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Dielectric colloid particles prefer occupying the 
intensity maxima of an applied stationary interfer-
ence pattern of laser beams. A 2-d system of colloidal 
liquid freezes to form a triangular lattice structure 
when the external laser modulation is in 1-d and the 
period of the intensity maxima is commensurate to 
that of the triangular lattice. In this article we re-
view our recent simulation results on this phenome-
non of laser-induced freezing. 

1.   Introduction 

THE melting transition in 2-d systems is an extra-
ordinarily interesting phenomenon. Long wave-length 
phonon modes are known to destroy the long range 
translational order in 2-d crystals. Nonetheless there is a 
sharp phase transition separating the low temperature 
‘crystalline’ phase with power law decay of the transla-
tional order parameter correlations (quasi-long range 
order) from the high temperature ‘liquid’ phase with 
exponential decay of the order parameter correlations. 

Topological defects (Box 1) are known to play an 
important role in this ‘melting’ process. The transition 
can be a two stage continuous transition through a hexa-
tic phase as proposed by Kosterlitz, Thouless, Halperin, 
Nelson and Young (KTHNY)1–3 (Box 2). Alternately, 
the crystal can directly melt through a first order transi-
tion to form the uniform liquid. One of the mechanisms 
proposed for such a first order transition is the sponta-
neous generation of grain-boundaries4. Experiments5 
and numerical simulations6,7 suggest that a 2-d crystal 
can melt through either of the proposed mechanisms 
depending on the value of the core energy of the dislo-
cations, which in turn depends on the microscopic inter-
actions. 

In the density wave picture of freezing8, a liquid 
freezes to a crystalline structure when the free energy 
for spontaneously generated density waves correspond-
ing to the crystalline structure becomes lower compared 
to that of the liquid. Consider an external field which 
couples to such density modulations. This will lower the 
free energy for structures having density modulation at 
the applied wave-vectors. If the externally applied field 
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has wave-vectors corresponding to a subset of the crys-
talline wave-vectors, it can induce a freezing transition 
because of the nonlinear coupling among the (density) 
order parameters. 

In practice, generating such a modulating field corre-
sponding to the particle separations in atomic systems is 
beyond our present experimental capabilities. Charge 
stabilized colloidal particles (polyballs), with the typi-
cal separation in the micrometre length scale and very 
high dielectric constant allow an easy implementation 
of the above experiment. In laser-induced freezing (LIF 
for short), one excites a subset of the crystalline density 
modulation modes by applying a stationary interference 
pattern of laser beams (obtained by superposing two 
laser beams). Because the separation scale of colloid 
particles is comparable to the optical wavelength, visi-
ble (laser) light can be used to produce such modulated 
structures. In this paper we discuss the LIF transition in 
colloids confined to 2-d, and in particular review our 
recent simulation results on LIF9–12 which suggest a 
first-order transition for the system under consideration. 
Frey et al.13 have recently extended the KTHNY dislo-
cation mediated melting theory to LIF in 2-d. Our simu-
lations suggest that an extension of the idea of grain-
boundary induced melting may be needed to understand 
LIF in 2-d charge stabilized colloids. 

The rest of this paper is organized as follows. In §2 
we review the properties of the colloid particles which 
make them the ideal system for constructing optical 
matter and for studying 2-d melting. In §3 we review 
the phenomenon of laser-induced freezing. In §4 we 
present the phase diagram obtained from our Monte 
Carlo simulations. We discuss results from a Brownian 
dynamics study of the melting mechanism in §5. In §6, 
we present some very recent results from Monte Carlo 
simulations of LIF in hard sphere colloids which seem 
to show a reentrant melting unlike the charge stabilized 
colloids. Finally we conclude with some remarks about 
the studies that need to be undertaken for a complete 
understanding of laser-induced freezing. 

2.   Charge stabilized colloids 

Colloidal suspensions14,15 are systems of particles 
dispersed in a solvent with particle sizes much larger 
than the atomic dimensions but small enough for the
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Box 1.   Defect structures in 2-d triangular lattices 
 

 
Triangular lattice 
 

 
 
In a perfect triangular lattice, each of the particles has ex-
actly six nearest neighbours. Nearest neighbours of particle 
m can be defined as the particles which participates in form-
ing the Voronoi cell of the particle m. An ideal triangular lat-
tice has both long-range translational and orientational order. 
The lines in the figure are to aid in identifying the 
neighbours.  

 
Dislocation 
 

 
 
Burgers circuit (denoted by the thick line) fails to close. The 
dislocation can be thought of as formed by two disclinations 
of opposite sign. A dislocation does not disrupt long-range 
orientational correlation, but badly affects translational order. 

