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Abstract

The Coleman-Hill theorem prohibits the appearance of radiative corrections

to the topological mass (more precisely, to the parity-odd part of the vacuum

polarization tensor at zero momentum) in a wide class of abelian gauge the-

ories in 2+1 dimensions. We re-express the theorem in terms of the effective

action rather than in terms of the vacuum polarization tensor. The theorem

so restated becomes somewhat stronger: a known exception to the theorem,

spontaneously broken scalar Chern-Simons electrodynamics, obeys the new

non-renormalization theorem. Whereas the vacuum polarization does receive

a one-loop, parity-odd correction, this does not translate to a radiative con-

tribution to the Chern-Simons term in the effective action. We also point

out a new situation, involving scalar fields and parity-odd couplings, which

was overlooked in the original analysis, where the conditions of the theorem

are satisfied and where the topological mass does, in fact, get a radiative

correction.

The existence of the Chern-Simons (CS) term in 2+1 dimensional gauge theories [1] has

fueled a large body of research over the last several years, in fields varying from condensed
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matter physics to pure mathematics. The term leads to fractional-statistics excitations (rele-

vant to the fractional quantum Hall effect) [2], while its topological nature in the nonabelian

case has yielded information on the classification of lower-dimensional manifolds and knot

invariants [3]. It is odd under parity, and provides for a gauge-invariant mass for the relevant

vector bosons.

The coefficient of the non-abelian CS term must be quantized for the theory to be

consistent [4–6]. This quantization must be respected by radiative corrections, and, indeed,

in pure SU(N) gauge theory, it has been found that the coefficient (appropriately normalized

so that the quantization is to integer values) receives a one-loop correction which changes

its value by the integer N [7].

If the gauge field is coupled to matter fields which spontaneously break the symmetry,

the situation is much more delicate in the non-abelian case. With complete breaking of the

symmetry, the topological mass itself receives a correction which is a complicated function of

the parameters of the theory, and certainly no quantization condition is satisfied, in general

[8]. However, the quantization of the coefficient of the CS term itself might be salvaged,

since there exist other terms which are not of a topological nature and therefore whose

coefficients need not be quantized, yet which contribute to the topological mass. The non-

quantization of the radiative correction to the topological mass might thus be a combination

of a quantized correction to the CS term along the lines of [7] along with a non-quantized

correction to the other terms, as was suggested [8].

More alarming is the case of a non-abelian theory spontaneously broken to a non-abelian

subgroup. There, the topological mass is found not to be quantized (similar to the situation

in [8]), yet there are no terms other than the CS term which make a contribution to the

topological mass [9]. It would appear, therefore, that in such theories the CS term does

receive a non-quantized radiative correction, and thus that they are not consistent at a

quantum level, following the reasoning of [4–6].

A parallel but quite different situation arises in the abelian case, where no quantization

condition is required. There is thus no a prioro restriction on radiative corrections, yet
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such corrections are in fact few and far between. Coupling the photon to a fermion yields a

correction to the linear term in a momentum expansion of the parity-odd part of the photon

vacuum polarization tensor πodd
µν (whether or not the CS term is there initially) at one loop

[1,4,10], but not at two loops [11]. Inspired by this unexpected result, Coleman and Hill [12]

devised a proof that, under very general conditions, the only correction to the linear term in

a momentum expansion of πodd
µν comes from fermions at one loop. In particular, they have

emphasized that the result is valid even for nonrenormalizable interactions in the presence

of gauge- and Lorentz-invariant regularization.

Situations exist where the conditions given by Coleman and Hill are satisfied, yet where

radiative corrections to the topological mass do nonetheless arise. Namely, this can occur if

there are new parity-violating interaction terms in the initial Lagrangian, a possibility which

was overlooked in [12]. For instance, if the photon is coupled to massive vector particles

which themselves violate parity (a possibility in 2+1 dimensions) there is a correction to the

topological mass [13].

Furthermore, even scalar fields can have such parity-violating interactions. Indeed, the

following interaction Lagrangian

Lint = jµ

(

ieAµ +
α

e
ǫµνλFνλ

)

(1)

yields, after a straightforward evaluation of the vacuum polarization,

πodd
µν

ǫµνλpλ

2p2

∣

∣

∣

∣

∣

p2=0

≡ πodd(0) =
αm

π
, (2)

where m is the mass of the scalar and jµ is the usual particle current.

