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EFFECTIVENESS FACTORS IN
BIDISPERSED CATALYSTS UNDER
CONDITIONS OF CATALYST FOULING

A. DATAR, BD. KULKARNI and LK. DORAISWAMY'

Nationa! Chemical Laboratory Poona 411 D05 India
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INMTRODUCTION

Catalvst peliets that are manufactured by compaction.of porous particles are often
dharacterized by a bidisperséd size distribution, with micropores lying inside the
porous particles and macropores between single or agilomerated particles. Consid-
erable work on diffisionand adsorption in this type of catalyst-has been reported in
the literature (Hashimoto e al, 1976; Uyanik, 1977; Dogu and Smith, 1975
Hashimoto and Smith, 19743, and both the micro- and macropore diffusivities can be
determined experimentally (MacDonald and Habgood, 1972; Dogu and Smith, 1975;
Ma and Lee, 1976; Ravi Kumar et ol 1982 There are also numerous studies
concerned with the effectiveness of these catalysts {Silvesta and Hashimoto, 1975
Mingle and Smith, 1961; Ors and Dogu, 1979; Jayaraman et al., 1980, 1983; Namjoshi
et al., 1983a).

There are well known reasons why commercial catalvsts are liable to lose their
activity during the course of reaction. The problem of catalyst deactivation has been
analvzed theoretically and good reviews and treatises covering this area are available
{Butt g1 af, 1978 Masamune and Smith, 1966). The most common mechanisms for
catalyst deactivation involve fouling through either parallel or series route. In the
present paper we shall study bidisperse catalysts from the specific viewpoint of catalyst
DOISOMNE.

Inclusion of these effects in the analysis of the micro-macro effectiveness factor leads
to a coupled two-point boundary value problem that requires trial-and-error on the
micropore eguations for-each integration step of the macropore equation,—and the
macropore equation must itsell be solved by trial and error. This point has been
discussed in an earlier paper (Namjoshi et al.. 1983b) and it suffices to state here that the
conventional finite difference methods become too cumbersome and almost impossible
to use for obtaining solutions to these problems. In the present work, we employ the
methods of weighted residuals (Villadsen and Michelsen, 1978)—more specifically, the
Galerkin method—and present comprehensive solutions to these problems with first-
order main reaction. The order of the method employed is restricted to twe to avoid
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excessive computation. This, of course, restricts the applicability of the results to
moderate variations in the parameter values. For parameter values that would give
very steep profile it would be necessary to employ higher-order approximation but still
the present approximation order would give essentially correct results.

Parallel Fouling

Let us consider spherical catalyst particles of radius r; which are compacted into
spherical pellets of radius R as shown in Figure 1. In the micropores of the particles we
shall assume that a single first order, isothermal, irreversible reaction takes place.
Catalyst deactivation occurs simultaneously with the main reaction:

A —— Products (main reaction)
A — Coke (Parallel fouling)
At time 0, the residual activity is expressed by the fraction § which is determined by

—3S(x,6) _
80

where C; is the reactant concentration relative to the. pellet surface reactant
concentration (Eq. (3)).

The reaction rate for the main step is given by r, = k4 SC;.

Neglecting the accumulation of reactant in the particles as well as in the pellet, we
obtain the following mass balance equation for species 4 in the particle:

CS;:  SO=0=1 (1

VICi=koSCri/D = ¢*SC, 2)

where

()

¢ —axis, R{for pellet)

r—axis,r; (for particle)

FIGURE { Schematic Diagram showing micro-macro particles in a pellet.
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Equation {2) has boundary conditions

oCi _ 0; x=0 {5
ox

In the same manner we can write the mass balance equation for the pellet as

RZ . RZ 1
ViG =g A= —a5k J C.S dx® (6)

where (1 — €)is the volume of spherical particles per unit volume of the spherical pellet;
and the dimensionless variables are defined as

o a C,
Y=g G = T =1 (7)
Further defining
1! s
W= a L C;Sdx {8)
and
R2D,
=3(1 - -
=31 -9 ©
Equation (6) can be rewritten as
20 2 grpc =g 0
VJ'Ca—3¢ mC =a ox |oo, (10)
With the following boundary conditions
C,=1; y=1 )
oC
*=0; y=0 (12)
ay

The time varying activity variable S can be eliminated from the micropore equations
using the Lengendre transformation