 
Disclination 
 

 
 
A disclination for the triangular lattice is a particle which has 
number of nearest neighbours different from six. In the fig-
ure, the particle identified by + has seven nearest 
neighbours. Disclinations badly disrupt both orientational and 
translational order. (Figure adapted from ref. 34.) 
 

Grain-boundaries 
 

 
 
A grain-boundary is a separating line between two crystal-
lites with different orientations and can be thought of as 
formed by a correlated string of dislocations (s and • refers 
to particles with five and seven neighbours, respectively.) 
The change of crystalline orientation, as one crosses a 
grain-boundary, depends on the Burgers vector of the grain-
boundary. If the system is full of micro-crystallites, both the 
orientational and the translational orders are disrupted. 

 
 

particles to be subjected to Brownian motion to prevent 
sedimentation due to gravity. The dynamics is governed 
by Langevin equations and there is a true thermo- 
dynamic temperature as opposed to the granular sys-
tems. The mechanism which prevents the particles from 
agglomeration can either be the presence of electric 
charges on the surface (called charge stabilization) or 
the adsorption or chemical binding of large molecules 
to the particles (called steric stabilization). Over the last 
few decades, the synthesis of spherical polymeric parti-
cles (polyballs) with a very narrow size distribution has 

paved the way for studying the polyball systems as 
model condensed matter systems, with length and time 
scales suitable for performing many experiments which 
would be either beyond our capability or very difficult 
in the context of atomic systems. In this paper we 
mainly consider a model of aqueous suspension of 
mono-disperse charge stabilized polystyrene spheres. 
Each of these colloid particles is made of a large num-
ber of styrene polymeric chains entangled in a coil. 
These chains start and end with an acidic group, like 
–KSO4. In a solvent with high dielectric constant, like
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Box 2.   KTHNY theory of melting 

 
A dislocation pair, composed of two dislocations with opposite 
Burgers’ vectors, cost an energy which is proportional to the 
logarithm of their separation35. So, at low temperatures, the 
dislocation pairs that are spontaneously generated are 
strongly bound and deform the lattice structure only locally, 
without affecting the global translational or orientational 
correlations. Kosterlitz and Thouless1 predicted that a two-
dimensional crystal melts at a temperature Td by dissociation 
of these thermally generated dislocation pairs to form free 
dislocations which destroys the (quasi) long range transla-
tional order. Also according to their theory, the transition is 
continuous and is in the same universality class as XY model, 
2d superfluids and 2d superconductors. From elasticity the-
ory, the free energy cost for creating a dislocation pair with 
the smallest possible Burgers vector 
| b
r

| = a, the lattice vector, is given by: 
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Here the interaction coefficient K(T) determined by the elastic 
moduli of the crystal, || RR

r
≡  is the distance between the two 

cores of the dislocations with core sizes ac and core energy 
Ec, and φ is the angle between b

r
and R

r
. Physically Ec is the 

energy associated with the destruction of the order parameter 
inside the dislocation core. The Kosterlitz-Thouless melting 
transition (KT) corresponds to the breakup of dislocation pairs 
with increasing temperature as the entropy term in the free 
energy connected with the large number of possible ar-
rangements of the free dislocations becomes more important 
compared to the elastic energy cost.  
 
 

 
 

Halperin and Nelson2 and independently Young3 noted that 
the 2d particle systems have another relevant order parame-
ter not addressed in the Kosterlitz–Thouless treatment. De-
fine a local bond-orientational order parameter at the particle 
position rn as  
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where zn is the number of nearest neighbours of the nth 
particle and θmn is the angle of imaginary bond connecting nth 
particle with its mth neighbour about some fixed direction. 
ψ6(r) measures the local mean orientation modulo π/3 of all 
the nearest neighbours. Free dislocations destroy the (quasi) 
long range translational order but the orientational order 
remains (quasi) long-ranged. This liquid crystalline phase is 
called the hexatic phase and it has power law decay of the 
bond-orientational order parameter correlation function and 
exponential decay of the translational order parameter corre-
lation function. Halperin, Nelson and Young considered the 
hexatic phase with the interaction free energy as, 
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where θ(r) is the phase of the bond-orientational order at r 
and stiffness constant KA is called the Frank constant. Re-
normalization group technique gives another KT like transition 
at a temperature Ti (> Td) to the isotropic liquid phase where 
both the bond-orientational and the translational order pa-
rameter correlations decay exponentially to zero. Physically a 
disclination is a particle having different co-ordination number 
as compared to the ideal lattice. A particle having more (less) 
number of nearest neighbours than the ideal lattice case is 
termed as +ve charge (–ve charge). Dislocations are com-
posed of pair of disclinations of opposite charge. Ti corre-
sponds to the temperature where disclinations unbind. Thus 
in the KTHNY mechanism the crystal melts to liquid through 
two continuous transitions with essential singularities in the 
thermodynamic quantities and universal jump discontinuities 
of the dislocation pair interaction strength K and the orienta-
tional stiffness KA, respectively, at the dislocation and the 
disclination unbinding transitions36. 