In addition to these actual counter-examples to the Coleman-Hill theorem, a number of

situations have been found where the initial assumptions of the theorem are not satisfied,

and where the vacuum polarization tensor does get further radiative corrections. One such

situation is if there are massless particles present, in which case infrared divergences spoil

the proof of the theorem [14–16]. Another is if Lorentz or gauge invariance is not manifest,

a situation found in the nonabelian case (where, as outlined above, radiative corrections

indeed exist).
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A third such case is that of spontaneously broken scalar electrodynamics [17,18], where

the interaction term explicitly violates one of Coleman and Hill’s initial assumptions. (In

this case, in their words, there are parts of the gauge boson kinetic terms “lurking” about

in the interaction Lagrangian.) Here, it has been found that, with even an infinitesimal CS

term at the tree level, a macroscopic parity-odd part of the vacuum polarization is induced

to one loop. Since the tree level Lagrangian respects parity (in the absence of a CS term),

this system exhibits spontaneous parity violation, very reminiscent of the case of massless

spinor electrodynamics [10]. This induced parity violation is not found in the phase where

the symmetry is respected; indeed, the limit of letting the bare CS term go to zero does not

commute with that of letting the expectation value of the scalar field go to zero.

In the case of spontaneous symmetry breaking, particularly, the relation between the

parity-odd part of the vacuum polarization and the renormalization of the CS term is rather

indirect. This is best seen within the framework of the effective action. The vacuum polar-

ization tensor, in a phase with scalar field expectation value φ0, is the second derivative of

the effective action with respect to the photon, evaluated at zero photon field and at φ = φ0:

πµν(x, y) =

{

δ2Γeff

δAµ(x)δAν(y)

}∣

∣

∣

∣

∣

A=0,φ=φ0

. (3)

We are interested in the parity-odd part of this for small momenta. By Lorentz invariance,

this will be proportional to ǫµνρk
ρ; let us call the coefficient πodd(0).

πodd(0) will certainly receive contributions from the tree-level CS term as well as from

radiative corrections to it. But, as we will show, other terms in the effective action which

reduce to the CS term if one sets φ → φ0 (which we refer to as “would-be CS terms”) will

also contribute to πodd(0), making the extraction of the radiative correction to the CS term

itself more complicated. In fact, if we rephrase the statement of the Coleman-Hill theorem

in terms of the non-renormalization of the coefficient of the CS term in the effective action,

then, as will be shown below, at least in the case of minimally-coupled scalar electrodynam-

ics, the newly-stated theorem remains valid even in the presence of spontaneous symmetry

breaking. More precisely, in spontaneously-broken, minimally-coupled scalar electrodynam-
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ics, the coefficient of the CS term in the effective action does not receive a radiative correction

at one loop.

To be specific, the model we consider consists of a real scalar doublet with gauged SO(2)

symmetry and with bare CS term, described by the Lagrangian

L = −
1
4
Fµν

2 + µ
2
ǫµνλAµ∂νAλ −

1
2ξ

(∂µA
µ)2

+1
2
(Dµφ)a

2
−

m2

2
φ2 −

λ
4!
φ4 −

τ
6!
φ6,

(4)

where φ2 = (φa)
2 and (Dµφ)a = (∂µδab − eAµǫab)φb. The third term is for gauge fixing; we

will eventually work in the Landau gauge ξ → 0.

In what follows, we will compute the terms of interest in the effective action Γ[φ̂, Â] to

one loop, the ultimate goal being to compute the one-loop correction to the CS term, and

to show that it is indeed zero. Naively, the CS term is calculated by computing the term

in Γ which is parity-odd, bilinear in Â, and which contains one derivative. In the phase

of unbroken symmetry, this is perfectly unambiguous and correct; however, in the presence

of spontaneous symmetry breaking there are would-be CS terms which have the identical

structure if we let φ → φ0, and which necessitate additional work in order to separate them

from the true CS term.

To see this, consider the low-momentum terms in the parity-odd part of Γ. Such terms

must be expressed in terms of ǫµνλ; one finds

Γodd[φ̂(x), Â(x)] =
∫

d3x ǫµνλ(c1Âµ∂νÂλ + c2(φ̂
2)φ̂aDµφ̂a∂νÂλ

+c3(φ̂
2)ǫabφ̂aDµφ̂b∂νÂλ + higher order terms).

(5)

We can, in fact, put the coefficient c2 to zero without loss of generality, since c2(φ̂
2)φ̂aDµφ̂a

is a total derivative, and integration by parts demonstrates that the term itself is, in fact,

also a total derivative.

If we were to proceed according to the naive approach outlined above, setting φ̂ → φ0,

the third term would make an unwanted contribution to the effective action:

Γodd[φ0, Â(x)] =
∫

d3x ǫµνλ

(

c1 + eφ2
0c3(φ

2
0)

)

Âµ∂νÂλ + · · · . (6)
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We must therefore perform a supplementary calculation in order to separate the undesired

c3 part from the genuine CS term.

