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Abstract

A strong-coupling expansion for the Green’s functions, self-energies and correlation functions

of the Bose Hubbard model is developed. We illustrate the general formalism, which includes

all possible inhomogeneous effects in the formalism, such as disorder, or a trap potential, as well

as effects of thermal excitations. The expansion is then employed to calculate the momentum

distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero

temperature through third-order in the hopping. By using scaling theory for the critical behavior

at zero momentum and at the critical value of the hopping for the Mott insulator to superfluid

transition along with a generalization of the RPA-like form for the momentum distribution, we

are able to extrapolate the series to infinite order and produce very accurate quantitative results

for the momentum distribution in a simple functional form for one, two, and three dimensions;

the accuracy is better in higher dimensions and is on the order of a few percent relative error

everywhere except close to the critical value of the hopping divided by the on-site repulsion. In

addition, we find simple phenomenological expressions for the Mott phase lobes in two and three

dimensions which are much more accurate than the truncated strong-coupling expansions and any

other analytic approximation we are aware of. The strong-coupling expansions and scaling theory

results are benchmarked against numerically exact QMC simulations in two and three dimensions

and against DMRG calculations in one dimension. These analytic expressions will be useful for

quick comparison of experimental results to theory and in many cases can bypass the need for

expensive numerical simulations.

PACS numbers: 03.75.Lm, 37.10.Jk, 67.85.Hj
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I. INTRODUCTION

The Bose Hubbard model [1, 2, 3] was heavily studied as a simple model for disordered

superconductors [2]; subsequently it was demonstrated [4] that ultra-cold atoms trapped

in optical lattices provide an alternate, and more controllable, experimental realization of

it, sparking even more interest. One of the most useful tools for analyzing the states of

cold atom systems is a time-of-flight measurement of their momentum distribution when

the lattice and trapping potentials are rapidly shut off and the atomic cloud is allowed to

expand and then is imaged with absorption spectroscopy [5]. The time-of-flight image, in

the long-expansion-time limit, is directly related to the momentum distribution function of

the atoms in the optical lattice before expansion [6, 7].

Even before cold atom systems were employed to examine Bose Hubbard model physics,

the phase diagram of the model was accurately determined in a strong-coupling approxima-

tion [8, 9] (for a recent review of this early history, see Ref. 10). This approach, which relied

on expanding the properties in a perturbative series in the hopping, captured much of the

behavior of the model, and when extrapolated via a scaling theory ansatz for the critical

behavior at the tips of the Mott lobes [2], proved to be as accurate as the quantum Monte

Carlo (QMC) simulations that had been performed at that time [11, 12]. Since then, the

strong coupling perturbation theory has been pushed to higher order [13, 14, 15], and the

QMC simulations have improved dramatically in two [16] and three dimensions [17, 18]. In

addition, highly accurate density matrix renormalization group (DMRG) studies have been

performed on the model in one dimension [19, 20, 21].

Surprisingly, despite all of the work that has been performed on the phase diagrams with

a strong-coupling analysis, there are only limited results for the momentum distribution

functions. The first few terms of the structure factor have been determined to high order in

one dimension [15] and the zero momentum distribution function has been examined in one

and two dimensions [14]. A recent random phase approximation (RPA) has been carried

out [22], which corresponds to the exact solution for the momentum distribution in the

infinite-dimensional limit (see also Ref. 23). In this contribution, we present an alternative

formulation of the strong-coupling perturbation theory for the many-body Green’s functions,

which can be immediately employed to evaluate the momentum distribution function as

a power series in the hopping divided by the interaction strength for each value of the
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momentum. Recently a similar strong-coupling formalism to ours has been proposed [24] and

used to calculate the momentum distribution in three dimensions through second order [25].

We take our strong-coupling expansion and, guided by the exact solution from the RPA, we

construct an ansatz for the scaling behavior of the momentum distribution function and then

employ it to produce analytic expressions for the momentum distribution that are accurate

for all values of the hopping within the Mott phase. These results could prove useful as

a simple means to check against experimental data on more recent Bose Hubbard model

systems [26, 27, 28]. We also take the results for the scaling behavior of the momentum

distribution and use it as a phenomenological ansatz for the scaling behavior of the phase

diagram that sums many more terms than the original ansatz. Comparing that result with

the QMC data in two and three dimensions also shows excellent agreement.

We write the bosonic Hubbard Hamiltonian in the presence of a potential in the form,

H = H0 + Hhop =
∑

j

H0j + Hhop

H0j ≡ [VT (rj) − µ]n̂j +
U

2
n̂j(n̂j − 1) (1)

Hhop ≡ −
∑

j,j′

tjj′a
†
jaj′ (2)

Here j, j′ label the sites of a (hypercubic) lattice in d dimensions, with a lattice constant

which we set equal to 1 (the unit of distance); rj is the position vector of the jth site

as measured from the center of the system. The symbols a†
j and aj′ denote creation and

destruction operators for bosons at lattice site j. These operators obey the commutation

relation [aj′, a
†
j ] = δj′j; n̂j = a†

jaj is the boson number operator at site j. VT (rj) is the

trap potential (which is usually assumed to be a simple harmonic oscillator potential) and

the repulsive contact interaction is given by U . Note that the trapping potential could

also represent a diagonal disorder potential, if desired, but we will not discuss that case

further here. The chemical potential µ controls the average number of particles. tjj′ is the

amplitude for bosons to hop from site j′ to site j. We consider a general tjj′ for the formal

developments we present in the earlier parts of the paper, but later specialize to the case of

nearest-neighbor hopping only, with amplitude t, on a hypercubic lattice in d dimensions.

As explained above, our aim in this paper is to calculate the properties of the Hamiltonian

in Eq. (2), in particular, its momentum distribution function. The momentum distribution

function is related to the atom-atom correlation function [see Eq. (6)] involving atoms at
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sites j and j′, which is given by

Cj′j = 〈a†
j′aj〉H; 〈A〉H ≡ Z−1Tr[Ae−βH]. (3)

This expectation value can be calculated from the single-particle “thermal” or “Matsubara”

Green’s function, defined in the standard way [29], as

Gjj′(τ, τ
′) ≡ −〈Tτ [e

τHaje
−τHeτ ′Ha†

j′e
−τ ′H]〉H, (4)

by choosing τ = 0 and τ ′ = 0+, the positive infinitesimal; i. e.,

Cj′j = −Gjj′(0, 0
+). (5)

Here, as usual, β ≡ 1/(kBT ) is the inverse temperature, 0 < τ, τ ′ < β are “imaginary time”

(henceforth “i-time”) variables, Tτ is the i-time-ordering operator, and Z ≡ Tr[e−βH] is the

partition function. The momentum distribution function measured in the time of flight

experiments is proportional to the Fourier transform of the atom-atom correlation function:

nk ≡ 1

N
∑

j,j′

Cj′je
ik·(rj′−rj) (6)

where N is the number of sites in the lattice (we do not discuss the proportionality factors,

which arise from the Wannier wavefunctions of the trapped atoms, as that is not germane

to the work we present here).

Specializing to the case of nearest-neighbor hopping on a hypercubic lattice in d-

dimensions, we report our main result which is the general strong-coupling expansion for

the (T = 0) momentum distribution of the Mott phase with a density n up to third order

in the hopping:

nk = n

{

1 − 2(n + 1)
ǫk
U

+ 3(n + 1)(2n + 1)

[

(ǫk
U

)2

− 2d

(

t

U

)2
]

− 4(n + 1)[5n2 + 5n + 1]
(ǫk

U

)3

+

[

2

3
(n + 1)(26n2 + 26n + 5)

]

4d

(

ǫkt
2

U3

)

−
[

1

3
(n + 1)(23n2 + 23n + 2)

](

ǫkt
2

U3

)}

, (7)

where ǫk = −t
∑

δ exp[ik · δ] is the bandstructure, δ is a nearest-neighbor translation vector,

and d is the spatial dimension.
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Readers who are mainly interested in seeing how accurate this expansion is when applied

to explicit cases, are encouraged to skip the next section which develops the formal techniques

needed for obtaining the expansion, and proceed directly to Sec. III where we use the

expansion to develop a scaling analysis and compare results to exact numerics.

The manuscript is organized as follows: in Sec. II, we present the formalism for the

strong-coupling expansion of the Green’s functions and produce explicit formulas through

third order for the one-dimensional lattice, the two-dimensional square lattice and the three-

dimensional cubic lattice, along with the infinite-dimensional hypercubic lattice. In Sec. III,

we present our scaling analysis for the momentum distribution in the first Mott lobe and

compare those results to available numerical data from QMC and DMRG calculations; we

also discuss the phenomenological approach to the phase diagram in two and three dimen-

sions. Conclusions and a discussion of future directions follow in Sec. IV. Two appendices

contain some of the more technical results.

II. STRONG-COUPLING FORMALISM FOR THE GREEN’S FUNCTIONS

The strong-coupling expansion we develop in this paper enables one to calculate Gjj′

[in Eq. (4)] and hence Cj′j [in Eq. (5)] as an expansion in powers of Hhop [in Eq. (2)],

with respect to regions of the system which are either normal or Mott-insulating (i. e., not

superfluid [30]). For this purpose, we use the following standard relation [29] to define the

i-time-ordered product for the evolution operator in the “interaction picture”:

e−τHeτ ′H = e−τH0U(τ, τ ′)eτ ′H0 ; (8)

U(τ, τ ′) ≡ Tτ exp [−
∫ τ

τ ′

dτ1Hhop(τ1)] (9)

where, for any operator A, we define the time-dependent operator A(τ1) ≡ eτ1H0Ae−τ1H0.

Using the properties of Tτ , and the rules for composition for products of U , it is straightfor-

ward to show that [29]

Gjj′(τ, τ
′) = −

〈Tτ [U(β, 0)aj(τ)a†
j′(τ

′)]〉H0

〈U(β, 0)〉H0

(10)

The strong coupling expansion we use in this paper is obtained straightforwardly by expand-

ing the exponentials in U [in Eq. (10)] in powers of Hhop and evaluating the resulting traces

with respect to the equilibrium ensemble of H0. The term of order m in such an expansion
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for the numerator in Eq. (10) is given by

1

m!

∑

jmj′m

· · ·
∑

j1j′
1

∫ β

0

dτm · · ·
∫ β

0

dτ1 tjmj′m
· · · tj1j′

1

×〈Tτ [aj(τ)a†
jm

(τ+
m)aj′m

(τm) · · ·a†
j1

(τ+
1 )aj′

1
(τ1)a

†
j′(τ

′)]〉H0
. (11)

Since H0, as defined in Eq. (2), is a sum of separate terms for each site, the thermal average

in Eq. (11) factorizes into a product of factors, one for each of the sites on the lattice, in

terms of the multiparticle single-site Green’s functions at these sites defined in the standard

way [29] as,

Gj(τ1, τ
′
1) ≡ −〈Tτ [aj(τ1)a

†
j(τ

′
1)]〉H0j

(12)

GII
j (τ1, τ2; τ

′
2, τ

′
1) ≡ 〈Tτ [aj(τ1)aj(τ2)a

†
j(τ

′
2)a

†
j(τ

′
1)]〉H0j

(13)

...

Note that these are total Green’s functions, containing both connected and disconnected

parts. Furthermore, each site that appears must occur an even number of times in the

thermal average, half as indices of creation operators and half as indices of destruction op-

erators [30]. Similar considerations apply to the terms in the expansion for the denominator

in Eq. (10) [except for the absence of the operators aj(τ) and a†
j′(0)]. As we discuss in more

detail below, the combination of the two expansions order by order leads to a cancelation

of all “disconnected” terms, i.e., those involving products of thermal averages for clusters

of sites that are not connected via hopping matrix elements to the sites j and j′, as well as

to the fact that the remaining terms can be written entirely in terms of the “connected” or

“cumulant” multiparticle Greens functions, corresponding to the well known linked cluster

theorem [29].