 

 
water (ε ~ 80), the end surface groups dissociate and 
provide a large electrostatic negative charge per particle 
(~ 1000 e for a particle diameter of 1000 Å, where e is 
the charge of an electron). The counterions (cations like 
K+) liberated from the polyballs and additional ions 
present in the solvent form a cloud around each polyball 
and hence screen the Coulomb interaction between 
them. The total interaction potential between two poly-
balls is generally written as a sum of the short-range 
London-van der Waal’s attraction and the (screened) 
electrostatic repulsion. Since the attractive part is short-
range (~ 20 Å), the particles separated by more than 
a diameter or so feel only the repulsive part, given by 
the Derjaguin–Landau–Verwey–Overbeek (DLVO) 
potential16,17. 
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where κ is the inverse of Debye screening length given 
by: 
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Here np is the number density of the polyballs of radius 
R, each having surface charge Z*e. The additional ions 
of type α with number density nα and charge zα contrib-
ute to the screening in addition to the counterions. As 
can be seen from eqs (4) and (5), the experimental 
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parameters that can be tuned to control the strength and 
the range of the inter-particle repulsive interaction are 
Zp, ε, np, nα. Since for a noninteracting dipolar liquid, ε 
would have behaved inversely as T, the potential and 
the Boltzmann weight exp[–V/kBT] have only a weak 
temperature dependence. So T is not a good tuning 
parameter. Furthermore, a change in T could introduce 
unknown and uncontrolled influx of additional screen-
ing charges in the solution due to the activated nature of 
the ionic dissociation constants of the walls and poly-
balls themselves. Because of the ease in tuning, usual 
experiments change the polyball number density np and 
the impurity density nα to control the interaction poten-
tial keeping the temperature fixed all the time. Chang-
ing the impurity density nα effectively changes the 
range of the interaction. In our simulations we change κ 
to induce a phase transition from crystalline structure to 
a liquid phase. 

The characteristic length and time scales for the col-
loidal particles are several orders of magnitude larger 
than those in atomic systems. Micrometer sized colloid 
particles can be observed in an optical microscope and 
the large collision times (10s of milliseconds) make real 
time video of the particles to study the dynamics a pos-
sibility. For our purpose the most important property is 
the high dielectric susceptibility χ of the polyballs. The 
dielectric susceptibility χ can be expressed as  
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where n1 and n2 are the refractive indices of the poly-
balls (~ 1.58) and of the solvent (for water ~ 1.33) 
respectively; R is radius of polyballs (~ 1000 Å). The 
typical dielectric susceptibility of polyballs is 
χ ~ 10–13 cm3, which is about a million times larger 
compared to a conventional atomic system. Dielectric 
colloidal particles can be manipulated by a laser beam 
to form extended structures (Optical matter18). The 
interaction energy of the colloidal particle in presence 
of an electric field E is W = 

2
1− χE2. Interesting effects 

like the formation of extended structures are possible 
when the trapping potential W � the thermal energy 
kBT. Because of the large χ this is easily attainable in 
polyballs as opposed to the atomic systems where such 
effects would have required prohibitively large external 
field intensity. 

Early experimental studies of two-dimensional melt-
ing were on gases such as Ar or N2 adsorbed on solid 
substrates such as graphite19 or electron gases confined 
to 2-d (ref. 20). However, for such studies polyballs 
offer a number of advantages over the atomic systems. 
In the latter case the substrate potential from the under-
lying lattice plays an important role in the melting and 
specially in the bond-orientational order. In case of the 

colloid particles, the substrate can be made absolutely 
smooth on the length scale of colloidal particles. Charge 
stabilized colloid particles can be confined to form a 
monolayer with the typical out of the plane movement 
less than 1% of the typical in-plane movement. This 
prevents the problem of vacancies getting created by 
particles moving out of the plane, which is important 
since vacancies can have strong effect on the melting 
transition. 