@
W= J C; df (13)
Q
proposed by Del Borghi et al. (1976) and Dudukovic and Lamba {(1978). The micropore

equation can now be written as
Vi = ¢ (1 —exp(—)) (14)
With the transformed boundary conditions
0
l!l‘(l,g) = '[ Ca dg = '»bu
¢ (15)
ay;

S10,0)=0
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Also, employing the transformation (13) evaluated at the surface of the micropore,
the macropore equation (10) can be rewritten as

Vi, =a 4y, (16)

dx x=1

With the transformed boundary conditions

dy, _
d—y_o, y=0 (17)
Yy, =0, y=1 (18)

The derivative (di,/dx), - , required in Eq. (16) can be obtained by solving Egs. (14)—(15).
For this purpose we employ a single point collocation and for spherical geometry of the
particles (Villadsen and Michelsen (1978), p. 234) we obtain:

10.5
FW) =35 0 =) + 1 = exp(~4) = 0 (19)
F() =5 + exp(—) (20)

where  is the value of ; at the collocation point x = ./3/7. It follows from these
equations that y = O for y, = 0 and y;, — ¢ — 1/10.5 for y, — co. Also the derivative
(dy/dx), -, can be obtained as

dy;
dx

- 10— exp(— ]+ 55 L1 - expt— 1} el
x=1

Equations (19) and (21) together give the values of ¢ and (dy/dx), -, for assumed
values of y;, which can be subsequently used in Eq. (16). This equation can now be
solved using the conventional numerical methods or even by collocation. The overall
effectiveness factor computed by this procedure is shown in Figures 2 and 3.

A particular difficulty associated with the use of this procedure is the fact that the
results obtained are accurate only for small values of ¢. Also the final estimation of the
effectiveness factor is very sensitive to changes in parameter values. To overcome this
difficulty it was proposed to simplify the problem by invoking the approximation
concerning the variation of macropore concentration with time. In view of the
relatively weak dependence of C, on 6, the boundary condition given by Eq. (15) can
be approximated as shown in (22).

]
$i(1,0) = J‘ G dd = GO =, (22)
0

The set of Egs. (14)—(15) with the modified condition (22) has now been solved using
Galerkins method:
We use a polynomial approximation for the y, profile:

l!f,-=t//a+(lmu)‘£a,»uf" j=1,2...N (23)
i=1
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FIGURE 2 Micropore effectiveness factor as a function of macropore concentration at different
dimensionless times.

and obtain the residual Ry as
Ry = 6(ay — a;) — 20a,u — ¢*[1 —exp{—y, — a,(1 — 1) — a,u(l —w)}] (29

In Galerkin’s method we make Ry orthogonal on &y,/éa,, k = 1,2.... N over the
volume of the spherical particle. The resultant equations for the case of N = 2 can be
written as

J Ryla, )(1 — wut'?du = 0. k=1 (25)

0

1
J Ryl u)(l — wu?-du=0, k=2 (26)

0

Equations (25) and (26) are solved to obtain the constants ¢, and a,. Integrals in
these equations cannot be evaluated analytically and they have to be solved
numerically using the so-called “Galerkin by quadrature methods™ (Villadsen and
Michelsen, 1978).
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FIGURE 3 Effectiveness factor as a function of « for different values of # and ¢.
Equivalently Eqs. (25)-(26) can also be written as

J‘l Fu)(1 — wu''? du = S: Filuy) = 27)
o &

where F(u) = Ry(a,u)u’ ™!, j = 1,2... N (here 2) and M may have any value > N. The
u,’s are chosen to be the zeros of the Jacobi polynomial p%-1/?. Equation (27) is solved
using the Gaussian quadratures to obtain the values of @, and a,. These values of a,
and a, are utilized in the estimation of n; which in terms of transformed variables can be
written as

3! d!/l

e L =g EXPl—h) dx (28)

It should be noted that the values of ¢, and a, calculated using the above mentioned
procedure are specific to the values of 8, ¢ and C,. In view of the dependence of a, and
a, on g, in the process of calculation of 1; we need to know the variations of a, and a,
with # at constant C, and ¢. These values (da, /d6) have been generated by introducing
an infinitesimal variation in € keeping ¢ and C, constant and then used to obtain the
n; — C, variation for one value of ¢ and several values of 6. One such typical curve for
three different values of 8{=0.2, | and 3} for one value of ¢{¢p = 5)is shown in Figure 2.
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Similar calculations for different values of ¢ have been repeated and the data
interpolated to obtain #; for any value of C, at constant £ and ¢. This information has
been subsequently used in the macropore equation which has been solved using Weisz
and Hick’s method (1962). The results are presented as  — « or n — # plots for different
values of (6, ¢) or («, P).