Using the above considerations, it is straightforward to write down systematically the

terms in the strong-coupling expansion for Gjj′(τ, τ
′). We denote the mth order contributions

with a superscript (m). The different terms contributing in mth order can also be associated

with “diagrams”, which correspond to lattice “walks” or “world lines” for a particle which

starts from site j′ at i-time τ ′ and reaches site j at i-time τ after m steps (with each ‘step’

corresponding to a hop along the lattice, e. g., from site j′1 to site j1 induced by tj1j′
1
,

and in between the steps, the particle undergoes i-time “evolution”, which proceeds either

forward or backward in i-time). These processes are shown graphically in Figs. 1 and 2.
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These diagrams are the strong-coupling analogs of the standard diagrams of many-body

perturbation theory [29], from which, after some practice, the terms can be written down

by inspection. A p particle Green’s function at a particular site appears when a walk visits

that site p times. For m ≥ 2, as we show below, the contributions can be classified further

according to a hierarchy of decreasing powers of 1/z, where z is the coordination number of

the lattice, by recombining contributions from intersecting and nonintersecting walks, and

we denote these with further superscripts, as (m; 0), (m; 1), etc. We give below the terms

contributing to Gjj′(τ, τ
′) up to third order in Hhop, and their associated strong-coupling

diagrams.

The zeroth and first order terms are almost obvious.

G
(0)
jj′(τ, τ

′) = δjj′Gj(τ, τ
′), (14)

G
(1)
jj′(τ, τ

′) = −tjj′

∫

τ1

Gj(τ, τ1)Gj′(τ1, τ
′) ≡ −G

(1)
jj′(τ, τ

′). (15)

Here, and below, for notational convenience we denote integrals over i-times by integral

symbols with subscripts, rather than by the standard notation. To second order, a 2-step

lattice walk can either move to a distinct site two steps away or return to the starting site.

Hence we get two terms from the numerator of Eq. (10), the top equation is when the hop is

to a different lattice site, the bottom equation is when the hop returns back to the original

lattice site:

G
(2;a)
jj′ (τ, τ ′)num = (1 − δjj′)

∑

j1

tjj1tj1j′

∫

τ2

∫

τ1

Gj(τ, τ2)Gj1(τ2, τ1)Gj′(τ1, τ
′), (16)

≡ (1 − δjj′)
∑

j1

G
(2)
jj1j′(τ, τ

′) (17)

G
(2;b)
jj′ (τ, τ ′)num = δjj′

∑

j1

tjj1tj1j

∫

τ2

∫

τ1

GII
j (τ, τ1; τ2, τ

′)Gj1(τ2, τ1) (18)

≡ δjj′

∑

j1

Ḡ
(2)
jj1j(τ, τ

′), (19)

where the subscript num denotes that these are the terms coming from the numerator in

the expansion for the Green’s function.

We have introduced a new notation above, letting G
(m)
j···j′ denote the product of single-

particle Green’s functions at the sites that appear in the m-step lattice walk specified by its

lattice indices, starting from right to left, together with the corresponding hopping ampli-

tudes; the i-time arguments indicating the starting and ending i-time, the m intermediate
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’τ

τ1

τ
j’j

 (1)G

’τ

j’j=
τ

 (0)G

 (2,0)G

j
1 j’

’τ

τ1

τ2

τ
j j’j = j

1

’τ

τ1

τ2

τ

 (2,1)G

FIG. 1: (Color online.) Strong-coupling “diagrams” for the single-particle Green’s functions up

to second order in t. The horizontal directed dashed lines indicate the hopping matrix element t

between the sites labeled, and the vertical lines indicate single-site Green’s functions G evolving

between the respective i-times. The ellipses (yellow) at multiply visited sites denote the appearance

of connected or cumulant n-particle Green’s functions.

i-times being integrated over. Ḡ
(m)
j···j′ is defined similarly, except that it necessarily involves

self-intersecting lattice walks where one or more sites are visited multiple times, and the

product involves r-particle Green’s functions at a site that is visited r times, with the inter-

mediate i-time arguments being determined by the sequence specified in the lattice walk. For

any given m-step lattice walk both G(m) and Ḡ(m) can clearly be written down by inspection.

To correctly obtain obtain G
(2)
jj′ , we need to subtract from the above two terms the term
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j1j’j

τ1

’τ

τ2

τ3

τ

 (3,1a)G

j’j
2

j

 (3,1b)G

τ1

’τ

τ2

τ3

τ

τ1

’τ

τ2

τ3

τ j’j
2

j
1

j

 (3,0)G

τ1

’τ

τ2

τ3

τ

 (3,2)G

j’ j

FIG. 2: (Color online.) Strong-coupling “diagrams” for the single-particle Green’s functions cor-

responding to third order in t. The horizontal directed dashed lines indicate the hopping matrix

element t between the sites labeled, and the vertical lines indicate single-site Green’s functions G

evolving between the respective i-time. The ellipses (yellow) at multiply visited sites denote the

appearance of connected or cumulant n-particle Green’s functions.

that arises as the product of the second-order contribution from the denominator of Eq. (10),

corresponding to closed loop lattice walks involving the sites j and j1, given by

Z(2)
jj1

≡ tjj1tj1j

∫

τ2

∫

τ1

Gj(τ1, τ2)Gj1(τ2, τ1), (20)

and the zeroth-order term from the numerator, namely G
(0)
jj′(τ, τ

′). The net result for G(2)
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can be reexpressed as the sum of the following two contributions:

G
(2;0)
jj′ (τ, τ ′) =

∑

j1

G
(2)
jj1j′(τ, τ

′) (21)

G
(2;1)
jj′ (τ, τ ′) = δjj′

∑

j1

tjj1tj1j

∫

τ2

∫

τ1

G̃II
j (τ, τ1; τ2, τ

′)Gj1(τ2, τ1)

≡ δjj′

∑

j1

G̃
(2)
jj1j(τ, τ

′) (22)

= δjj′

∑

j1

{Ḡ(2)
jj1j(τ, τ

′) − G
(2)
jj1j(τ, τ

′) − Gj(τ, τ
′)Z(2)

jj1
}. (23)

Here

G̃II
j (τ, τ1; τ2, τ

′) ≡ [GII
j (τ, τ1; τ2, τ

′) − Gj(τ, τ2)Gj(τ1, τ
′) − Gj(τ, τ

′)Gj(τ1, τ2)] (24)

is the “cumulant” or “connected” part of the two-particle Green’s function at site j. G̃(m)

is defined similarly to Ḡ(m) except that the multi-particle Green’s functions that appear in

G̃(m) are all connected Green’s functions. Note that the prefactor 1
2!

present in Eq. (11) no

longer appears in the above equations, as it has been canceled by the 2! ways of choosing

the two distinct hopping matrix elements in the expansion.

Similarly, the third-order contributions involve three-step walks. From the numerator of

Eq. (10) we get the following terms according to the types of walks involved.

G
(3;a)
jj′ (τ, τ ′)num = −(1 − δjj′)

∑

j2,j1

(1 − δj2j′)(1 − δjj1) tjj2tj2j1tj1j′

×
∫

τ3

∫

τ2

∫

τ1

Gj(τ, τ3)Gj2(τ3, τ2)Gj1(τ2, τ1)Gj′(τ1, τ
′), (25)

G
(3;b)
jj′ (τ, τ ′)num = −(1 − δjj′)

∑

j1

(1 − δjj1) tjj′tj′j1tj1j′

×
∫

τ3

∫

τ2

∫

τ1

Gj(τ, τ3)Gj1(τ2, τ1)GII
j′ (τ1, τ3; τ2, τ

′)

−(1 − δjj′)
∑

j2

(1 − δj2j′) tjj2tj2jtjj′

×
∫

τ3

∫

τ2

∫

τ1

GII
j (τ, τ2; τ3, τ1)Gj2(τ3, τ2)Gj′(τ1, τ

′), (26)

G
(3;c)
jj′ (τ, τ ′)num = − 1

2!
(1 − δjj′) tjj′tj′jtjj′

×
∫

τ3

∫

τ2

∫

τ1

GII
j (τ, τ2; τ3, τ1)GII

j′ (τ3, τ1; τ2, τ
′). (27)

Again, in all cases except for the case of G
(3;c)
num, the 3! ways of choosing the three distinct

hopping matrix elements involved completely cancels the 1
3!

in the expansion. In case of
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G
(3;c)
num, two of the hopping matrix elements are identical, so they can be chosen in only 3!

2!

ways, hence there is a factor of 1
2!

left uncanceled.

The restriction (1 − δjj′) in the third-order contributions above is redundant except on

nonbipartite lattices, such as nearest-neighbor hopping on a triangular lattice, or on a hy-

percubic lattice with second-neighbor hopping, where one can return to the starting site

after three hops. In such cases, one has the additional term

G
(3;d)
jj′ (τ, τ ′)num = −δjj′

∑

j2,j1

(1 − δj2j)(1 − δjj1) tjj2tj2j1tj1j

×
∫

τ3

∫

τ2

∫

τ1

GII
j (τ, τ1; τ3, τ

′)Gj2(τ3, τ2)Gj1(τ2, τ1). (28)

Note that in this term the constraints on j1 and j2 are actually redundant and can be

omitted.

As in the second-order case, the above third-order terms can be recombined with the

terms that arise as products of the first-order term from the numerator and the appropriate

second-order terms from the denominator in Eq. (10) and reexpressed compactly in terms

of the connected Green’s functions G(3) and G̃(3). One gets

G
(3;0)
jj′ (τ, τ ′) = −

∑

j2,j1

G
(3)
jj2j1j′(τ, τ

′), (29)

G
(3;1)
jj′ (τ, τ ′) = −

∑

j1

G̃
(3)
jj′j1j′(τ, τ

′) −
∑

j2

G̃
(3)
jj2jj′(τ, τ

′), (30)

G
(3;2)
jj′ (τ, τ ′) = − 1

2!
G̃

(3)
jj′jj′(τ, τ

′). (31)

In nonbipartite cases, one has to add to this the additional contribution

G
(3;3)
jj′ (τ, τ ′) = −δjj′

∑

j2,j1

G̃
(3)
jj2j1j(τ, τ

′). (32)

Note that in all the cases, use of the connected Green’s functions allows one to avoid the

clumsy restrictions on the intermediate sites that need to be summed over, and in addi-

tion, automatically includes the terms contributed by the denominator of Eq. (10). The

diagrams that represent the above are shown in Figs. 1 and 2. The same results can also

be derived using more formal methods, such as functional integrals, generating functionals,

and functional derivatives, but we do not go into such details here.

Next, we discuss the evaluation of the multiparticle single-site Green’s functions at a site

j as defined in Eqs. (12) and (13). The eigenstates of H0j in Eq. (2) are also eigenstates
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of the number operator n̂j , and can hence be labeled by positive integers n = 0, 1, · · ·
corresponding to the number of bosons at site j, with energy eigenvalues which we label as

ǫj,n. One has,

H0j |j, n〉 = ǫj,n|j, n〉; ǫj,n ≡ [VT (rj) − µ]n +
U

2
n(n − 1). (33)

The partition function of the jth site, and the Boltzmann probability of occupancy of |j, n〉
in the thermal ensemble corresponding to H0j , are given respectively by

Zj =
∑

n

exp (−βǫj,n); ρj,n = exp (−βǫj,n)/Zj. (34)

It is convenient to define the ladder operators

X+
j,n ≡ |j, n + 1〉〈j, n|, X−

j,n ≡ |j, n − 1〉〈j, n|. (35)

One can easily see that

aj(τ) =
∑

n

eτǫ−j,n
√

nX−
j,n, a†

j(τ) =
∑

n

eτǫ+j,n

√
n + 1X+

j,n, (36)

where

ǫ+
j,n ≡ ǫj,(n+1) − ǫj,n, ǫ−j,n ≡ ǫj,(n−1) − ǫj,n (37)

are the “particle” and “hole” “excitation energies” (with respect to the state with n bosons

at site j) induced by the ladder operators X+
j,nj

and X−
j,nj

, respectively.

Using the above, and the rather obvious rules for products of the ladder operators, it is

easy to verify that, for the 1-particle Green’s function, we have

Gj(τ1, τ2) =
∑

n

ρj,n[(n + 1) e(τ2−τ1)ǫ+j,n θ(τ1 − τ2) + n e(τ1−τ2)ǫ−j,n θ(τ2 − τ1)]. (38)

There is a compact way of working and writing this out which easily generalizes to n-

particle Green’s functions. Let P label the 2! possible permutations of (1, 2), corresponding

to (1, 2) → (P1, P2), and Gj(P) denote Gj(τ1, τ2) in the domain (τP1 > τP2). Furthermore,

define σ1 ≡ −1 , σ2 ≡ +1 ; ǫ±1
j,n ≡ ǫ±j,n; and X±1

j,n ≡ X±
j,n. Then, one has,

Gj(P) =
∑

n

ρj,n

∑

n1,n2

〈j, n|
[

∏

ℓ=1,2

exp τPℓǫ
σPℓ

j,nℓ

√

nℓ +
1 + σPℓ

2
X σPℓ

j,nℓ

]

|j, n〉

=
∑

n

ρj,n

√

n +
1 − σP1

2

√

n +
1 + σP2

2
exp [τP2ǫ

σP2

j,n − τP1ǫ
−σP1

j,n ]. (39)
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As is easily verified, for the identity permutation, corresponding to P1 = 1, P2 = 2, this

reproduces the first term in Eq. (38); for the permutation corresponding to P1 = 2, P2 = 1,

it reproduces the second term in Eq. (38).