3.   Laser-induced freezing 

Especially interesting, and the focus of this article, is 
the physics of a 2-dimensionally confined charge stabi-
lized colloidal system subjected to a one-dimensionally 
modulated stationary laser intensity pattern (Figure 1). 
Chowdhury et al.21 obtained such a 2-d system of 
charge-stabilized colloidal particles by confining them 
between two glass plates. The glass plates become 
negatively charged when in contact with the solvent and 
provide a repulsive force on the negatively charged 
colloid particles. In response to this repulsion, the poly-
balls form a monolayer at the center of the experimental 
cell. For large enough κ, the polyball system remains in 
an isotropic liquid phase. The authors subjected this 
liquid system to a laser intensity pattern periodically 
modulated along one direction, which they obtained by 
superposing two coherent beams at an angle. Using 
light scattering techniques they found that when the 
wave-vector of the stationary electric field was tuned to 
half the wave-vector q0 where the liquid structure func-
tion develops its first peak, a triangular lattice with full 
two-dimensional symmetry resulted. In the presence of 
the stationary external field, the system gains energeti-
cally by having density modulations corresponding to  
 
 

 
 

Figure 1.   Schematic arrangement of the particles in the intensity 
pattern due to the external field. 
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the wave-vector of the modulating field. Because of the 
nonlinear coupling among the different order parameter 
modes, beyond a certain external field intensity even 
the modes which are not directly coupled to the external 
field become non-zero resulting in a 2d crystal. This 
phenomenon is christened as laser-induced freezing (LIF). 

This apparently simple experiment has nonetheless a 
rich physics. The 2d nature of the system allows for 
several scenarios for the melting transition. The exter-
nal field could also change the nature of transition, in 
addition to changing the effective transition screening 
parameter, κ. A simple Landau–Alexander–McTague 
theory, presented by Chowdhury et al.21 showed a rich 
phase diagram with a first order transition at the zero 
external field turning to a second order transition at 
higher field strengths. At still higher field strengths, the 
crystalline phase becomes unstable, giving rise to reen-
trant melting. 

The apparently continuous growth of intensities of the 
crystalline Bragg peaks with increasing external field 
intensity was taken by Ackerson and Chowdhury22 as an 
indication in favour of a second-order transition sce-
nario. Later experimental studies involving direct mi-
croscopic observations23 and simulational studies using 
the Monte Carlo (MC) technique24 confirmed the phe-
nomenon of LIF, but without addressing questions con-
nected with the details such as the order of the 
transition and the phase diagram. 

Xu and Baus25 and Barrat and Xu26 studied this phe-
nomenon of LIF using density functional theory (DFT)8. 
Their results seemed to indicate that the melting transi-
tion remains first order for all values of the external 
field strength. Chakrabarti et al.27, in their study of LIF 
using DFT have shown from general symmetry argu-
ments that, for a suitable choice of the modulation 
wave-vectors, the free energy expansion for the crystal-
line phase about the modulated liquid phase (where the 
density is modulated in one direction in response to the 
external field, but still the full 2d crystalline structure is 
missing) contains the relevant order parameters only in 
even powers. Hence there arises a possibility of change 
over from the first-order freezing transition at low ex-
ternal field strengths to a continuous transition for large 
enough external field via a tricritical point28. 

In a later work Chakrabarti et al.29 studied a two- 
dimensional colloidal system using Monte Carlo simu-
lation. The use of a standard procedure of looking at 
finite-size behaviour of the fourth cumulant of the en-
ergy30 seemed to confirm the existence of the tricritical 
point. Their study also found an intriguing re-entrant 
modulated liquid phase – where increasing the external 
field strength actually melted the system instead of 
taking it towards the crystalline phase. 

However, recent, more detailed, simulations by us9–11 
show that the transition remains first order for arbitrar-
ily large field strengths, albeit weakly so. In the pres-

ence of the external field, the correlation length near the 
transition becomes large (though finite) and the entropy 
difference between the crystalline and the liquid phase 
becomes small. This hides some of the features of first 
order character of the transition and one needs to simu-
late large system sizes to find the true nature of the 
phase transition. Furthermore, we find that the mecha-
nism for the transition seems to be closely related to the 
grain boundary induced melting. Our simulation results 
do not find any re-entrant liquid phase within the statis-
tical uncertainty of the simulation results. These results 
are discussed in more details in §4 and §5. 

Very recently, Wei et al.31 reported an experimental 
study of LIF and from the decay of pair correlation 
function and the real space density plots concluded that 
their results were in accordance with the results of ref. 
29, showing a re-entrant liquid phase. Frey et al.13 have 
considered the problem of LIF from the point of view of 
the dislocation unbinding mechanism and their calcula-
tions show that there is a re-entrance in the dislocation 
unbinding temperature. 