Figure 4 shows a plot of n — @ for two values of ¢ (1 and 5), each for two values of «,
(1 and 10). It is seen from this figure (curves for ¢ = 1 or 5; « = 1) that curves with the

same a intersect. This implies that at lower times a catalyst with no significant dif-

fusional resistance (¢ = 1) gives better performance while a catalyst with high
diffusional resistance fares well for higher 8 values. Also a catalyst with moderate
diffusional resistance deactivates faster than one with higher diffusional resistance. In
general, for any value of ¢ the catalyst has lower effectiveness and deactivates faster
with increase in o. Also, the influence of the parameter a, is less severe for a calalyst with
low diffusional resistance. That is, for low values of ¢ (say ¢ = 1) the deviation in the
values and the final time of deactivation are less severely affected with increase in «
from 1 to 10. On the other hand, for a catalyst with high diffusional resistance, the
influence of an increase in « is felt more severely and both the x and the final time of
deactivation get affected considerably. An alternative representation of n —a for
different values of # has already been shown in Figure 3.

1-0 ' T T 1 T 1]
as=1
o "‘\\ _____ a- = 10 ||
~——l__ a
T~
:1\\\
06 ]

0-2

e AN Eyv

0-1
01 {-0 10
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FIGURE 4 Effectiveness lactor as a function of dimensionless time for different values of a and ¢.
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Series Fouling

The governing equations for the micro-macro pore system where a reaction leading to
series fouling proceeds (4 — v, B — coke) can be written as

ViCii=¢7CyS; Cii=0G, x=1;

dC,,
dx ’ X (29).
2 — 2 . _ _ 1. dCfB . _
ViCg= —vd’CyS; Cig = by, x=1, W =0, x=0 (30)
G,
——(%=C,-HS, S=1, =0 (31)

Combining Egs. (29) and (30), C; can be eliminated in terms of C;, as
Cip=vG — Cy) + by (32)

Employing Eq. (32) in Eq. (31) and using the definition of ; [Eq. (13)], on integration
we obtain

S =exp[—{bo0 + v{y, — ¥)}] (33)
Further, presuming a weak dependence of C, on §, this equation can be written as
S =exp[—(by + vC,)0 + vi;] (34)

Employing this definition of S in Eq. (29) the micropore equation can be rewritten in
terms of the transformed variable as

Vi, = J‘B ¢ % exp[—(by + vC,)0 + vy, ]d0 (35)

0

By using single point collocation this equation can be rewritten as

o
d
By + szCa():J d)z%exp[—(bo+ vC,)0 + vy ] dt (36)
)]
Differentiating Eq. (36) and rearranging we obtain

d 2 -1

W e 1+ 2 expl—(bo +vC)0 + ] 37)

do N

which on subsequent integration subject to condition ¢ = 0 for ¢ = 0 yields

g — Lln (by + vC,)9?/B,; (by + vC,)$*Z/B,,
by bo + (bg + vC,)¢?/B,, by + (by + vCa)(j)ZZ/Blz
. 1 In[ boB, /9% + by + vC, ]
(by + vC,) bo By 2/ ¢* + (by + vC,)Z

(38)
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where
Z =exp[—(by + vC,}0 + )]

The derivative di/df and 0 given by Egs. (37) and (38) are required in the estimation of
micropore effectiveness factor which can be written as

_ (1+5s) ! sd"l’i |
n= C L x 10 exp[—(by + vC,)0 + n,] dx (39)

or equivalently as

=13 wexp[—(by + Cv)B + v/ ]
" I + ¢2/Blzexp[—(b0 + G0 + w]

+ w, exp(—bo(?):| (40)

In these equations w, and w, refer to the weight factors and B, , the coefficient matrix. It
is important to note that by appearing in the equation for #; is also dependent on C,, the
corresponding concentration in the macropore. As such this equation will have to be
simultaneously solved along with the macropore equations.