This can be most easily done by considering a field configuration whose scalar part has

a space-dependent piece: φ̂ = φ0 + φ1(x). If we now evaluate Γodd to linear order in φ1 and

in Â, the CS term makes no contribution, and we find

Γodd[φ0 + φ1(x), Â(x)] =
∫

d3x ǫµνλc3ǫabφ0a∂µφ1b∂νÂλ + · · · . (7)

This second calculation then gives c3, which then enables us to extract c1.

To zero loops, the effective action is the ordinary action: Γ0[φ̂, Â] = S[φ̂, Â] =

∫

d3xL[φ̂, Â]. The one-loop contribution to the effective action is obtained according to

the following prescription [19]. One expands the ordinary action about the desired field

values, S[φ̂ + φ, Â + A]. It is the part quadratic in A and φ which is relevant to one loop;

this is

Sq =
∫

d3x

{

1
2
Aµ

(

gµν∂
2 −

(

1 −
1
ξ

)

∂µ∂ν + µǫµαν∂α + e2φ̂2gµν

)

Aν

+Aµ

(

eǫac

(

φ̂c∂µ − (∂µφ̂c)
)

+ 2e2Âµφ̂a

)

φa

+1
2
φa

(

−

(

∂µδab − eÂµǫab

) (

∂µδbc − eÂµǫbc

)

−

(

m2 + λ
6
φ̂2 + τ

120
φ̂4

)

δac −

(

λ
3

+ τ
30

φ̂2
)

φ̂aφ̂c

)

φc

}

≡
∫

d3x
{

1
2
AµUµν(φ̂)Aν + AµVµa(φ̂, Â)φa

+φa
1
2
Wab(φ̂, Â)φb

}

(8)

The one-loop contribution to the effective action Γ1 is then obtained by functional integra-

tion; the result is

Γ1[φ̂, Â] =
i

2
Tr log W +

i

2
Tr log(U − V W−1V ). (9)

Were we interested in the effective potential, we could take constant field values and

evaluate the traces exactly. However, for terms in the effective action involving derivatives,we

must allow φ̂ and Â to depend on x, and some sort of approximation must be employed.

Fortunately, we are interested only in the CS and would-be CS terms, so an expansion in

derivatives of the fields and in powers of the fields themselves will suffice.
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Let us first outline the calculation of the combined genuine and would-be CS terms,

letting φ̂ = φ0. We must compare (6), on the one hand, with an expansion of (9) on the

other.1 The first term in (9) can be ignored since it makes no contribution to Γodd. In the

second term, the argument of the log can be written

X ≡ U − V W−1V = U (0)
− (V (0) + V (1))(W (0) + W (1) + W (2))−1(V (0) + V (1)), (10)

where the superscripts indicate powers of Â. We can expand X in powers of Â, X =

X(0) + X(1) + X(2) + · · ·; higher terms are unnecessary since we are only interested in terms

quadratic in Â. The relevant terms in the one-loop, parity-odd part of the effective action

are

Γodd
1 [φ0, Â] =

i

2
Tr[((X(0))−1)oddX(2)] −

i

2
Tr[((X(0))−1)oddX(1)((X(0))−1)evenX(1)] + · · · . (11)

There are rather a large number of terms; however, after some work, only one survives;

re-expressing it in terms of U , V and W ,

Γodd
1 [φ0, Â] = −

i

2
Tr

[

(

U (0)
− V (0)W (0)−1

V (0)
)

−1odd

µν
V (1)

νa W (0)−1

ab V
(1)
µb

]

+ · · · . (12)

The relevant expressions can be read more or less directly off (8). The trace is not yet cal-

culable, since it involves both derivatives (in the zeroeth-order parts) and space dependance

(in the first-order parts). A separation of these can be achieved in a derivative expansion

[20], which suffices for our purposes; the trace can then be performed. After some work, one

finds (after Wick rotation)

Γodd
1 [φ0, Â(x)] =

4µe4

3

∫

d3x ǫµνλφ
2
0Âµ∂νÂλ

∫

d3p

(2π)3

p2

((p2 + e2φ2
0)

2 + µ2p2) (p2 + m2
L)2

+ · · · ,

(13)

where m2
L = m2 + λφ2

0/5 + τφ4
0/24 and the integral is in momentum space; comparing with

(6), the coefficients of the CS and would-be CS terms satisfy the following relation:

1For simplicity, we redefine c1 so that it excludes the original (zero-loop) coefficient of the CS

term, µ/2.
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c1 + eφ2
0c3(φ

2
0) =

4µe4φ2
0

3
I, (14)

where I is the integral in (13); it is easy to evaluate, although not particularly transparent.