4.   Monte Carlo simulation and phase-diagram 

In this section we discuss in more detail our extensive 
Monte Carlo simulations of the LIF problem alluded to 
above. The inter-particle potential is taken to be 
of DLVO form (eq. (1)) and the external field is mod-
elled as a position dependent potential given by 
–Vecos(q0 ⋅ x), where q0 is the smallest reciprocal lattice 
of the triangular lattice [q0 ≡ 2π/(√(3/2a0) (1, 0); where a0 
is the lattice spacing]. Besides finite values of Ve, we  also 
have considered the limiting case of infinite Ve, which we 
simulate by constraining the particles to move only along 
a set of lines defined by the potential minimum. 

 

 
Figure 2.   Correlation length for infinite field, as estimated from the 
decay of the translational order parameter correlation function paral-
lel to external field minima for two different system sizes: 70 × 70 
and 100 × 100. 



SPECIAL SECTION: SOFT CONDENSED MATTER 
 

CURRENT SCIENCE, VOL. 80, NO. 8, 25 APRIL 2001 964

In Figure 2 we show the correlation length at Ve = ∞, 
as determined from the decay of the translational order 
parameter correlations along the y-direction. Near the 
transition, the correlation length is large but remains 
finite, signifying a weakly first-order transition. The 
simulation results obtained for a range of values of Ve 
and system sizes L fit to a first-order finite-size scaling 
scenario if the correction terms beyond the leading 
order are included. The correction terms become more 
important as one goes to larger values of Ve because the 
external field greatly reduces the energy and entropy 
differences between the liquid and the crystalline phase 
(cf. Table 1). 

In Figure 3 we present the phase diagram obtained 
from the finite-size scaling analysis of the MC simula-
tion data. The computational constraints force us to use 
system sizes ranging from L = 8 to L = 30 for finite βVe 
and up to L = 100 for βVe = ∞ (where motion in one 
direction is frozen leading to less computational re-
quirement for a particular system size as compared to 
finite βVe). Still the L values (even for βVe = ∞) are 
small enough that we had to use correction terms to 
usual leading order finite-size scaling relations to esti-
mate the infinite system quantities9. Our extensive  
 

 

Table 1.   Results from finite-size scaling of the Monte Carlo data 

βVe κ∞*as β(E+ – E–) 
 
0.0 14.34 ± 0.02 0.071 ± 0.0067 
2.0 15.66 ± 0.03 0.0044 ± 0.0031 
∞ 15.62 ± 0.05 0.0014 ± 0.0004 

 
 
 

 
Figure 3.   Phase diagram of laser-induced freezing, obtained from 
finite size scaling. 

simulations do not show any re-entrant transition to the 
modulated liquid phase at high fields, as opposed to 
earlier simulation results29. The scaling analysis also 
gives the jump in internal energy at the transition 
(Table 1). For large βVe, the system sizes used in ref. 29 
were much smaller than those presented here and com-
parable to the correlation length. Hence, for large exter-
nal fields they were below the range of system sizes 
where the finite-size scaling analysis is valid. This 
could have led to apparent signatures of a second-order 
transition in ref. 29. In a first order scenario, the height 
of the specific heat peak is proportional to the square of 
the internal energy difference between the two phases at 
the phase transition. Thus the peak height of the spe-
cific heat becomes small with increasing field strength. 
The averaging done in ref. 29 was not enough to resolve 
this small peak from the statistical noise. With similar 
averaging as of ref. 29, we also find from our simula-
tion data that spurious peaks appear in the specific heat 
data. The base line of the specific heat increases with 
decreasing κ. This probably led to a biased search for 
specific heat peaks at low values of κ and a spurious 
peak was probably mistakenly identified as a true spe-
cific heat peak, leading to the phase diagram with 
re-entrant melting in ref. 29. 

Our MC results and mean-field analysis show that the 
modulated liquid phase is liquid crystalline in nature 
with nonzero anisotropic shear rigidity. The external 
field couples to the bond-orientational order parameter 
also. So even for parameters where in absence of the 
external field the system freezes through a two-stage 
continuous transition (KTHNY mechanism), the 
disclination unbinding transition will be wiped out in 
the presence of a finite βVe (ref. 10). 

5.   Dynamics of melting: Grain-boundaries 
and slide-boundaries 

Simulation of 2-d systems offers the possibility of visu-
alizing the defect structures that arise in the simulated 
configurations. Since the melting transition in 2-d is 
known to be dominated by the topological defects, such 
visualization can aid in distinguishing among the differ-
ent scenarios that have been proposed for the 2-d melt-
ing. Also, because one is interested in the dynamics of 
the melting mechanism, one does not need the large 
equilibration time needed for simulating large systems 
sizes. Hence we have studied the same system as dis-
cussed above using a Brownian dynamics simulation. 

