio)

+ 2 	(2MNcoq) ^i co q rq* F (qa) (bi t b^) e`q (1 R ),
e. J

A6	 (8)
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where (Qio) is the equilibrium configuration co-ordinate in the absence of
electron-hole excitation, i.e., (bit bi) = 0. On carrying out the summa-
tion over j and taking (bit bj) (= no < 1) constant over the crystal we get

	r ( 2Mwq) 3
(QiTS) _ (Qios) + 2 2 	 F (qa) 6q, o Nn0.	 (9)

a

The fractional value of n o is to be understood in the time average sense.
Here

F(qa)=(a sin aga+P sin Pqa+y sin yqa)	 (10)

is a group theoretical form factor associated with the totally symmetric mode
considered here; a, fi, y are the direction cosines of the phonon wave vector
q, `a' is the lattice constant, M is the atomic mass and N the number of unit
cells in the crystal. For the longitudinal acoustic mode, we have (Ziman,
1960)

I'q=C^2MNwq^ ^q ^^	 (11)

where C is the usual electron-phonon coupling constant. Also for the LA
mode, we use wq = vs q where vs is the velocity of sound. Thus Eq. (9)
reduces to

(QiTS) = (Qios) + Mvs	 (12)

Finally, we get

^E Can o
E ((QiTS)) -- E ((Qios)) + ^Qio

s ^Mvs2)
 + ...,	 (13)

where bE/ZQios is the force which corresponds to the reciprocal of the radial
compressibility of the localised hole state. For a particle in the ground state
in a spherical enclosure of radius `a' it can be shown that

c_E _ b	 h2 7T2 = — h2 772;	
(14)

"6Qio'	 cTa \2ma2 )	 ma3

in is the mass of the particle.

We assume that the above will be a fair estimate for the present situation
with m replaced by the effective mass m* of the particle. Thus

2 n 2 Cn0
E ((QiTS)) ^ E ((Qios)) — m* a Mvs2 '	 (15)
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Accordingly, the total transformed Hamiltonian can be rewritten as

C 2
HT =	 EkCkt Ck + 	 {E ((Qio')) — 2Mvs 2 — g (bit bi)} bitbi

k

G
Nif

k, k',f

ei (k—k') •Rd Ck't Ckbitbi + lwq (/34t j94 + i),

(16)

where g is given by

g = ( 77 2 3t2 Cm*
 a2 MVS2

	 (17)

3. THERMODYNAMICS OF INSULATOR-METAL TRANSITION

In a mean-field approximation (Falicov and Kimball, 1969) the above
reduced Hamiltonian [cf. Eq. (16)] gives an excitation-dependent gap

Aeff. (n0) = Ao — 2 (g + G) no,	 (18)

where A o is the gap in the absence of excitation and includes the constant
shift

C C 2

2Mv s 2)

The above follows from the fact that the electron-hole interaction term
[i.e., the third term of Eq. (16)] lowers the conduction band minimum whereas
the hole-lattice interaction reduces the hole energy. The Feimi level of the
system having the above excitation-dependent gap is given by

N (bit bi) = Nn o = E' Ckt Ck
k

or

w

N(1 — 	 =N	 Pat(E)de 	/19f eP (e+A, 2 (9+G) n ej + 1 '	 l )
0

kpT'
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where EF is the Fermi level, pat( e) the density of states per atom. For a
small width of the intermediate conduction band we get

no	[eP/2LW/2+AO 2 (9+G) 7Lq] + 1]-1, 	( 0)

where W is the band-width (assumed to be non-degenerate). It is convenient
to express this in terms of dimensionless parameters as

kBT = 1 + ^J — yno	 (21)
=•- 41n(1 — n o) '

no J

where

2Qo	 =4(g+G)
= W , v--,^-•

4. ESTIMATES AND DISCUSSION

Although we have included, for the sake of completeness, the electron-
hole interaction (G) as considered by Falicov and Kimball, for our discussion
we shall concentrate on the present mechanism, i.e., on the hole-lattice inter-
action (g). Accordingly, we put G = 0. With the following choice of
parameters involved, namely,

Cl eV

M 50 x 10-24 gm.

m* electronic mass N 10-27 gm.

a 2.5 x 10-8

vs -. 4 x 105 cm/sec,

we get g 2 eV. Further, we choose A0 .. 0.1 eV and W 1 eV.

With the above choice of parameters, we have plotted in Fig. 1, the carrier
concentration per atom no as a function of temperature. We see that at
T = 0, no = 0. With increasing T, n o gradually increases. There is, how-
ever, a discontinuous increase in n o at a certain critical temperature T, which
is akin to a first-order phase transition. This corresponds to a conductivity
jump. (It may be noted that for some other choice of parameters, the jump
in the carrier concentration may become negligibly small implying a conti-
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nuous transition). The corresponding reduction in volume at T c is estimated
from

AV
`(—f--V	 Mvs2 L no J ,

where p no is the discontinuous change in no. This turns out to be of the
order of 10 per cent. This is of the same order as observed in a few systems.
The effect of pressure can be incorporated in W and Lo. In fact, as expected,
W will increase with increasing pressure (P), while p o will decrease. This
will lead to a reduction of T, in accordance with the phase diagram in T-P
plane.

cQ

{

\ I

0
W.W1	 'J.'	 J.o	 5.0J k,Tw

FIG. 1. The figure shows a log-log plot of the number of delocalised carriers per atom (no)against ! (= k3T/ W) for W I eV, g 2 eV and L o Pe 0.1 eV. The solid curve corresponds
to a thermodynamically stable situation. The dashed portion corresponds to an unstable region.

The above results clearly show that the insulator-metal transition is driven
by hole-lattice interaction. The physical process consists of the `closing in'
of the surrounding (displaced lattice modes) with increasing hole occupancy
on a site. This `closing in' of the surrounding atomic cluster results in an
extra kinetic energy of localization for an electron at the given site rendering
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the occupation of the localised state by an electron energetically less probable.
In effect, the above amounts to a reduction in the electron-hole pair excita-
tion energy. This in turn favours the creation of more electron-hole pairs.
Thus we get a feed-back mechanism essential for a phase transition.

At this stage we must briefly discuss the present theory in relation to those
given by others. The present mechanism of excitation-dependent gap
differs fundamentally from the one considered by Adler and Brooks (1967).
In their model the gap arises from crystal structure distortion (lowering of
symmetry) caused by the energy gain due to chemical binding. The depend-
ence of the gap on electronic excitation comes from the fact that the excited
electron no longer contributes to the chemical binding. Their model is,
in essence, a band generalisation of the Jahn-Teller effect. For systems such
as (V, _xCrx)2 03 , where there is no change in crystal symmetry at T,, their
explanation seems to fail.

The model considered by Falicov and co-workers relies heavily on the
attractive electron-hole Coulomb interaction. A strong Coulomb interaction
of this kind can lead to the formation of excitons which are non-conducting.
In point of fact, to exclude the probability of exciton formation they have
made somewhat unrealistic choice of the parameters involved (Ramirez et al.,
1970). Furthermore, none of the models developed so far explicitly account
for the change of volume at T.

In conclusion, it may be remarked that in the origional Mott-Hubbard
suggestion also it is envisaged that when the lattice is squeezed by applying
external pressure, the cost in kinetic energy in confining electrons to atomic
sites increases. This should lead to lowering of the effective energy gap.
in the present model the positive pressure (strain) is being generated internally
by the hole-lattice interaction.
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