Now, for the case of the 2-particle Green’s functions, let P label the 4! possible per-

mutations of (1, 2, 3, 4), corresponding to (1, 2, 3, 4) → (P1, P2, P3, P4), and GII
j (P) denote

GII
j (τ1, τ2; τ3, τ4) in the domain (τP1 > τP2 > τP3 > τP4). For this case, we define σ1 = σ2 ≡ −1

and σ3 = σ4 ≡ +1. Using these definitions, we can show that

GII
j (P) =

∑

n

ρj,n

∑

n1,··· ,n4

〈j, n|
[

∏

ℓ=1,··· ,4

exp τPℓǫ
σPℓ

j,nℓ

√

nℓ +
1 + σPℓ

2
X σPℓ

j,nℓ

]

|j, n〉

=
∑

n

ρj,n

√

n +
1 − σP1

2

√

n − σP1 +
1 − σP2

2

√

n + σP4 +
1 + σP3

2

√

n +
1 + σP4

2

× exp [τP4ǫ
σP4

j,n + τP3ǫ
σP3

j,(n+σP4) − τP2ǫ
−σP2

j,n−σP1
− τP1ǫ

−σP1

j,n ]. (40)

For example, in the domain (τ1 > τ2 > τ3 > τ4), corresponding to the identity permutation,

this formula gives,

GII
j = 〈aj(τ1)aj(τ2)a

†
j(τ3)a

†
j(τ4)〉H0j

=
∑

n

ρj,n(n + 1)(n + 2) exp [(τ4 − τ1)ǫ
+
j,n + (τ3 − τ2)ǫ

+
j,n+1]. (41)

Using the above results, we can now readily compute the terms in the strong-coupling

expansion of Cj′j in Eq. (5) up to third order in the hopping amplitude. In the equations

below, we denote C
(m)
j···j′ ≡ G

(m)
j···j′(0, 0

+), C̄
(m)
j···j′ = Ḡ

(m)
j···j′(0, 0

+), and C̃
(m)
j···j′ ≡ G̃

(m)
j···j′(0, 0

+).

The zeroth order term is

C
(0)
j′j = −G

(0)
jj′(0, 0

+) = δj,j′〈n̂j〉H0j
= δj,j′

∑

n

n ρj,n. (42)

The first order term is

C
(1)
j′j = −G

(1)
jj′(0, 0

+) = tjj′

∫

τ1

Gj(0, τ1)Gj′(τ1, 0
+) ≡ C

(1)
jj′ . (43)
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The i-time integral is straightforward to evaluate. Using Eq. (38) or Eq. (39), we find,

C
(1)
jj′ = tjj′

∑

n,n′

n(n′ + 1) ρj,n ρj′,n′

∫ β

0

dτ1 exp [−τ1(ǫ
−
j,n + ǫ+

j′,n′)]

= tjj′
∑

n,n′

n(n′ + 1) ρj,n ρj′,n′

{

1 − exp [−β(ǫ−j,n + ǫ+
j′,n′)]

ǫ−j,n + ǫ+
j′,n′

}

= tjj′
∑

n,n′

n(n′ + 1)

{

ρj,n ρj′,n′

(ǫ−j,n + ǫ+
j′,n′)

+
ρj,n−1 ρj′,n′+1

(ǫ+
j,n−1 + ǫ−j′,n′+1)

}

= tjj′
∑

n,n′

ρj,n ρj′,n′

{

n(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)

+
(n + 1)n′

(ǫ+
j,n + ǫ−j′,n′)

}

. (44)

This can be represented by the diagram labeled C(1) in Fig. 3. The third line of Eq. (44)

is written in a form that can be directly constructed from this diagram in a way that is

immediately generalizable to higher order (see below). The fourth line contains a second

form of the same result, obtained by relabeling the bosonic occupation numbers in the second

term of the third line in a way that makes the zero temperature limit obvious.

There are two second order terms in Cj′j corresponding to the two terms in Gjj′ [Eqs. (21)

and (23)].

C
(2,0)
j′j = −G

(2;0)
jj′ (0, 0+) = −

∑

j1

C
(2)
jj1j′, (45)

and

C
(2,1)
j′j = −G

(2;1)
jj′ (0, 0+) = −δjj′

∑

j1

C̃
(2)
jj1j

= −δjj′

∑

j1

{C̄(2)
jj1j − [C

(2)
jj1j′]j′=j − 〈n̂j〉H0j

Z(2)
jj1

}. (46)

Similarly, one obtains the various terms contributing to Cj′j in third order, which we label

15



C
(3,0)
j′j , C

(3,1)
j′j , · · · , by setting τ = 0 and τ ′ = 0+ in Eqs. (29), (30), · · · . One finds

C
(3,0)
j′j =

∑

j2,j1

C
(3)
jj2j1j′, (47)

C
(3,1)
j′j =

∑

j1

C̃
(3)
jj′j1j′ +

∑

j2

G̃
(3)
jj2jj′

=
∑

j1

{C̄(3)
jj′j1j′ − C

(3)
jj′j1j′ − C

(1)
jj′Z

(2)
j′j1

}

+
∑

j2

{C̄(3)
jj2jj′ − C

(3)
jj2jj′ − C

(1)
jj′Z

(2)
j2j}, (48)

C
(3,2)
j′j =

1

2!
C̃

(3)
jj′jj′

=
1

2!
{C̄(3)

jj′jj′ − 2[C̄
(3)
jj′j1j′]j1=j − 2[C̄

(3)
jj2jj′]j2=j′ + 2C

(3)
jj′jj′ + 2C

(1)
jj′Z

(2)
j′j }. (49)

The i-time integrals that appear in these expressions are most conveniently evaluated by

splitting them up into separate integrals corresponding to each of the different (m!) i-time

orderings of i-time integration variables (in mth order). With each such i-time ordered term

one can associate a unique diagram, as shown in Figs. 3–6 up to third order. The diagrams

are labeled by the sites that appear, the “initial” (≡ “final”) and the “intermediate states” at

these sites as determined by the boson occupation numbers at these sites in each of the i-time

intervals, whose labeling corresponds to the boson creation and destruction processes at the

sites. (The boson occupation numbers at the sites that do not appear in a diagram do not

change with i-time, and play a spectator role, and hence do not appear in the contributions

to Cj′j.) The “matrix elements” that are associated with these processes are then uniquely

determined and can be written down by inspection from the labeling. For such a diagram

of mth order, let Eα0
and Eα1

, · · · , Eαm
denote the energy eigenvalues of H0 for the initial

(or final) state and the m intermediate states respectively. Then the i-time integral is of the

form,

Im(β; Eαm
, · · · , Eα1

, Eα0
) =

e−βEα0

Z

∫ β

0

dτm

∫ τm

0

dτm−1 · · ·
∫ τ2

0

dτ1

× e[τm(Eα0
−Eαm )+τm−1(Eαm−Eαm−1

)+···+τ2(Eα3
−Eα2

)+τ1(Eα2
−Eα1

)] (50)

This is easily evaluated using Laplace-transform techniques, as shown in Appendix A. If the

energies are all distinct, then one finds that the integral is the following sum of m+1 terms.

Im(β; Eαm
, · · · , Eα1

, Eα0
) =

m
∑

ℓ=0

e−βEαℓ

Z
∏

ℓ′ 6=ℓ

1

(Eαℓ′
− Eαℓ

)
. (51)
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Note that only energy differences appear in the energy denominators in this expression, and

they are related in a simple way to the boson creation and destruction processes at the sites

that appear in the diagrams; these can be written down by inspection from the labeling

shown in each diagram. As the initial and intermediate states at all the sites that do not

appear in the diagrams are constrained to be the same, one can replace the Boltzmann

factors for the initial and intermediate states by a product of the density matrices for just

the sites that appear in the diagrams.
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n

τ1

τ2

 (2)Z

n n’

j’j

εα1

εα0

n−1 n’+1

n n’
τ2

τ1

 (2)Z

j’j

εα1

εα0

n’−1n+1

 (1)C
n n’

j’j
τ1

0
εα1

εα0

n−1 n’+1

τ2

0

τ1

n1n n’

n +11

 (2,0)C

j
1

j’j

εα2

εα1

εα0

n  −1 n’+1

j
1

j’j

τ1

τ2

0

n −11

 (2,0)C

n1n n’

εα2

εα1

εα0

n  −1 n’+1

 (2,1)C

n  −11
τ1

τ2

0 n1n

j
1

j=j’

εα1

εα2

εα0

n+1

n

 (2,1)

FIG. 3: Strong coupling “diagrams” for the correlation functions up to second order in t. The

horizontal directed dashed lines indicate t between the sites labeled, and the vertical lines indicate

single site Greens functions G. The ellipses (red on line) at multiply visited sites denote the

appearance of connected or cumulant Greens functions. Initial and intermediate state labels for

the different possible i-time orderings shown are also indicated.

The expression in Eq. (51) is non-singular and remains well defined even when one or

more of the energies Eα0
, Eα1

, · · · , Eαm
become equal, as clearly happens, for example, in the

diagrams for C(2,1) (see Fig. 3). For example, if one and only one pair of energies are equal,

say, Eαr
= Eαp

, then instead of Eq. (51) one should use the expression

∑

ℓ 6=r,p

e−βEαℓ

Z
∏

ℓ′ 6=ℓ

1

(Eαℓ′
− Eαℓ

)
+

e−βEαr

Z [β −
∑

ℓ 6=r,p

1

(Eαℓ
− Eαr

)
]

∏

ℓ′ 6=r,p

1

(Eαℓ′
− Eαr

)
, (52)
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FIG. 4: (Color online.) Strong-coupling “diagrams” for the correlation functions C(3,0). The

horizontal directed dashed lines indicate the hopping matrix t between the sites labeled, and the

vertical lines indicate single-site Green’s functions G. The ellipses (red) at multiply visited sites

denote the appearance of connected or cumulant Green’s functions. Initial and intermediate state

labels for the different possible i-time orderings shown are also indicated.

which it reduces to in this limit (see Appendix A for further details).

The diagrams labeled C(2,0) in Fig. 3 shows the two diagrams for C
(2)
jj1j′, corresponding to

the two i-time orderings τ2 > τ1 and τ1 > τ2 . Each diagram gives rise to three contributions
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FIG. 5: (Color online.) Strong-coupling “diagrams” for the correlation functions C(3,1). The

horizontal directed dashed lines indicate the hopping matrix t between the sites labeled, and the

vertical lines indicate single-site Green’s functions G. The ellipses (red) at multiply visited sites

denote the appearance of connected or cumulant Green’s functions. Initial and intermediate state

labels for the different possible i-time orderings shown are also indicated.
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FIG. 6: (Color online.) Strong-coupling “diagrams” for the correlation functions C(3,2). The
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as pointed out above, which are easily written down using the above rules, leading to

C
(2)
jj1j′ = tjj1tj1j′

∑

n,n1,n′

{ n(n1 + 1)(n′ + 1) [
ρj,n ρj1,n1

ρj′,n′

(ǫ−j,n + ǫ+
j1,n1

)(ǫ−j,n + ǫ+
j′,n′)

+
ρj,n−1 ρj1,n1

ρj′,n′+1

(ǫ+
j,n−1 + ǫ−j′,n′+1)(ǫ

+
j1,n1

+ ǫ−j′,n′+1)
+

ρj,n−1 ρj1,n1+1 ρj′,n′

(ǫ+
j,n−1 + ǫ−j1,n1+1)(ǫ

−
j1,n1+1 + ǫ+

j′,n′)
]

+ nn1(n
′ + 1) [

ρj,n ρj1,n1
ρj′,n′

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j1,n1

+ ǫ+
j′,n′)

+
ρj,n−1 ρj1,n1

ρj′,n′+1

(ǫ+
j,n−1 + ǫ−j1,n1

)(ǫ+
j,n−1 + ǫ−j′,n′+1)

+
ρj,n ρj1,n1−1 ρj′,n′+1

(ǫ−j,n + ǫ+
j1,n1−1)(ǫ

+
j1,n1−1 + ǫ−j′,n′+1)

] } (53)

= tjj1tj1j′

∑

n,n1,n′

ρj,n ρj1,n1
ρj′,n′ { [

n(n1 + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j1,n1

)(ǫ−j,n + ǫ+
j′,n′

j
)

+
(n + 1)(n1 + 1)n′

(ǫ+
j,n + ǫ−j′,n′)(ǫ

+
j1,n1

+ ǫ−j′,n′)
+

(n + 1)n1(n
′ + 1)

(ǫ+
j,n + ǫ−j1,n1

)(ǫ−j1,n1
+ ǫ+

j′,n′)
]

+ [
nn1(n

′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j1,n1

+ ǫ+
j′,n′)

+
(n + 1)n1n

′

(ǫ+
j,n + ǫ−j1,n1

)(ǫ+
j,n + ǫ−j′,n′)

+
n(n1 + 1)n′

(ǫ−j,n + ǫ+
j1,n1

)(ǫ+
j1,n1

+ ǫ−j′,n′)
] }. (54)

Again, the second form of the result, Eq. (54), is obtained by appropriately relabeling the

bosonic occupation numbers in four of the six terms in the first form [Eq. (53)], and is easier

to use at T = 0.