In the configurations generated in the simulation, dis-
clinations are identified by constructing the Voronoi 
cell for each of the particles. At any finite temperature, 
the particles move around about the lattice points. Mov-
ing a single particle by a small amount can generate a 
dislocation pair or a small cluster of disclinations with 
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net Burgers vector being zero and which do not have 
any energy barrier against annihilation. Many such 
clusters can form and disappear without facing any 
energy barrier. At finite temperatures, it is therefore to 
be expected that subsequent configurations will have 
some new defect structures while some of the older 
ones disappear. These ‘virtual defects’ present in any 
given configuration can be removed by moving the 
system ‘downhill’ in energy. The resulting configura-
tion is called ‘inherent structure’. The construction of 
the inherent structure does not change any of the quali-
tative features of the actual configuration generated in 
the simulation, but helps one to identify the long lived 
defects contained in them in a clean way. 

From our Brownian dynamics simulations10, in 
absence of the external field, we find that as κ is 
increased, the number of dislocation pairs increase, they 
form small loops, the loops merge with each other and 
eventually result in forming grain boundaries that cover 
the full system at the melting transition – so that both 
the translational and the orientational orders disappear 
simultaneously. 

In Figure 4, we have shown the inherent structure cor-
responding to κas = 14.5 at zero field, where the crystal  
 

 

 
Figure 4. Grain boundaries in the inherent structure for a typical 
zero field liquid configuration. The triangles, circles and stars corre-
spond to z = 5, 7 and 8 respectively. 

has melted. The inherent structure has a number of 
micro-crystallites whose orientations change abruptly as 
one crosses the grain-boundaries separating them. The 
grain-boundaries are formed by oriented strings of dis-
locations32. 

In the presence of the external modulating potential, 
the bond-orientational order remain long-ranged10. So, 
the usual grain-boundaries with non-zero Burgers vec-
tors (which would imply that the orientation of the 
crystallites changes as one crosses the grain-boundary) 
are energetically unfavourable. In the liquid configura-
tion in presence of finite field, we find that a large 
number of correlated defects are present. Here the 
orientation is same throughout the sample and the corre-
lated defects which define different patches are 
essentially small collections of dislocations which have 
net zero Burgers vector. 

In order to analyse the finite βVe defect structures in 
more detail, we define a local order parameter at the 
position of particle m as, ],exp[ md

m
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which together with ,ˆ0 xq±  define the first shell of the 
crystalline reciprocal lattice vectors (rlv). Neighbouring 
particles m and n, which satisfy the condition 

,8.1|| ≥+ n
d

m
d ρρ are considered to be in the same clus-

ter (for a perfect lattice, the value would have been 2, 
while for completely uncorrelated particles, the value 
of the sum would be 0). After identifying such clusters, 
each cluster is assigned the mean value of the phase 
of n

dρ  for n being a member of the cluster. We 
have checked that variations in this coarse grain- 
ing procedure do not lead to qualitatively different 
results. 

Figure 5 shows the phase of ρd(r) constructed in this 
way, superposed with the ‘inherent’ defect structure for 
βVe = 5.0 and κas = 15.4, which corresponds to 
the crystalline phase. The small number of defects pre-
sent locally create regions with phase mismatch. 
But by and large the phase remains same over the 
full system and averaging over the configuration gives 
non-zero value of the order parameter. In contrast, 
in Figure 6, corresponding to κas = 16.0, where 
the system is in the modulated liquid phase there 
is a proliferation of defects, which succeed in 
breaking up the system into parts with completely 
uncorrelated phases of the order parameter. The 
‘grains’ now have a fixed orientation, and the 
corresponding ‘grain-boundaries’ are ‘slide-
boundaries’. 
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Figure 5.   Phase of order parameter ρd in the crystal. The triangles, circles and stars respectively de-
note particles with coordination number 5, 7 and 8, i.e. correspond to disclinations. The defect struc-
tures induce local phase mismatches. But still there is long-range phase correlation leading to a non-
zero order parameter value, as the defects are tightly bound. 

 

 
Figure 6.   Phase of order parameter ρd in the liquid. The triangles, circles and stars respectively de-
note particles with coordination number 5, 7 and 8, i.e. correspond to disclinations. Correlated defect 
structures break up the system in grains which does not match in the order parameter phase. The order 
parameter becomes zero, when averaged over the full system. 
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6.   Laser-induced freezing in hard-sphere 
colloids 

In the limit of very high screening, i.e. large κ, charge 
stabilized colloids can be well approximated as a hard-
sphere system, i.e. with a model potential between the 
particles given by: V(r) = ∞ (r < R), 0(r > R). There are 
other systems such as sterically stabilized colloids 
which are also good candidates for being described by 
this model. Hence, it is of obvious interest to study LIF 
in such a model system. 