We now turn to macropore equations for species A and B which can be written as

dc; o
VZ = id = 2 C C =l
.vCa o dx oy G+ 1)¢ ’7:. as a > an
dcC,
y=1 2 =0, y=0
dC; dc,
ViCy= —va—2 o G=B. y=1 d—y”=0, y=0 (42)

Eliminating C, in terms of C, from these equations we obtain the following relation
between the concentration of species B at the surface of the micropore (by) to the
concentration at the surface of the pellet (B,)

b =v(l — C)+ By (43)

Note that b, is required in Eq. (40) for estimation of micropore effectiveness factor.
The macropore equation for the species A has now been solved using the pelynomial
approximation method. The profile for C, is defined as

C,=1+b{(1l=T)+b,T(1-T), T =y? 44)
Substituting Eq. (44) in (41} we obtain the residual R, as

0.25a¢?
s+ 1

The residual Ry is minimized over the volume of the pellet so as to get the best
approximation profile. For N = 2, this leads to Egs. {25) and (26) where Ry is now
defined by Eq. (45). The 5; and C, required in Eq. (45) are given by Egs. (40) and (44).
Once b, and b, are known the overall effectiveness factor is simply obtained as
7; = — I8(b, + b,)/a¢?. The results calculated in terms of the overall effectiveness
factor as a function of time @ for different values of ¢ and « are presented in Figure 5.

Ry= —2b,T + 1.5(~b, + b, — 2b,T) —

i G (45)
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FIGURE 5 Effectiveness factor as a function of 0 for different values of x and ¢.

Typical variations of » as a function of time @ for three different values of ¢(¢ = 1,3
and 5) for « = 1 and 10 are shown in Figure 5. It is seen that for a given value of ¢ the
difference between the effectiveness of the catalyst for « = 1 and 10 is highest for the
catalyst at shorter times. Also, this difference at any time 6 is higher for higher value of
¢. Astime @ increases the differences in general decreases. This decrease in the value of #
for « = 1 and 10 with § is more significant for low ¢ than for high ¢.

The results of this investigation suggest that where series type of fouling occurs, it is
preferable to have a catalyst with low diffusional resistance and aiso low values of «.
Thus it is preferable to operate with as small size of catalyst as possible at low
temperatures. In the limiting case of « — 0, the results obtained here correspond to the
case of series fouling in a monopore system.

To summarize, in systems where catalyst deactivation occurs, due to either parallel
or series fouling, the study leads to the following conclusions:

(1) For parallel fouling, a catalyst with low ¢ gives better performance at shorter
times, while a catalyst with high ¢ fares better at longer times. This also implies that a
catalyst with low ¢ deactivates faster than a catalyst with high ¢ at any value of «.

(2) The catalyst shows lower effectiveness and deactivates faster with increase in o for
any value of ¢.
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(3) The parameter o affects the overall value of n and the time for complete
deactivation of the catalyst more severely for catalysts with high ¢ than for those with
low ¢. In other words, the effect of bimodal pore dispersion increases with increasing
diffusional resistance.

(4) 1n series fouling, the greatest influence of the parameter a is felt at shorter times.
With increase of time, the influence of o diminishes for the same values of ¢. This is
particularly so for catalysts with low ¢.

(5) In general, large values of the parameter « (characterizing the micro-macro pore
system) has a detrimental effect on the effectiveness factor n. 1t is preferable therefore to
operate the system with as low values of « as possible. This clearly suggests the use of
small size of catalyst. In fact, for & = 0, all the results derived here degenerate to the
corresponding monopore case.
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NOMENCLATURE

ai=1,2...N) polynomial constants

a radial coordinate in catalyst pellet

b,,b, polynomial constants

by concentration of species at the surface of the particle at position a
in pellet defined by Eq. (43)

B, concentration of species B in the bulk defined by Eq. (42)

By, coefficient matrix for single point collocation

C; dimensionless particle concentration

C; concentration of reactant A in particle

Cia dimensionless micropore concentration for species A4

C; dimensionless micropore concentration for species B

C, dimensionless macropore concentration

C, macropore concentration

C, dimensionless macropore concentration for species B

D, micropore effective diffusivity

D, macropore effective diffusivity

D,, micropore effective diffusivity of species 4

D,g micropore effective diffusivity of species B

F, defined by Eq. (27)

F(y) defined by Eq. (19)
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