Similarly, from the diagrams contributing to C̄
(2)
jj1j (labeled C(2,1)) and Z(2)

jj1
(labeled Z(2))

shown in Fig. 3, and using Eq. (52), we obtain, for the two equivalent forms for each,

C̄
(2)
jj1j = tjj1tj1j

∑

n,n1

(n) ×

{ n(n1 + 1) [
ρj,n ρj1,n1

(ǫ−j,n + ǫ+
j1,n1

)
(β − 1

(ǫ−j,n + ǫ+
j1,n1

)
) +

ρj,n−1 ρj1,n1+1

(ǫ+
j,n−1 + ǫ−j1,n1+1)

2
]

+ (n + 1)n1 [
ρj,n ρj1,n1

(ǫ+
j,n + ǫ−j1,n1

)
(β − 1

(ǫ+
j,n + ǫ−j1,n1

)
) +

ρj,n+1 ρj1,n1−1

(ǫ−j,n+1 + ǫ+
j1,n1−1)

2
] } (55)

= tjj1tj1j

∑

n,n1

ρj,n ρj1,n1
×

{ [
n(n1 + 1)n

(ǫ−j,n + ǫ+
j1,n1

)
(β − 1

(ǫ−j,n + ǫ+
j1,n1

)
) +

(n + 1)n1(n + 1)

(ǫ+
j,n + ǫ−j1,n1

)2
]

+ [
(n + 1)n1n

(ǫ+
j,n + ǫ−j1,n1

)
(β − 1

(ǫ+
j,n + ǫ−j1,n1

)
) +

n(n1 + 1)(n − 1)

(ǫ−j,n + ǫ+
j1,n1

)2
] } (56)
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Z(2)
jj1

= tjj1tj1j

∑

n,n1

{ n(n1 + 1) [
ρj,n ρj1,n1

(ǫ−j,n + ǫ+
j1,n1

)
(β − 1

(ǫ−j,n + ǫ+
j1,n1

)
) +

ρj,n−1 ρj1,n1+1

(ǫ+
j,n−1 + ǫ−j1,n1+1)

2
]

+ (n + 1)n1 [
ρj,n ρj1,n1

(ǫ+
j,n + ǫ−j1,n1

)
(β − 1

(ǫ+
j,n + ǫ−j1,n1

)
) +

ρj,n+1 ρj1,n1−1

(ǫ−j,n+1 + ǫ+
j1,n1−1)

2
] } (57)

= tjj1tj1j

∑

n,n1

ρj,n ρj1,n1
×

{ [
n(n1 + 1)

(ǫ−j,n + ǫ+
j1,n1

)
(β − 1

(ǫ−j,n + ǫ+
j1,n1

)
) +

(n + 1)n1

(ǫ+
j,n + ǫ−j1,n1

)2
]

+ [
(n + 1)n1

(ǫ+
j,n + ǫ−j1,n1

)
(β − 1

(ǫ+
j,n + ǫ−j1,n1

)
) +

n(n1 + 1)

(ǫ−j,n + ǫ+
j1,n1

)2
] }. (58)

Simplifying these expressions we find

C̄
(2)
jj1j = tjj1tj1j

∑

n,n1

ρj,n ρj1,n1
{ β n [

n(n1 + 1)

(ǫ−j,n + ǫ+
j1,n1

)
+

(n + 1)n1

(ǫ+
j,n + ǫ−j1,n1

)
]

+ [
1

(ǫ+
j,n + ǫ−j1,n1

)2
− 1

(ǫ−j,n + ǫ+
j1,n1

)2
] } (59)

Z(2)
jj1

= tjj1tj1j

∑

n,n1

ρj,n ρj1,n1
{ β [

n(n1 + 1)

(ǫ−j,n + ǫ+
j1,n1

)
+

(n + 1)n1

(ǫ+
j,n + ǫ−j1,n1

)
] }. (60)

Finally, Figs. 4, 5 and 6 show the diagrams corresponding respectively to C
(3)
jj2j1j′, C̄

(3)
jj′j1j′

(the digrams for C̄
(3)
jj2jj′ can be obtained from those in Fig. 5 by symmetry and a simple

relabeling) and C̄
(3)
jj′jj′. (For simplicity, since we do not discuss nonbipartite lattices in detail

in this paper, the diagrams for C̄
(3)
jj2j1j are not shown.) In each case, there are 6 possible

orderings of the i-time variables τ3, τ2 and τ1 [listed in the order (τ3 > τ2 > τ1), (τ2 > τ3 > τ1),

(τ2 > τ1 > τ2), (τ3 > τ1 > τ2), (τ1 > τ3 > τ2), and (τ1 > τ2 > τ3) below]; and from each i-time

ordering we get four contributions corresponding to the initial and three intermediate states

(apart from the subtractions arising from the connected two-particle Green’s functions).

The contributions can be written down straightforwardly using the rules stated above, and

we present them in Appendix B.

It is easy to see that the methods we have discussed above permit one, in principle, to

similarly write down the contributions to Gjj′ and Cj′j to higher orders as well, though the

calculations will become increasingly tedious unless one can find a way to automate them.

However, it is possible to calculate sums of subsets of these contributions to arbitrary orders.

The easiest subset to sum is G
(m,0)
jj′ , with contributions coming entirely from “self-avoiding

lattice walks” while computing thermal averages, and therefore involving only single-particle
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single-site Green’s functions, but ignoring the self-avoidance constraint while summing over

the different possible walks. From the above analysis it is clear that the resulting term is

G
(m;0)
jj′ (τ, τ ′) = (−1)(m+1)tjjm−1

tjm−1jm−1
· · · tj2j1tj1j′

∫

τm

∫

τm−1

· · ·
∫

τ2

∫

τ1

× Gj(τ, τm)Gjm−1
(τm, τm−1) · · · Gj1(τ2, τ1)Gj′(τ1, τ

′). (61)

The sum of these to arbitrary order, together with G
(1)
jj′ [Eq. (15)] and G

(0)
jj′ [Eq. (14)],

correspond to a geometric series for the Green’s function regarded as a matrix (denoted by

bold-face letters and/or square brackets below) with lattice sites and i-times as indices, and

corresponds to the well known “Random Phase Approximation” (RPA) result,

[GRPA]−1
jj′(τ, τ

′) = [Gj ]
−1(τ, τ ′)δjj′ + δ(τ, τ ′)tjj′. (62)

By taking a Fourier transform with respect to the even Matsubara frequencies iΩm ≡
2mπkBT , m = 0,±1,±2, · · · , one can write this as a matrix equation involving only lattice

indices:

[GRPA]−1
jj′(iΩm) = [Gj(iΩm)]−1δjj′ + tjj′, (63)

where, from Eq. (38), the single-site Green’s function at a fixed frequency is easily obtained

as

Gj(iΩm) =
∑

n

ρj,n [
(n + 1)

(iΩm − ǫ+
j,n)

− n

(iΩm + ǫ−j,n)
]. (64)

The RPA correlation function can then be straightforwardly obtained, in view of Eq. (5), as

the Matsubara frequency sum

Cj′j = −[G]jj′(0, 0
+) = −

∑

Ωm

Gjj′(iΩm)eiΩm0+

, (65)

by using [GRPA] for [G]. While the frequency sum can in principle be evaluated using

standard contour integral techniques [29], in the inhomogeneous case the above calculation

involves a matrix inversion with respect to the site indices.

The calculations simplify, however, for the case of a homogeneous system, i. e., without

a trap or disorder potential, and for T → 0. Then all the sites are identical, and in a generic

case, the ground state of H0j at every site corresponds to the same fixed boson occupancy

which we denote n. In this limit, one has ǫn = −µn+ U
2
n(n− 1) whence ǫ+

n = −µ+Un and

ǫ−n = µ−U(n−1). The RPA momentum distribution can be calculated exactly analytically
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in this case, as discussed in detail by Sengupta and Dupuis [22]. From Eq. (64), at T ≪ ǫ±n

we get, for all sites j,

Gj(iΩm) =

[

(n + 1)

(iΩm − ǫ+
n )

− n

(iΩm + ǫ−n )

]

. (66)

Hence,

[GRPA]k(iΩm) =
1

[Gj(iΩm)]−1 − ǫk

=
1 − zk

(iΩm − E−
k

)
+

zk

(iΩm − E+
k

)
(67)

with poles at E±
k
≡ [ǫk + ǫ+

n − ǫ−n ±
√

ǫ2
k

+ 2ǫkU(2n + 1) + U2]/2 and residues determined

in terms of zk ≡ (E+
k

+ µ + U)/(E+
k
− E−

k
). The RPA momentum distribution at T = 0 is

just the negative of the spectral weight of the pole at E−
k

; i. e.,

nRPA
k

= zk − 1 =
E−

k
+ µ + U

√

ǫ2
k

+ 2ǫkU(2n + 1) + U2
. (68)

The challenge, of course, is to go beyond the RPA. One way to achieve this, by summing

further infinite subsets of contributions to Gjj′ beyond the RPA, is by using the Dyson

equation (compare Eq. 62),

[G]−1
jj′(τ, τ

′) = [Gj ]
−1(τ, τ ′)δjj′ + δ(τ, τ ′)tjj′ − Σ

(2)
jj′(τ, τ

′) − Σ
(3)
jj′(τ, τ

′) − · · · , (69)

where Σ(m) denotes a self-energy correction that corrects RPA to order tm. By re-expanding

the inverse of this equation and comparing with the expansion for Gjj′ discussed earlier, it

is straightforward to obtain the following expressions for the self-energy corrections up to

third order in t.

Σ
(2)
jj′(τ, τ

′) =

∫

τ2

∫

τ1

[Gj ]
−1(τ, τ2)G

(2;1)
jj′ (τ2, τ1)[Gj′]

−1(τ1, τ
′)

= δjj′

∫

τ2

∫

τ1

∑

j1

[Gj ]
−1(τ, τ2)G̃

(2)
jj1j(τ2, τ1)[Gj ]

−1(τ1, τ
′), (70)

with G̃(2) as given in Eq. (23). Similarly,

Σ
(3)
jj′(τ, τ

′) =

∫

τ2

∫

τ1

[Gj ]
−1(τ, τ2)[G

(3;1)
jj′ (τ2, τ1) + G

(3;2)
jj′ (τ2, τ1) + G

(3;3)
jj′ (τ2, τ1)][Gj′]

−1(τ1, τ
′)

+

∫

τ1

∑

j2

tjj2G
(2;1)
j2j′ (τ, τ1)[Gj′]

−1(τ1, τ
′) +

∫

τ2

∑

j2

[Gj ]
−1(τ, τ2)G

(2;1)
jj2

(τ2, τ
′)tj2j′.
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It is straightforward to verify using the expressions given in Eqs. (23) and (30)–(32), that the

term involving G
(3;1)
jj′ exactly cancels the two terms involving G

(2;1)
jj′ above, and one obtains,

Σ
(3)
jj′(τ, τ

′) = −
∫

τ2

∫

τ1

[Gj ]
−1(τ, τ2)[

1

2!
G̃

(3)
jj′jj′(τ2, τ1) + δjj′

∑

j2,j1

G̃
(3)
jj2j1j(τ2, τ1)][Gj′]

−1(τ1, τ
′).