We have recently carried out Monte Carlo simulation 
of LIF in a 2-d hard sphere, i.e. hard-disc system. The 
relevant control parameter is the area fraction (φ). In 
our simulations, we change the area fraction by chang-
ing the diameter of the particles, while the box size and 
the number of particles (900) are held fixed. Tempera-
ture is not a relevant quantity for this system when the 
external potential is absent; but in the presence of the 
potential, we choose the unit of energy chosen as the 
thermal energy kBT. The typical number of configura-
tions which have been simulated in order to compute 
the equilibrium averages is of the order of 5 × 106. 

The translational order parameter for the kth rlv, kq
r

is 
calculated as 
 

.)exp(
1 ∑ ⋅=

i
iki

Nk
rqq
rr

rρ  (7) 

 
This definition removes any dependence on the origin 
of co-ordinates. The order parameter so defined is of 
order unity in the crystalline state, while in the liquid 
state it goes to zero as 1/N1/2 for a system of N particles. 

We denote by ρl the order parameters for the wave- 
vectors parallel to the modulation wave-vector, e.g. 
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and by ρd the order parameters for the other four first-
shell wave-vectors, such as 
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In Figure 7 a we have plotted ρd for the cases when 
there is no external field and when the field strength is 
infinite. In the case of zero field, entropy is the only 
mechanism that is forcing the density modes at the 
wave vectors kq

r
 to develop, and this happens at a pack-

ing fraction of about 0.7. For the case of infinite 
strength, the external potential is so large that the free-
dom of the particles to move in the x-direction is totally 
suppressed and hence they can execute motion only in 
the y-direction. Now we find that ρd becomes sizeable 
when the area fraction exceeds 0.68. This value of the 
area-fraction corresponds to the situation when there is 
vertical contact between the particles for the first time. 
For all area fractions less than 0.69, the system consists 
of L uncoupled 1-dimensional chains of particles, with 
particles in the same line interacting through the hard-
sphere repulsive potential. We know that a disorder-to-
order transition is not possible in a 1-dimensional sys-
tem with short-ranged interactions. Hence there is no 
ordering before φ = 0.69. Development of the density 
mode corresponding to the wave-vector q2 occurs only 
when a coupling between two neighbouring chains is 
established through vertical contact. To identify 
the threshold for the transition from the modulated 
liquid to modulated crystal phase, we have plotted 
dρd/dφ as a function of φ in Figure 7 b. It can be seen 

 

 
 

Figure 7.   Variation of ρd (a) and dρd/dφ (b) for βV0 = 0 and for infinite field. 

a b 
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Figure 8.   Plots of ρd and dρd/dφ for some typical values of field strength, βV0 = 0.1, 1.0, 10.0 and 2000. 

 

 
that dρd/dφ has a pronounced peak at certain φ signify-
ing sharp change in ρd at that value of φ. We identify 
the peak in dρd/dφ as the onset of the freezing transition 
leading to a non-zero density mode ρd. These area frac-
tions for the zero-field and infinite-field are 0.702 and 
0.688, respectively. 

In Figure 8, we have plotted the variation of ρd and 
dρd/dφ with changing area fractions for some typical 
values of field strength (βV0 = 0.1, 1.0, 10.0, 2000.0, 
where β = 1/kBT). From the plots we have identified, for 
each value of βV0, the corresponding value of φ where 
the onset of freezing occurs. Using these values, we 
have thus constructed the phase diagram of the hard-
sphere colloidal system in the presence of an external 
laser field, which is plotted in Figure 9. 

As noted above, in the absence of the laser field, the 
onset of freezing takes place at an area fraction value of 
0.702. When the field is switched on, the density modes 
(ρl) corresponding to the modulating wave-vector 
become nonzero, and this facilitates the development of 
the other density modes (ρd) causing the freezing transi-
tion to happen at a smaller φ. As we can see from the 
phase diagram, the value of φ required for freezing 
continues to decrease till a βV0 value of 2.0, where it is 
down to 0.667. Then it increases again to reach the 
infinite-field limit of about 0.69. A possible explanation 
for this latter increase could be the following. As βV0 
gets increased to values much larger than unity, the 
motion of the particles become more and more re-
stricted to be around the lines q0x = (2n + 1)π. Thus, 
beyond a threshold value of the field strength, the influ-
ence of particles of neighbouring lines on the motion of 
particles on a particular line decreases. This manifests 
in the fact that the condensation of the density mode ρd 
takes place at a higher area fraction compared to the 
values corresponding to field strengths below that 
threshold. With increasing field strength, the value of 
the critical φ goes on increasing until it reaches the 
limiting value of 0.688. 