To calculate c3, we proceed in a similar fashion, this time giving a space-dependent piece

to the scalar field: φ̂ = φ0 + φ1(x). The term linear in φ1 and in Â is, after some work,

Γodd
1 [φ0 + φ1(x), Â(x)] =

4µe3

3

∫

d3x ǫµνλφ0ǫab∂µφ1b∂νÂλ I + · · · . (15)

Combining (7), (14) and (15), we find our main result: the radiative correction to the

coefficient of the CS term in the effective action is

c1 = 0. (16)

In summary, we have shown that in the Higgs phase of 2+1 dimensional scalar elec-

trodynamics, all one-loop contributions to the topological mass arise from manifestly gauge

invariant terms in the effective action which reduce to the CS term once the scalar field is set

equal to its vacuum expectation value, rather than being attributable to the CS term itself.

This suggests a more general theorem: namely, that the Coleman-Hill theorem restated as a

non-renormalization theorem for the coefficient of the CS term in the effective action would

be valid. We have also shown, in passing, that one-loop corrections to the topological mass

arise simply from parity-violating interactions, which exist even for scalar fields, in addition

to the known cases of fermions [4] and vector bosons [7,13].

These ideas fit in nicely with the suggestion of Khlebnikov and Schaposhnikov [8] for

the case of a completely spontaneously broken non-abelian gauge symmetry, where an ap-

parent violation of the quantization condition on the topological mass was postulated to be

attributable to the existence of other would-be CS terms. There, however, the analysis is

much more involved and has yet to be done. The case of partial breaking to a non-abelian

subgroup remains a puzzle [9]: the violation of the quantization condition on the topolog-

ical mass has thus far eluded a similar explanation, since no would-be CS terms can be

constructed in an analogous fashion.
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As this manuscript was being finalized, a paper has appeared which discusses the renor-

malization of the CS term in self-dual and supersymmetric versions of the Abelian Higgs

model [21].
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9



REFERENCES

[1] W. Siegel, Nucl. Phys. B156, 135 (1979); J. Schonfeld, Nucl. Phys. B185, 157 (1981);

R. Jackiw and S. Templeton, Phys. Rev. D 23, 2291 (1981); C.R. Hagen, Ann. Phys.

(N.Y.) 157, 342 (1984).

[2] See The Quantum Hall Effect, R.E. Prange and S.M. Girvin, eds. (Springer-Verlag,

1990).

[3] E. Witten, Comm. Math. Phys. 117, 353 (1988); Comm. Math. Phys. 121, 351 (1989).

[4] S. Deser, R. Jackiw and S. Templeton, Ann. Phys. (N.Y.) 140, 372 (1982).

[5] A.N. Redlich, Phys. Rev. Lett. 52, 18 (1984); Phys. Rev. D 29, 2366 (1984).

[6] A.P. Polychronakos, Phys. Lett. 241B, 37 (1990).

[7] R.D. Pisarski and S. Rao, Phys. Rev. D 32, 2081 (1985).

[8] S. Yu. Khlebnikov and M. E. Shaposhnikov, Phys. Lett. 254B, 148 (1991).

[9] A. Khare, et al., preprint UdeM-LPS-TH-93-150, hep-th/9306027.

[10] A. Niemi and G.W. Semenoff, Phys. Rev. Lett. 51, 2077 (1983).

[11] Y. Kao and M. Suzuki, Phys. Rev. D 31, 2137 (1985); M. Bernstein and T. Lee, Phys.

Rev. D 32, 1020 (1985);

[12] S. Coleman and B. Hill, Phys. Lett. 159B, 184 (1985).

[13] C.R. Hagen, P.K. Panigrahi and S. Ramaswamy, Phys. Rev. Lett. 61, 389 (1988).

[14] G. W. Semenoff, P. Sodano and Y.S. Wu, Phys. Rev. Lett. 62, 715 (1988).

[15] V.P. Spiridonov, JETP Lett. 52, 513 (1990); V.P. Spiridonov and F.V. Tkachov, Phys.

Lett. 260B, 109 (1991).

[16] W. Chen, Phys. Lett. 251B, 415 (1991).

10

http://arXiv.org/abs/hep-th/9306027


[17] S. Yu. Khlebnikov, JETP Letters 51, 81 (1990).

[18] V.P. Spiridonov, Phys. Lett. 247B, 337 (1900).

[19] R. Jackiw, Phys. Rev. D 9, 1686 (1973).

[20] I.J.R. Aitchison and C.M. Fraser, Phys. Lett. 146B, 63 (1984).

[21] H.-C. Kao, et al., preprint CU-TP-649 and SNUTP94-71, hep-th/9408079.

11

http://arXiv.org/abs/hep-th/9408079