(71)

One can in principle evaluate these expressions for the self-energies explicitly using the tech-

niques discussed above, and thereby determine spectral functions as well as the momentum

distribution function using Eq. (65). We plan to complete such work in the future.

However, in this paper we adopt a different procedure for calculating the momentum

distribution function for the homogeneous case and in the T → 0 limit. We directly evaluate

the expressions for Cj′j up to third order in t. Then we use a scaling ansatz for the momentum

distribution function determined in such a way that when expanded in powers of t, it agrees

with our calculated results, thereby effecting an infinite order resummation in a different

way which automatically has the correct critical behavior at the Mott-superfluid transition.

The direct evaluation of our expressions for Cj′j in the homogeneous, T → 0 limit is

straightforward. The T → 0 limit is easiest to implement using the second form of these

expressions, where, just as discussed above in case of the RPA, for T ≪ ǫ±n the sums

over the initial and intermediate states are all restricted to n. The excitation energies

that occur in the energy denominators in these expressions are given by (ǫ+
n + ǫ−n ) = U ,

ǫ+
n + ǫ−n−1 + ǫ+

n + ǫ−n = ǫ+
n + ǫ−n + ǫ+

n+1 + ǫ−n = 3U and ǫ+
n + ǫ−n−1 + ǫ+

n+1 + ǫ−n = 4U . Hence, we

find

C
(0)
j′j = δj,j′n (72)

C
(1)
j′j = C

(1)
jj′ = tjj′

{

2n(n + 1)

U

}

. (73)

For the second-order terms we obtain

C
(2)
jj1j′ = tjj1tj1j′

{[

3n(n + 1)2

U2

]

+

[

3n2(n + 1)

U2

]}

= tjj1tj1j′

{

3n(n + 1)(2n + 1)

U2

}

(74)

C̄
(2)
jj1j = n Z(2)

jj1
= n β tjj1tj1j

{

2n(n + 1)

U

}

. (75)
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Hence, using Eqs. (45) and (46), we find

C
(2,0)
j′j = −

[

∑

j1

tjj1tj1j′

]

{

3n(n + 1)(2n + 1)

U2

}

(76)

C
(2,1)
j′j = −δj,j′C

(2,0)
jj . (77)

Note that in C(2,1) the (divergent) temperature dependent terms from C̄(2) and Z(2) exactly

cancel, as they ought to.

Finally, we consider the various third-order terms. We get the following results

C
(3)
jj2j1j′ = tjj2tj2j1tj1j′

{[

4n(n + 1)3

U3

]

+ 4

[

3n2(n + 1)2

U3

]

+

[

4n3(n + 1)

U3

]}

(78)

= tjj2tj2j1tj1j′

{

4n(n + 1)(5n2 + 5n + 1)

U3

}

, (79)

whence,

C
(3,0)
j′j =

[

∑

j2,j1

tjj2tj2j1tj1j′

]

{

4n(n + 1)(5n2 + 5n + 1)

U3

}

. (80)

Furthermore,

C̄
(3)
jj′j1j′ = tjj′tj′j1tj1j′

{[

2n(n + 1)3

U3
+

n2(n + 1)2

U3
(βU − 2)

]

+ 2

[

2n2(n + 1)2

U3
+

n(n + 1)(n2 − 1)

3U3
+

n(n + 1)(n2 + 2n)

3U3

]

+ 2

[

n2(n + 1)2

U3
(βU − 2) +

n(n + 1)(n2 − 1)

3U3
+

n(n + 1)(n2 + 2n)

3U3

]

+

[

2n3(n + 1)

U3
+

n2(n + 1)2

U3
(βU − 2)

]}

(81)

= tjj′tj′j1tj1j′

{

2n(n + 1)(4n2 + 4n + 1)

3U3
+ 4

n2(n + 1)2

U2
β

}

. (82)

Similarly, we find

C̄
(3)
jj2jj′ = tjj2tj2jtjj′

{

2n(n + 1)(4n2 + 4n + 1)

3U3
+ 4

n2(n + 1)2

U2
β

}

. (83)

Using these and Eq. (48), we get

C
(3,1)
j′j = −

[

∑

j1

tjj′tj′j1tj1j′ +
∑

j2

tjj2tj2jtjj′

]

{

2n(n + 1)(26n2 + 26n + 5)

3U3

}

. (84)
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Next,

C̄
(3)
jj′jj′ = tjj′tj′jtjj′

{

2

[

2
n2(n + 1)2

U3
(βU − 2)

]

+ 4

[

n2(n + 1)2

U3
(βU − 2) +

4(n − 1)n(n + 1)(n + 2)

4U3

]}

(85)

= tjj′tj′jtjj′

{

8
n2(n + 1)2

U2
β − 2n(n + 1)(7n2 + 7n + 2)

U3

}

. (86)

Hence, using Eq. (49), we obtain

C
(3,2)
j′j = [tjj′tj′jtjj′]

{

n(n + 1)(23n2 + 23n + 2)

3U3

}

. (87)

Note, again, the exact cancelation of the divergent temperature-dependent terms above. It

is straightforward to verify that the Fourier transforms of the expressions for C(m,0) above

up to third order agree with those obtainable by expanding the RPA expression in powers

of ǫk (see below).

III. SCALING ANALYSIS

In the rest of this manuscript, we specialize to the case of nearest-neighbor hopping on

a hypercubic lattice in d-dimensions. Combining the different contributions for Cj′j for

such a lattice and Fourier transforming to momentum space, we arrive at the starting point

for the scaling analysis, which is the strong-coupling expansion for the zero-temperature

momentum distribution truncated to third order in the hopping and shown in Eq. (7). It

is more convenient to reexpress the results for different cases in terms of the dimensionless

parameters x = dt/U and ξk = ǫk/2dt. If we further consider only the n = 1 Mott insulator,

we find

nk = 1 − 8ξkx +

[

72ξ2
k
− 36

d

]

x2 − 32

[

22ξ3
k
− 19

d
+

2

d2

]

x3; (88)

i. e.,

nk = 1 − 8ξkx + 72ξ2
k
x2 − 704ξ3

k
x3, (89)

in infinite dimensions where x remains finite as d → ∞,

nk = 1 − 8ξkx + 12[6ξ2
k
− 1]x2 − 32[22ξ2

k
− 55

9
]ξkx

3, (90)

in three dimensions,

nk = 1 − 8ξkx + 18[4ξ2
k
− 1]x2 − 32[22ξ2

k
− 9]ξkx

3, (91)
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in two dimensions, and

nk = 1 − 8ξkx + 36[2ξ2
k
− 1]x2 − 32[22ξ2

k
− 17]ξkx

3, (92)

in one dimension. Note that because integrals of odd powers of ξk over momentum vanish,

we can use the fact that the integral of the square of ξk over k is equal to 1/(2d) to show

that the integral of the strong-coupling expansion for nk over k is always equal to 1, as it

must be.

We show comparison of these truncated third-order strong-coupling expansions directly

with exact numerical results and other analytic approximations below. It turns out that the

truncated strong-coupling expansion does not work so well for the momentum distribution

once the hopping is on the order of one fourth of the critical hopping for the Mott to super-

fluid transition in two and three dimensions (and is even worse in one dimension). Hence,

we use additional knowledge about the momentum distribution and how it scales near the

critical point, along with the exact solution in large dimensions to create a phenomenologi-

cal ansatz for the momentum distribution which produces analytical expressions useful for

direct comparison with experiment.

We start our scaling analysis with a general discussion. The zero momentum distribution

function becomes critical at the critical value of the hopping for the Mott insulator to

superfluid transition (called xc). The critical behavior goes like nk=0 → ξ(1−η) where ξ ∝
1/(xc − x)ν is the correlation length of a d + 1 dimensional XY model [2] and η and ν are

critical exponents in the usual notation [31]. In two and higher dimensions, the correlation

length diverges as a power law. The critical exponents for the two-dimensional Bose Hubbard

model, which correspond to the three-dimensional XY model, are η = 0.04 and ν = 0.67, so

(1−η)ν = γs = 0.64. In three and higher dimensions for the Bose Hubbard model, the critical

exponents are mean-field like, with η = 0 and ν = 0.5, so (1 − η)ν = γs = 0.5. The one-

dimensional case has Kosterlitz-Thouless behavior [32], where η = 0.25, and the divergence

of the correlation length has a Kosterlitz-Thouless exponential form ξ ∝ exp[W/
√

xc − x],

with xc the critical point for the Mott insulator to superfluid transition.

This critical scaling behavior does not provide enough information for us to determine an

ansatz for the momentum distribution function over all momentum, because the distribution

function is not critical for nonzero momentum. We use the exact solution in the infinite-

dimensional limit, as given by the RPA solution, to guide us in how to proceed to develop
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an appropriate scaling ansatz. The RPA form for the momentum distribution function, as

discussed above, and reexpressed in terms of ξk and x, is given by [22]

nk = −1

2
+

n + 1
2

+ ξkx
√

1 + 4(2n + 1)ξkx + 4ξ2
k
x2

, (93)

and this is the exact solution in infinite dimensions. A quick examination of the strong-

coupling expansion for arbitrary dimensions, shows that the O(1) terms are the same for all

dimensions, when expressed in terms of x and ξk, and it is only the 1/dn corrections that

differ for the different dimensions. Hence, the power-series expansion of the RPA form must

produce all of the O(1) terms. In finite dimensions, only 1/dn corrections are allowed. This

motivates the following scaling ansatz for the momentum distribution function in two or

higher dimensions (on a bipartite lattice)

nk = −1

2
+

n + 1
2

+ ξkx + c′

d2 x
2 + 2 e′

d2 ξkx
3

[1 + 2āξkx + 4b̄ξ2
k
x2 + c̄

d2 x2 + 8d̄ξ3
k
x3 + 2 ē

d2 ξkx3]γs
, (94)

with d the spatial dimension. Note that in three dimensions, since γs = 0.5 which is the

same power law as in infinite dimensions, we must have d̄ = 0. We will see this occur in the

analysis below.

In order to determine the parameters in the scaling ansatz, we propose three requirements

of the formula in Eq. (94): (i) the power-series expansion of the scaling ansatz, in powers of x,

must reproduce the strong-coupling expansion through the given order (in our case through

third order) as shown in Eq. (7); (ii) we choose the scaling form to have the exact critical

point xc, as determined by QMC, DMRG, or scaling results of a strong-coupling expansion

for the phase diagram; and (iii) we require the integral of nk over all momentum to give

n, the density of the bosons in the Mott phase. In two and higher dimensions, these three

requirements will determine all of the parameters, which we now show; in one-dimension,

we use additional information to determine the Kosterlitz-Thouless constant W , which then

allows us to determine the complete scaling form.

We begin with the infinite-dimensional case where the hopping scales like 1/d so that

x is finite, but the coefficients c̄, c′, ē, and e′ all vanish because they are 1/d2 corrections.

Expanding the scaling ansatz in a power series in x and equating the coefficients of the powers

of x with the strong-coupling expansion in Eq. (7), yields the following: ā = (2n + 1)/γs =

2(2n + 1), b̄ = 1/2γs = 1, and d̄ = 0, so we recover the RPA result in Eq. (93). Since the

critical behavior occurs at the point where 1 + 4(2n + 1)ξkxc + 4ξkx
2
c = 0, and we evaluate
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for k = 0, where ξ0 = −1, we immediately find that xc = (n + 1/2) −
√

n(n + 1), which is

the exact critical point [2, 9] for all n. Hence, one can see that this approach automatically

produces the right behavior for the large-dimensional limit.

Note that the curvature of the RPA momentum distribution, with respect to ξk, is always

one sign. In the truncated third-order strong-coupling expansion, the curvature of the

momentum distribution function changes sign at ξk = 1 when x ≈ 0.034. This effect occurs

for all finite dimensions as well. The scaled results, that are shown below, do not have a

change in the sign of the curvature, and we expect that this does not occur in any of the

exact solutions of the Bose Hubbard model.