 
Figure 9.   Phase diagram of the colloidal system for 900 particles in 
an external laser field. 

 
If we examine the phase diagram in Figure 9, we can 

see that for any fixed value of φ less than 0.66, the 
colloidal system continues to be in modulated liquid 
state for all values of βV0. For values larger than 0.7, 
the system remains in crystalline form throughout the 
entire range of field strengths. The intermediate region 
is interesting. For example, consider a φ value of 0.675. 
For low field strength, at this volume fraction, the sys-
tem behaves like a modulated liquid. If one exceeds a 
certain field strength (βV0 = 1.4), the system undergoes 
a transition to a modulated crystalline state. But beyond 
βV0 = 31, the hard sphere system again becomes a 
modulated liquid. Thus, from the measurement of the 
translational order parameter in Monte Carlo simula-
tions, we find a possibility of re-entrant behaviour in 
the two-dimensional hard sphere system in the presence 
of an external modulation potential. 

To examine the three phases at φ = 0.675, we have 
measured in our simulations the equilibrium real-space 
particle density 〈ρ(x, y)〉 for three different field 
strengths, by averaging over 1.5 × 105 configurations



SPECIAL SECTION: SOFT CONDENSED MATTER 
 

CURRENT SCIENCE, VOL. 80, NO. 8, 25 APRIL 2001 969

 
Figure 10.   Contour plot of the average density for φ = 0.675 in the presence of a modulation potential with 
βV0 = 0.1 corresponding to the modulated liquid phase. 

 
 

 
Figure 11.   Contour plot of the average density for φ = 0.675 in the presence of a modulation potential with 
βV0 = 2.0 corresponding to the crystalline phase. 

 

after equilibrating for 105 configurations. The results 
are shown in Figures 10–12. 

From the plots, we can see that for βV0 is equal to 0.1, 
the system is in a liquid state, the modulations not being 
very prominent. When βV0 is equal to 2.0, the system is 

nearly crystalline and for βV0 = 1000, the system loses 
its crystalline structure and again becomes a modulated 
liquid. This confirms the occurrence of a re-entrant 
melting as a function of the strength of the modulating 
potential. This is consistent with the recent prediction
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Figure 12.   Contour plot of the average density for φ = 0.675 in the presence of a modulation potential with 
βV0 = 1000.0 corresponding to the reentrant liquid phase. 

 
 
 

by Frey et al.13, but it remains to be shown that the 
melting here is a continuous transition and is mediated 
by the unbinding of dislocations. More extensive simu-
lations are needed to demonstrate the latter. Meanwhile, 
it would be interesting to carry out experiments involv-
ing hard sphere colloidal particles and observe whether 
such a reentrant melting occurs as the strength of the 
laser field is increased. 

After the above work was completed, we learnt of an 
independent and more extensive Monte Carlo simula-
tional study on the same system by Strepp et al.33. Their 
phase diagram, obtained using the cumulant intersection 
method, is qualitatively and quantitatively similar to the 
one obtained by us. This further strengthens the case for 
the existence of the re-entrant modulated liquid phase in 
a hard-sphere colloidal system subject to an external 
laser field modulation. 

7.   Remarks 

In this review we have presented our recent simulation 
results on laser-induced freezing in charge stabilized 
colloids which show that for the system considered, the 
transition is weakly first order for all values of the ap-
plied field. In the absence of the external field, the 
crystal seems to melt via the generation of grain-
boundaries. At finite fields, slide-boundaries would 
seem to be responsible for destroying the order. 

It is generally accepted that at high core energies, the 
melting transition in 2-d follow the dislocation unbind-
ing route (KTHNY) and there is a hexatic phase 
between the crystalline and the liquid phases. Arm-
strong et al.5 in their experiments find that the transition 
is either through dislocation unbinding or generation of 
grain-boundaries depending on the polyball diameter. 
The particle diameter in our simulations correspond to 
the value where Armstrong et al.5 find generation of 
grain-boundaries. It will be interesting to do simulations 
at different particle sizes and test the predictions of 
Frey et al.13 on dislocation unbinding picture of LIF, as 
well as understand the crossover from that mechanism 
to the grain/slide-boundary mechanism for LIF. 
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