Since the momentum distribution function depends on the correlation length at k = 0,

and so does the phase diagram, it is interesting to try a phenomenological exercise, where we

take the critical behavior determined via our scaling approach for the momentum distribution

and relate it to a determination of the phase diagram. Since we have a power law of a

polynomial, instead of the simplest scaling dependence, which would go like
√

xc − x, such

an approach is similar to summing an infinite number of terms in the expansion for the Mott

phase lobes in the phase diagram. As an example, we make the following scaling ansatz for

the Mott lobes
µ

U

∣

∣

∣

±
= n + A(x) ± B(x)[scaling polynomial]Zν , (95)

where the scaling polynomial is the polynomial used for the momentum distribution at k = 0

[which is 1 − 4(2n + 1)x + 4x2 for the infinite-dimensional case], and A(x) and B(x) are

polynomials in x. Fitting the parameters to the third-order expansion for the Mott phase

lobes, we find for the infinite-dimensional case that

µ

U

∣

∣

∣

±
= n − 1

2
− x ± 1

2

√

1 − 4(2n + 1)x + 4x2, (96)

which is the exact solution [2, 9].

In finite dimensions, we will consider only the n = 1 case, because good numerical data

is available for the Mott phase boundary in one, two, and three dimensions and we want to

ensure that we produce the correct critical point xc. We start with the three-dimensional

case. Taking n = 1, we expand Eq. (94) in a power series in x, and compare with the

strong-coupling expansion in Eq. (90). We find ā = 6, b̄ = 1, c̄ = 144 + 4c′/3, d̄ = 0, and

ē = 224/3 + 58c′/9 + 4e′/3. At this point, the constants c′ and e′ are not determined. We

fix e′, by requiring the momentum distribution at k = 0 to diverge at the critical point
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FIG. 7: (Color online) Momentum distribution function for the three-dimensional case with x =

0.0625 as a function of the band energy ǫk. Note how the QMC data agrees better with the scaling

theory results than it does with the strong-coupling results or the scaled RPA, although deviations

can be seen in the data.

xc = 0.10224 as determined by QMC simulation [17]. This produces the equation

1 − 12xc +

(

20 +
4

27
c′
)

x2
c −

(

448

27
+

116

81
c′ +

8

27
e′

)

x3
c = 0. (97)

Setting xc = 0.10224, and solving for e′, yields

e′ = −122.2743 + 0.0571205c′. (98)

(Note that if we instead set the coefficients c′ and e′ to zero, then the critical point would lie

at xc = 0.09805, which is about a 4.3% error.) The coefficient c′ is determined by requiring
∫

d3knk = 1; we find that c′ ranges from 0 at x = 0 out to c′ = −1.86 as x → xc. A simple

polynomial fit to the behavior of c′(x) is

c′(x) = 0.017166 − 0.71982x − 161.093x2 − 109.614x3. (99)

We compare the strong-coupling perturbation theory to numerically exact results per-

formed with world-line quantum Monte Carlo simulations of the Bose Hubbard model that

employ the directed-loop algorithm [33], in particular, its continuous-imaginary-time vari-

ant [34]. We have further improved the algorithm by omitting one-site vertices corresponding
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to the U-term [35] and also two-body vertices corresponding to the hopping term [36]. The

latter modification is useful in reducing the memory and was crucial in the present simu-

lation of the largest system (L = 64). The accuracy of the method is tested by comparing

with exact diagonalization for small systems, and verifies the critical exponents with known

results for the d+1-dimensional XY model. To further test that the true equilibrium distri-

bution is sampled on large systems, several independent runs with varying lattice sizes are

carried out, showing no systematic deviation, thereby ensuring that our numerical results

are “exact” except for statistical errors. This QMC approach has already been applied to the

problem of determining how the momentum distribution changes when the system becomes

superfluid [18].

We also compare the momentum distribution to RPA results. Since the RPA has a

critical value of x that is smaller than the true critical value in finite dimensions, we plot the

RPA results in Eq. (93) at a rescaled hopping value, corresponding to the same fractional

amount of xc. Namely, we choose xRPA = 0.0857864x/xc(d). We call this the scaled RPA

momentum distribution.

The scaled results of the strong-coupling perturbation theory fit the numerical QMC data

quite well. We compare with data at x = 0.0625 and x = 0.09 in Figs. 7 and 8, respectively.

The QMC data is for a 48 × 48 × 48 lattice at a temperature T = 0.1t (T = 0.025t for

x = 0.09); in all cases, we have carefully checked that the finite-size effects and the finite-

temperature effects are much smaller than the symbol size in all of our results. Note how the

QMC data follows the scaled curve much better than the strong-coupling curve, although

there are definitely differences between the two. The deviations between the QMC data

and the scaling result are real and larger than the finite-size or finite-temperature effects.

This simply reflects the fact that the scaling result is not an exact interpolation formula

for the momentum distribution. As expected, the momentum distribution is peaked at zero

momentum, and as one approaches the critical point at x = 0.10224, the peak becomes

sharper. One can also see that the truncated third-order expansion is not too accurate. As

we already mentioned above, the curvature for momenta near the zone boundary has the

wrong sign even for quite small hopping. It also underestimates the size of the peak at

zero momentum, and this gets worse as we approach the critical point. Nevertheless, the

strong-coupling expansion is quite accurate for small enough hopping, and the fact that it

agrees essentially exactly with both the scaled results and the QMC simulations, provides
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FIG. 8: (Color online) Momentum distribution function for the three-dimensional case with x =

0.09 as a function of the band energy ǫk. Once again, the QMC data agrees better with the scaling

theory than it does with the strong-coupling results or the scaled RPA, although deviations can

still be seen in the data. Note that the scaled RPA works better than the truncated strong-coupling

expansion.

an independent check that all of these different approaches are working to high precision.

We now try the phenomenological approach on the three-dimensional phase diagram.

Here we have some uncertainty in how to proceed, because the scaling polynomial has

freedom in our ability to vary the c′ coefficient. We can either modify the scaling polynomial

to represent the changes in c′, or we can fix c′ at a specific value and proceed from there.

It turns out that we get better results if we fix c′ = 0 when calculating the phase diagram

(especially for the two-dimensional case below). So we adopt that as our procedure (note

we do not also set e′ = 0, because that would produce the wrong critical point for this

phenomenological approach). The result for the Mott phase lobes is

µ

U

∣

∣

∣

±
=

1

2
− x − 1

2
x2 + x3 ±

1
2
− 1

2
x2 − 8.81514x3

√
1 − 12x + 20x2 + 16.67387x3

. (100)

These results are plotted versus the QMC calculations [17] in Fig. 9. One can see that while

the truncated strong coupling expansion [8, 9] does not agree so well with the QMC data

near the critical point, the agreement of the scaled curves is excellent.
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FIG. 9: (Color online) Phase diagram of the three-dimensional Bose Hubbard model. Note how

the truncated strong-coupling expansion does not agree so well with the QMC data [17], but the

scaled results nearly fit the Mott phase lobe perfectly.

Next, we move on to two dimensions. Recall that γs = 0.64 in this case. Going through

the same procedure outlined above produces the following solution for the coefficients in the

scaling polynomial: ā = 3/γs = 4.6875; b̄ = −17/2γs + 9/2γ2
s = −2.29492; c̄ = 48/γs +

2c′/3γs = 75.0 + 1.04167c′; d̄ = 33/γs − 51/2γ2
s + 9/2γ3

s = 6.47278; and ē = −256/γs +

144/γ2
s − 2c′/9γs + 2c′/γ2

s + 2e′/3γs = −48.4375 + 4.53559c′ + 1.04167e′. Once again, c′ and

e′ are as yet undetermined. We find e′ by requiring the critical point at k = 0 to occur at

the QMC and strong-coupling critical point xc = 0.11948 [16]. The critical point is found

when

1 − 9.375xc + (9.57032 + 0.260418c′)x2
c (101)

+ (−27.56349 − 2.26780c′ − 0.260418e′)x3
c = 0.

(If we set c′ = e′ = 0, then the critical point would lie at xc = 0.11579 which is a 3.2% error.)

Substituting in xc = 0.11948, then yields e′ = −68.7054 − 0.338706c′. The parameter c′ is

then determined by requiring the integral of nk over all momentum to equal one. We find

that c′ ranges from approximately −115 at x = 0 to c′ ≈ −224 at x = 0.119, but for values

of x larger than about 0.1169, there is no value of c′ that gives the total particle density

to be exactly one—the error is about 1.5% at x = 0.119 when we choose the best fit c′. A
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FIG. 10: (Color online) Momentum distribution function in two dimensions with x = 0.05. We

plot the strong-coupling expansion against the scaling theory results, the scaled RPA, and QMC

simulations. Note how the QMC results agree much better with the scaled results and do not show

the change in curvature near ξk = 1. In addition, the scaled RPA doesn’t work as well here as it

did in three dimensions.

simple fit of c′(x) is

c′(x) = −99 − 13.7(1 − 7.914x)−0.77. (102)

We compare our analytic expressions to QMC data in two dimensions on a 48×48 lattice

with T = 0.05. In Fig. 10, we plot a case far from the critical point with x = 0.05. The scaling

curve and the truncated strong-coupling expansion are both quite close to each other here,

but one can see how the curvature has changed in the strong-coupling expansion but not in

the data nor in the scaled curve. One also can see systematically that the QMC data agrees

better with the scaled curve than the strong-coupling expansion. Moving on to a point much

closer to the critical point at x = 0.1, we show the same plots in Fig. 11 with the QMC data

on a 48 × 48 lattice with T = 0.00625. Here, one can see a much more dramatic difference

between the truncated strong-coupling results and the scaled results. While there definitely

are some minor discrepancies with the QMC data and the scaled results, the agreement is,

in general, outstanding. Note that we plot the momentum distribution versus ǫk instead of

k, because in the strong coupling expansion all momentum dependence is summarized in ǫk
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FIG. 11: (Color online) Momentum distribution function in two dimensions with x = 0.1, which

is close to the critical point. We plot the strong-coupling expansion against the scaling theory

results, the scaled RPA, and the QMC simulations. Note how the QMC results agree much better

with the scaling theory results.

through third order, so there is limited other momentum dependence. For the QMC data,

we average the small number of degenerate energy values.

We finally try the phenomenological fit to the phase diagram by using the scaling poly-

nomial in the power law and forcing the third-order strong coupling expansion to agree with

the phenomenological scaling ansatz. Once again, we set c′ = 0 when we do this, because

the agreement is significantly worse with different c′ values. Because c′ assumes much larger

values in two dimensions in order to get the right integrated weight in the momentum dis-

tribution, this is a significant assumption we are making, but as seen in the final results, the

assumption seems reasonable because the agreement is quite good.

Following an identical procedure to what was done in the three-dimensional case (with

c′ set equal to zero), we find

µ

U

∣

∣

∣

±
=

1

2
− x − 3

4
x2 +

3

2
x3 (103)

±
1
2

+ 0.14063x− 0.21460x2 − 3.87043x3

[1 − 9.375x + 9.5704x2 + 9.6757x3]0.67
.

These results are plotted versus the QMC calculations [16] in Fig. 12. Once again note that
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FIG. 12: (Color online) Phase diagram of the two-dimensional Bose Hubbard model. Note how

the truncated strong-coupling expansion [8, 9] does not agree so well with the QMC data [16], but

the scaled results nearly fit the Mott phase lobe perfectly.

while the truncated strong-coupling expansion does not agree so well with the QMC data

near the critical point, the scaled curves lie essentially on top of the QMC data.

The one-dimensional case is different from higher dimensions because the scaling behavior

is not power law, but instead is the Kosterlitz-Thouless form of the two dimensional XY

model. Hence, we modify our scaling ansatz to

nk = −1

2
+

[

n +
1

2
+ ξkx + c′x2 + 2e′ξkx

3

]

× exp

[

−W ′ +
W ′

√

1 + 2āξkx + 4b̄ξ2
k
x2 + c̄x2 + 8d̄ξ3

k
x3 + 2ēξkx3

]

, (104)

which replaces the power law divergence by the appropriate exponential divergence. Because

the exponent η = 0.25 for the two-dimensional XY model, we have that W ′ = 0.75W , with

W the parameter in the Kosterlitz-Thouless fit to the one-dimensional Mott phase diagram.

Using the data of Elstner and Monien [14], we fit the gap function ∆(x) to the Kosterlitz-

Thouless form

[ln∆(x)]2 =
A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + Gx6

1 + Hx + Ix2 + Jx3 + Kx4 + Lx5 + Mx6 + Nx7
,

by using a Pade approximant for the pole that develops in the square of the logarithm
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of the gap function. Note that one needs to do the Pade approximant for the square of

the logarithm of the power series in order to obtain a robust fit [instead of doing a series

or Pade approximation for ∆(x) first and then taking the square of the logarithm of the

resulting series or Pade approximant]. The critical point is xc = 0.29981 and the parameter

W becomes W = 1.7241 or W ′ = 1.2931.

FIG. 13: (Color online) Momentum distribution function in one dimension with x = 0.1, which

is far from the critical point. We plot the strong-coupling expansion against the scaling theory

results, the scaled RPA, and the DMRG calculations. Note how the DMRG results agree much

better with the scaling theory results than the truncated expansion or the scaled RPA.

Now we solve for the coefficients in the scaling form just as we did in higher dimensions.

First we ensure that the power-series expansion of the scaling form reproduces the strong-

coupling expansion through the third order in x, then we ensure that the denominator of

the square root in the exponential diverges at xc. These two conditions yield ā = 4.6400,

b̄ = 3.0006, c̄ = 37.1201 + 1.0311c′, d̄ = 9.4879, ē = 64.2632 + 6.8329c′, and e′ = −9.4630 −
0.3190c′. The coefficient c′ is adjusted to guarantee that the integral of the momentum

distribution over all momentum is equal to one. We find that c′ ≈ −7.92 − 15.16x in order

to satisfy the sum rule.

We compare the scaled strong-coupling perturbation theory to the numerical calculations

in one dimension from the density matrix renormalization group (DMRG) approach [37]
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FIG. 14: (Color online) Momentum distribution function in one dimension with x = 0.2, which

is two-thirds of the way to the critical point. We plot the strong-coupling expansion against the

scaling theory results, the scaled RPA, and the DMRG calculations. Note how the DMRG results

agree much better with the scaling theory results than the truncated expansion or the scaled RPA,

but one can see that the scaling approach is beginning to fail.

(provided to us by C. Kollath). Those calculations are essentially exact except for finite-size

effects which become more important as we approach the critical point at x = 0.29981.

In Fig. 13, we compare the different approximations to the DMRG calculations. One can

immediately see that although the truncated expansion has a nonmonotonic dependence on

ǫk, the scaled approach essentially agrees exactly with the DMRG calculations.

Next, we compare the different approximate results to the DMRG calculations for x = 0.2

in Fig. 14. Here we see that while the scaled results still agree well with the DMRG results

near k = 0, the agreement is not so good throughout the Brillouin zone, and it is clear that

the approximation is becoming inadequate. When we compare results for large values of

the hopping, such as x = 0.25, the scaled results become negative over about half of the

Brillouin zone, which is unphysical.

We do not go through the phenomenological exercise of comparing our results to the

phase diagram in the one-dimensional case as we did previously for higher dimensions. This

is primarily because we could see the approximate scaled results were breaking down around
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x ≈ 0.2, so it is unlikely that a phenomenological approach for the phase diagram would be

accurate in this case. In general, the strong coupling approach is more accurate in higher

rather than lower dimensions.

IV. CONCLUSIONS

In this work, we have shown how one can generalize strong coupling perturbation theory

from an expansion for the many-body energy levels, or for different ground-state correlation

functions, to a direct expansion for the many-body Green’s function at finite temperature.

Here, we focused on applying the expansion to the problem of determining the momentum

distribution in the bulk for the Bose Hubbard model within the Mott-insulating phase. By

applying a scaling ansatz, that was motivated by recent work on the RPA, we are able to

find accurate analytic expressions for the momentum distributions that hold nearly up to

the critical point in two and three dimensions (the results for one-dimension are not quite as

good). In addition, we showed how one can apply the results for the momentum distribution

function to create a phenomenological theory for the Mott phase lobes. Comparing these

results to QMC simulations showed excellent agreement in two and three dimensions.

The strong coupling formalism as developed here can be used, as we have indicated,

to obtain a strong-coupling expansion for the self-energy, and to include inhomogeneous

features like a harmonic trap or disorder potential, and the effects of thermal excitations. It

can also be readily adapted to nonequilibrium cases such as moving the origin of the trap

or modulating the optical lattice depth for Bragg spectroscopy. The quantum Monte Carlo

approach can be generalized to calculate dispersion relations, densities of states, and real

time dynamics. We intend to examine those problems in the future.
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APPENDIX A: IMAGINARY TIME INTEGRALS NEEDED FOR THE

STRONG-COUPLING EXPANSION

Consider the i-time ordered integral

Im(β; Eα0
, Eαm

, · · · , Eα1
) ≡ e−βEα0

Z

∫ β

0

dτm

∫ τm

0

dτm−1 · · ·
∫ τ2

0

dτ1

× e[τm(Eα0
−Eαm )+τm−1(Eαm−Eαm−1

)+···+τ2(Eα3
−Eα2

)+τ1(Eα2
−Eα1

)]. (A1)

It is easy to see that the sequence of functions Im satisfy the recursion relation:

Im(τ ; Eα0
, Eαm

, · · · , Eα1
) =

∫ τ

0

dτ ′e−(τ−τ ′)Eα0 Im−1(τ
′; Eαm

, Eαm−1
· · · , Eα1

). (A2)

Taking the Laplace transform of both sides, it is straightforward to see that

L[Im(τ ; Eα0
, Eαm

, · · · , Eα1
); s] ≡

∫ ∞

0

dτe−sτIm(τ ; Eα0
, Eαm

, · · · , Eα1
)

=

∫ ∞

0

dτ

∫ τ

0

dτ ′e−sτe−(τ−τ ′)Eα0 Im−1(τ
′; Eαm

, Eαm−1
· · · , Eα1

)

=

∫ ∞

0

dτ ′

∫ ∞

τ ′

dτe−(s+Eα0
)τeτ ′Eα0Im−1(τ

′; Eαm
, Eαm−1

· · · , Eα1
)

=

∫ ∞

0

dτ ′ e−sτ ′

s + Eα0

Im−1(τ
′; Eαm

, Eαm−1
· · · , Eα1

)

=
1

s + Eα0

L[Im−1(τ ; Eαm
, Eαm−1

· · · , Eα1
); s]. (A3)

Iterating this, and noting that I0(τ ; Eα1
) = e−τEα1/Z, which implies that L[I0(τ ; Eα1

); s] =

[Z(s + Eα1
)]−1, we find

L[Im(τ ; Eα0
, Eαm

, · · · , Eα1
); s] =

1

Z

∏

ℓ=0,m

1

(s + Eαℓ
)
. (A4)
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Taking the inverse Laplace transform yields

Im(τ ; Eα0
, Eαm

, · · · , Eα1
) =

∫ γ+i∞

γ−i∞

ds

2πi

eτs

Z

∏

ℓ=0,m

1

(s + Eαℓ
)
, (A5)

with γ > max (Eα0
, Eαm

, · · · , Eα1
), so that all the singularities of the integrand lie to the

left of the integration contour in the complex s-plane. The integral is straightforwardly

evaluated using the contour integration techniques. When all the energies Eα0
, Eαm

, · · · , Eα1

are distinct, we get one contribution from each of the m+1 simple poles of the integrand in

Eq. (A5), leading to Eq. (51). If one and only one pair of energies are equal, say, Eαr
= Eαp

,

then the integrand of Eq. (A5) has m − 1 simple poles and one double pole, and we get

Eq. (52). One can similarly extend the results to other cases, corresponding to two double

poles, or one triple pole, etc.
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APPENDIX B: FINAL RESULTS FOR THE THIRD-ORDER EXPANSION

TERMS

Explicit forms for the third-order coefficients in the strong-coupling expansion are pre-

sented here (for brevity only in the second form, as discussed in Sec. II):

C
(3)
jj2j1j′ = tjj2tj2j1tj1j′

∑

n,n1,n2,n′

ρj,n ρj1,n1
ρj2,n2

ρj′,n′ ×

{ [
n(n2 + 1)(n1 + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j2,n2

)(ǫ−j,n + ǫ+
j1,n1

)(ǫ−j,n + ǫ+
j′,n′

j
)

+
(n + 1)(n2 + 1)n1(n

′ + 1)

(ǫ+
j,n + ǫ−j1,n1

)(ǫ−j1,n1
+ ǫ+

j2,n2
)(ǫ−j1,n1

+ ǫ+
j′,n′)

+
(n + 1)(n2 + 1)(n1 + 1)n′

(ǫ+
j,n + ǫ−j′,n′)(ǫ

+
j2,n2

+ ǫ−j′,n′)(ǫ
+
j1,n1

+ ǫ−j′,n′)
+

(n + 1)n2(n1 + 1)(n′ + 1)

(ǫ+
j,n + ǫ−j2,n2

)(ǫ+
j1,n1

+ ǫ−j2,n2
)(ǫ−j2,n2

+ ǫ+
j′,n′)

]

+ [
nn2(n1 + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j1,n1
)(ǫ−j2,n2

+ ǫ+
j1,n1

)
+

(n + 1)n2n1(n
′ + 1)

(ǫ+
j,n + ǫ−j2,n2

)(ǫ+
j,n + ǫ−j1,n1

)(ǫ−j1,n1
+ ǫ+

j′,n′)

+
(n + 1)n2(n1 + 1)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j1,n1

+ ǫ−j′,n′)(ǫ
+
j1,n1

+ ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′)

+
n(n2 + 1)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j1,n1
+ ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j2,n2
)(ǫ+

j2,n2
+ ǫ−j1,n1

)
]

+ [
nn2(n1 + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j2,n2

+ ǫ+
j1,n1

)(ǫ−j2,n2
+ ǫ+

j′,n′)
+

n(n2 + 1)(n1 + 1)n′

(ǫ−j,n + ǫ+
j2,n2

)(ǫ+
j2,n2

+ ǫ−j′,n′)(ǫ
+
j1,n1

+ ǫ−j′,n′)

+
(n + 1)n2(n1 + 1)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j1,n1

+ ǫ−j′,n′)(ǫ
+
j,n + ǫ−j2,n2

)(ǫ+
j,n + ǫ−j′,n′)

+
n(n2 + 1)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j1,n1
+ ǫ+

j′,n′)(ǫ
+
j2,n2

+ ǫ−j1,n1
)(ǫ−j1,n1

+ ǫ+
j′,n′)

]

+ [
n(n2 + 1)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j1,n1
+ ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j2,n2
)(ǫ−j,n + ǫ+

j′,n′)

+
(n + 1)n2(n1 + 1)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j1,n1

+ ǫ−j′,n′)(ǫ
−
j2,n2

+ ǫ+
j1,n1

)(ǫ+
j1,n1

+ ǫ−j′,n′)

+
(n + 1)n2n1(n

′ + 1)

(ǫ+
j,n + ǫ−j2,n2

)(ǫ−j2,n2
+ ǫ+

j′,n′)(ǫ
−
j1,n1

+ ǫ+
j′,n′)

+
(n + 1)(n2 + 1)n1n

′

(ǫ+
j2,n2

+ ǫ−j1,n1
)(ǫ+

j2,n2
+ ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)

]

+ [
n(n2 + 1)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j1,n1
+ ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)(ǫ
−
j1,n1

+ ǫ+
j′,n′)

+
(n + 1)n2(n1 + 1)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j1,n1

+ ǫ−j′,n′)(ǫ
+
j,n + ǫ−j2,n2

)(ǫ−j2,n2
+ ǫ+

j1,n1
)

+
(n + 1)(n2 + 1)n1n

′

(ǫ+
j,n + ǫ−j1,n1

)(ǫ+
j2,n2

+ ǫ−j1,n1
)(ǫ+

j,n + ǫ−j′,n′)
+

n(n2 + 1)(n1 + 1)n′

(ǫ−j,n + ǫ+
j2,n2

)(ǫ−j,n + ǫ+
j1,n1

)(ǫ+
j1,n1

+ ǫ−j′,n′)
]
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nn2n1(n

′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j2,n2

+ ǫ+
j′,n′)(ǫ

−
j1,n1

+ ǫ+
j′,n′)

+
n(n2 + 1)n1n

′

(ǫ−j,n + ǫ+
j2,n2

)(ǫ+
j2,n2

+ ǫ−j1,n1
)(ǫ+

j2,n2
+ ǫ−j′,n′)

+
(n + 1)n2n1n

′

(ǫ+
j,n + ǫ−j2,n2

)(ǫ+
j,n + ǫ−j1,n1

)(ǫ+
j,n + ǫ−j′,n′)

+
nn2(n1 + 1)n′

(ǫ−j,n + ǫ+
j1,n1

)(ǫ−j2,n2
+ ǫ+

j1,n1
)(ǫ+

j1,n1
+ ǫ−j′,n′)

] },

(B1)
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C̄
(3)
jj′j1j′ = tjj′tj′j1tj1j′

∑

n,n1,n′

ρj,n ρj1,n1
ρj′,n′ ×

{ [
n(n′ + 1)(n1 + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′

j
)(ǫ−j,n + ǫ+

j1,n1
)(ǫ−j,n + ǫ+

j′,n′

j
)

+
(n + 1)(n′ + 1)n1(n

′ + 1)

(ǫ−j1,n1
+ ǫ+

j′,n′)(ǫ
+
j,n + ǫ−j1,n1

)(ǫ−j1,n1
+ ǫ+

j′,n′)

+
(n + 1)n′(n1 + 1)n′

(ǫ+
j,n + ǫ−j′,n′)(ǫ

+
j1,n1

+ ǫ−j′,n′)
(β − 1

(ǫ+
j,n + ǫ−j′,n′)

− 1

(ǫ+
j1,n1

+ ǫ−j′,n′)
)]

+ [
nn′(n1 + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j1,n1

)(ǫ+
j1,n1

+ ǫ−j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)
+

(n + 1)n′n1(n
′ + 1)

(ǫ+
j,n + ǫ−j1,n1

)(ǫ+
j,n + ǫ−j′,n′)(ǫ

−
j1,n1

+ ǫ+
j′,n′)

+
(n + 1)(n′ − 1)(n1 + 1)n′

(ǫ+
j,n + ǫ−j′,n′−1 + ǫ+

j1,n1
+ ǫ−j′,n′)(ǫ

+
j1,n1

+ ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′)

+
n(n′ + 2)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j′,n′+1 + ǫ−j1,n1

+ ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)(ǫ
−
j1,n1

+ ǫ+
j′,n′)

]

+ [
nn′(n1 + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

+
j1,n1

+ ǫ−j′,n′)
(β − 1

(ǫ−j,n + ǫ+
j′,n′)

− 1

(ǫ+
j1,n1

+ ǫ−j′,n′)
)

+
(n + 1)(n′ − 1)(n1 + 1)n′

(ǫ+
j,n + ǫ−j′,n′−1 + ǫ+

j1,n1
+ ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)

+
n(n′ + 1)n1(n

′ + 2)

(ǫ−j,n + ǫ+
j′,n′ + ǫ−j1,n1

+ ǫ+
j′,n′+1)(ǫ

+
j′,n′ + ǫ−j1,n1

)(ǫ−j1,n1
+ ǫ+

j′,n′)
]

+ [
n(n′ + 2)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j′,n′+1 + ǫ−j1,n1

+ ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)

+
(n + 1)(n′ − 1)(n1 + 1)n′

(ǫ+
j,n + ǫ−j′,n′−1 + ǫ+

j1,n1
+ ǫ−j′,n′)(ǫ

−
j′,n′ + ǫ+

j1,n1
)(ǫ+

j1,n1
+ ǫ−j′,n′)

+
(n + 1)n′n1(n

′ + 1)

(ǫ+
j,n + ǫ−j′,n′)(ǫ

−
j1,n1

+ ǫ+
j′,n′)

(β − 1

(ǫ+
j,n + ǫ−j′,n′)

− 1

(ǫ−j1,n1
+ ǫ+

j′,n′)
)]

+ [
n(n′ + 2)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j′,n′+1 + ǫ−j1,n1

+ ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)(ǫ
−
j1,n1

+ ǫ+
j′,n′)

+
(n + 1)n′(n1 + 1)(n′ − 1)

(ǫ+
j,n + ǫ−j′,n′ + ǫ+

j1,n1
+ ǫ−j′,n′−1)(ǫ

+
j,n + ǫ−j′,n′)(ǫ

−
j′,n′ + ǫ+

j1,n1
)

+
(n + 1)(n′ + 1)n1n

′

(ǫ+
j,n + ǫ−j1,n1

)(ǫ+
j′,n′ + ǫ−j1,n1

)(ǫ+
j,n + ǫ−j′,n′)

+
n(n′ + 1)(n1 + 1)n′

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j1,n1
)(ǫ+

j1,n1
+ ǫ−j′,n′)

]

+ [
n(n′ + 1)n1(n

′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j1,n1

+ ǫ+
j′,n′)

(β − 1

(ǫ−j,n + ǫ+
j′,n′)

− 1

(ǫ−j1,n1
+ ǫ+

j′,n′)
)

+
(n + 1)n′n1n

′

(ǫ+
j,n + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j1,n1

)(ǫ+
j,n + ǫ−j′,n′)

+
nn′(n1 + 1)n′

(ǫ−j,n + ǫ+
j1,n1

)(ǫ−j′,n′ + ǫ+
j1,n1

)(ǫ+
j1,n1

+ ǫ−j′,n′)
] }.

(B2)
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Similarly, we get

C̄
(3)
jj2jj′ = tjj2tj2jtjj′

∑

n,n2,n′

ρj,n ρj2,n2
ρj′,n′ ×

{ [
n(n2 + 1)n(n′ + 1)

(ǫ−j,n + ǫ+
j2,n2

)(ǫ−j,n + ǫ+
j′,n′

j
)
(β − 1

(ǫ−j,n + ǫ+
j2,n2

)
− 1

(ǫ−j,n + ǫ+
j′,n′

j
)
)

+
(n + 1)(n2 + 1)(n + 1)n′

(ǫ+
j,n + ǫ−j′,n′)(ǫ

+
j2,n2

+ ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′)

+
(n + 1)n2(n + 1)(n′ + 1)

(ǫ+
j,n + ǫ−j2,n2

)(ǫ+
j,n + ǫ−j2,n2

)(ǫ−j2,n2
+ ǫ+

j′,n′)
]

+ [
nn2(n + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j2,n2

+ ǫ+
j,n)

(β − 1

(ǫ−j,n + ǫ+
j′,n′)

− 1

(ǫ−j2,n2
+ ǫ+

j,n)
)

+
(n + 1)n2(n + 2)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j,n+1 + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)

+
n(n2 + 1)(n − 1)(n′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j,n−1 + ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j2,n2
)(ǫ+

j2,n2
+ ǫ−j,n)

]

+ [
nn2(n + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j2,n2

+ ǫ+
j,n)(ǫ

−
j2,n2

+ ǫ+
j′,n′)

+
n(n2 + 1)(n + 1)n′

(ǫ−j,n + ǫ+
j2,n2

)(ǫ+
j2,n2

+ ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′)

+
(n + 1)n2(n + 2)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j,n+1 + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j2,n2

)(ǫ+
j,n + ǫ−j′,n′)

+
n(n2 + 1)(n − 1)(n′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j,n−1 + ǫ+
j′,n′)(ǫ

+
j2,n2

+ ǫ−j,n)(ǫ−j,n + ǫ+
j′,n′)

]

+ [
n(n2 + 1)(n − 1)(n′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j,n−1 + ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j2,n2
)(ǫ−j,n + ǫ+

j′,n′)

+
(n + 1)n2(n + 2)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j,n+1 + ǫ−j′,n′)(ǫ

−
j2,n2

+ ǫ+
j,n)(ǫ+

j,n + ǫ−j′,n′)

+
(n + 1)(n2 + 1)nn′

(ǫ+
j2,n2

+ ǫ−j,n)(ǫ+
j2,n2

+ ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′)

+
(n + 1)n2n(n′ + 1)

(ǫ+
j,n + ǫ−j2,n2

)(ǫ−j2,n2
+ ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)
]

+ [
n(n2 + 1)(n − 1)(n′ + 1)

(ǫ−j,n + ǫ+
j2,n2

+ ǫ−j,n−1 + ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)

+
(n + 1)n2(n + 2)n′

(ǫ+
j,n + ǫ−j2,n2

+ ǫ+
j,n+1 + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j2,n2

)(ǫ−j2,n2
+ ǫ+

j,n)

+
(n + 1)(n2 + 1)nn′

(ǫ+
j2,n2

+ ǫ−j,n)(ǫ+
j,n + ǫ−j′,n′)

(β − 1

(ǫ+
j2,n2

+ ǫ−j,n)
− 1

(ǫ+
j,n + ǫ−j′,n′)

)]

+ [
nn2n(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j2,n2

+ ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)
+

n(n2 + 1)nn′

(ǫ−j,n + ǫ+
j2,n2

)(ǫ+
j2,n2

+ ǫ−j,n)(ǫ+
j2,n2

+ ǫ−j′,n′)

+
(n + 1)n2(n + 1)n′

(ǫ+
j,n + ǫ−j2,n2

)(ǫ+
j,n + ǫ−j′,n′)

(β − 1

(ǫ+
j,n + ǫ−j2,n2

)
− 1

(ǫ+
j,n + ǫ−j′,n′)

)] }

(B3)
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and

C̄
(3)
jj′jj′ = tjj′tj′jtjj′

∑

n,n′

ρj,n ρj′,n′ ×

{ [
n(n′ + 1)n(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′

j
)(ǫ−j,n + ǫ+

j′,n′

j
)
(β − 2

(ǫ−j,n + ǫ+
j′,n′

j
)
)

+
(n + 1)n′(n + 1)n′

(ǫ+
j,n + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)

(β − 2

(ǫ+
j,n + ǫ−j′,n′)

)]

+ [
nn′(n + 1)(n′ + 1)

(ǫ+
j,n + ǫ−j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)
(β − 1

(ǫ−j,n + ǫ+
j′,n′)

− 1

(ǫ+
j,n + ǫ−j′,n′)

)

+
(n + 1)(n′ − 1)(n + 2)n′

(ǫ+
j,n + ǫ−j′,n′−1 + ǫ+

j,n+1 + ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′−1)(ǫ

+
j,n + ǫ−j′,n′)

+
n(n′ + 2)(n − 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′+1 + ǫ−j,n−1 + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)
]

+ [
nn′(n + 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

+
j,n + ǫ−j′,n′)

(β − 1

(ǫ−j,n + ǫ+
j′,n′)

− 1

(ǫ+
j,n + ǫ−j′,n′)

)

+
(n + 1)(n′ − 1)(n + 2)n′

(ǫ+
j,n + ǫ−j′,n′−1 + ǫ+

j,n+1 + ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)

+
n(n′ + 1)(n − 1)(n′ + 2)

(ǫ−j,n + ǫ+
j′,n′ + ǫ−j,n−1 + ǫ+

j′,n′+1)(ǫ
+
j′,n′ + ǫ−j,n)(ǫ

−
j,n + ǫ+

j′,n′)
]

+ [
n(n′ + 2)(n − 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′+1 + ǫ−j,n−1 + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)

+
(n + 1)(n′ − 1)(n + 2)n′

(ǫ+
j,n + ǫ−j′,n′−1 + ǫ+

j,n+1 + ǫ−j′,n′)(ǫ
−
j′,n′ + ǫ+

j,n)(ǫ
+
j,n + ǫ−j′,n′)

+
(n + 1)n′n(n′ + 1)

(ǫ+
j,n + ǫ−j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)
(β − 1

(ǫ+
j,n + ǫ−j′,n′)

− 1

(ǫ−j,n + ǫ+
j′,n′)

)]

+ [
n(n′ + 2)(n − 1)(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′+1 + ǫ−j,n−1 + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)(ǫ
−
j,n + ǫ+

j′,n′)

+
(n + 1)(n′ − 1)(n + 2)n′

(ǫ+
j,n + ǫ−j′,n′−1 + ǫ+

j,n+1 + ǫ−j′,n′)(ǫ
+
j,n + ǫ−j′,n′)(ǫ

−
j′,n′ + ǫ+

j1,n1
)

+
(n + 1)(n′ + 1)nn′

(ǫ+
j′,n′ + ǫ−j,n)(ǫ+

j,n + ǫ−j′,n′)
(β − 1

(ǫ+
j′,n′ + ǫ−j,n)

− 1

(ǫ+
j,n + ǫ−j′,n′)

)]

+ [
n(n′ + 1)n(n′ + 1)

(ǫ−j,n + ǫ+
j′,n′)(ǫ

−
j,n + ǫ+

j′,n′)
(β − 2

(ǫ−j,n + ǫ+
j′,n′)

)

+
(n + 1)n′(n + 1)n′

(ǫ+
j,n + ǫ−j′,n′)(ǫ

+
j,n + ǫ−j′,n′)

(β − 2

(ǫ+
j,n + ǫ−j′,n′)

)] }.

(B4)
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The symmetry of the various terms in, and the term by term correspondence between,

Eqs. (B1–B4) above are noteworthy. The above results are sufficient for the purposes of

this paper, where we discuss only bipartite lattices (specifically, hypercubic lattices in d

dimensions with nearest-neighbor hopping only).
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