brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows
Blotechnol. Prog. , 18,

Genetic Programming Assisted Stochastic Optimization Strategies
for Optimization of Glucose to Gluconic Acid Fermentation

Jitender Jit Singh Cheema, Narendra V. Sankpal, Sanjeev S. Tambe, and
Bhaskar D. Kulkarni*

Chemical Engineering Division, National Chemical Laboratory, Pune 411008, India

This article presents two hybrid strategies for the modeling and optimization of the
glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel
artificial intelligence formalism, namely, genetic programming (GP), is used to develop
a process model solely from the historic process input-output data. In the next step,
the input space of the GP-based model, representing process operating conditions, is
optimized using two stochastic optimization (SO) formalisms, viz., genetic algorithms
(GAs) and simultaneous perturbation stochastic approximation (SPSA). These SO
formalisms possess certain unique advantages over the commonly used gradient-based
optimization techniques. The principal advantage of the GP-GA and GP-SPSA hybrid
techniques is that process modeling and optimization can be performed exclusively
from the process input-output data without invoking the detailed knowledge of the
process phenomenology. The GP-GA and GP-SPSA techniques have been employed
for modeling and optimization of the glucose to gluconic acid bioprocess, and the
optimized process operating conditions obtained thereby have been compared with
those obtained using two other hybrid modeling-optimization paradigms integrating
artificial neural networks (ANNs) and GA/SPSA formalisms. Finally, the overall
optimized operating conditions given by the GP-GA method, when verified experi-
mentally resulted in a significant improvement in the gluconic acid yield. The hybrid
strategies presented here are generic in nature and can be employed for modeling

and optimization of a wide variety of batch and continuous bioprocesses.

1. Introduction

Gluconic acid is used as the metal supplement of
calcium, iron, etc. in pharmaceuticals and as an acidulent
in the food industry. It also finds applications as a
biodegradable chelating agent, filler, metal cleaner, dye
stabilizer, and in the textile industry for removing
instructions. Commercially, gluconic acid is produced
mainly via two biochemical routes, although more ex-
pensive chemical and electrochemical routes are also
available. The biochemical routes primarily involve free-
cell fermentation and immobilized enzyme (glucose oxi-
dase, GOD, of Aspergillus niger and Gluconobacter)-based
bioconversion of glucose (Roehr et al., 1996). Here, the
GOD oxidizes glucose to glucono-d-lactone, which is
hydrolyzed spontaneously by the enzyme lactonase to the
gluconic acid. Producing gluconic acid by immobilized
enzymes is a costly and cumbersome process owing to
the difficulties in the immobilization and separation
steps; additional difficulties are encountered as a result
of denaturization of the enzyme (Rao et al., 1994). In the
free-cell fermentation, the mycelia are subjected to vari-
ous mass and heat-transfer stresses (Karel and Robert-
son, 1989). Although mechanical agitation helps in alle-
viating these limitations, it induces a turbulent flow,
which may lead to cell disintegration (Wittler et al.,
1986), cell breakage or surface erosion (Taguchi et al.,
1968), and pellet breakage (Metz and Kossen, 1994).
Consequently, a spontaneous or gradual loss in the
cellular activity may be witnessed. In comparison, fer-
mentation by cells immobilized on a support matrix

10.1021/bp015509s CCC: $22.00

under submerged conditions is a cost-effective and an
efficient method of gluconic acid production (Sankpal and
Sahasrabuddhe, 2001).

Recently, a new batch fermentation technique has been
proposed for the production of gluconic acid from glucose
wherein A. niger immobilized on a support matrix
consisting of a cellulosic fabric has resulted in higher
yields (Sankpal et al., 1999). The improved overall
productivity from this technique is primarily due to the
enhanced interaction between the dissolved oxygen and
the fungal mycelia. Enhancement in the said interaction
is effected via a continuous substrate dripping mecha-
nism (see Figure 1) and not by the mechanical agitation
as used in the free-cell fermentation. Our objective in this
paper is to develop a mathematical model of the new
glucose to gluconic acid batch fermentation process and
also to obtain the optimized process conditions leading
to the enhanced gluconic acid yield. For developing the
fermenter model, experimental data incorporating the
effects of the substrate (glucose) and biomass concentra-
tions, and the dissolved oxygen content, have been used.

It is seen in Figure 1 that the glucose to gluconic acid
bioconversion using A. niger immobilized on the cellulosic
microfibrils involves complicated reaction and mass-
transfer phenomena. Development of a phenomenological
(“first principles”) process model has therefore become a
difficult task since the physicochemical phenomena un-
derlying the bioconversion and the associated kinetic and
transport mechanisms are not well-understood. Also, it
has been observed that the process dynamics is nonlinear,

© 2002 American Chemical Society and American Institute of Chemical Engineers

Published on Web 10/17/2002

https://core.ac.uk/display/291510422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Biotechnol. Prog., 2002, Vol. 18, No. 6

NaOH 1

1357

Filter mesh

Platform

15 mm

Rotameter

Humidifier

A Recycle bioreactor

Alr inlet

B. Support

<— 70mm —>
Figure 1. Schematic diagram of batch fermentation setup.

which has made the modeling task even more complex.
In view of these difficulties, a novel artificial intelligence
based paradigm, namely, genetic programming (GP)
(Koza, 1992; Szpiro, 1997; Nandi et al., 2000; Yadavalli
et al., 1999; Sankpal et al., 2001a) has been employed
here for modeling the fermenter. The principal advantage
of the GP-formalism is that it automatically arrives at
an empirical closed-form mathematical model relating
process inputs and outputs exclusively from the historic
process input-output data. Consequently, the detailed
knowledge of the process phenomenology (reaction kinet-
ics and mass transfer mechanisms) is not necessary in
the GP-based process modeling. Toward improving the
fermenter performance, in the next step, the input space
of the GP-based model has been optimized using two
stochastic optimization (SO) paradigms, namely, genetic
algorithms (GAs) and simultaneous perturbation sto-
chastic approximation (SPSA) (Spall, 1987). Specifically,
three fermenter operating variables, viz., initial glucose
concentration, dissolved oxygen concentration, and bio-
mass concentration, have been optimized with a view to
increase the gluconic acid yield. The sketch summarizing
the GP-based modeling and the GA-/SPSA-based opti-
mization of the GP model is portrayed in Figure 2. The
choice of GA and SPSA methods for optimizing the GP-
based model stems from their ability in solving complex
optimization problems involving multimodal and noisy

objective functions. The SO methods differ from the
widely used deterministic gradient-based optimization
methods in that they involve a random component at
some stage(s) in their implementation procedure. This
randomness helps in escaping from a locally optimum
solution and thereby reaching the globally optimum
solution. An important characteristic of the GA and SPSA
methodologies is that they need measurements of the
objective function only and not the measurements (or
direct calculation) of the gradient (or the higher order
derivatives) of the objective function (Spall, 1998a,b). The
GA formalism possesses an added advantage that, unlike
most deterministic gradient-based methods, it can oper-
ate successfully even when the objective function to be
maximized or minimized is not smooth, continuous, or
differentiable.

Hereafter, the two hybrid strategies integrating GP-
based process modeling and GA-/SPSA-based optimiza-
tion will be referred to as GP-GA and GP-SPSA, respec-
tively. The optimized fermenter operating conditions
obtained using the GP-GA and GP-SPSA formalisms
have been compared with those obtained using two other
hybrid modeling-optimization methodologies, namely,
ANN-GA (Nandi et al., 2001; 2002) and ANN-SPSA
(Nandi et al., 2001). In these methods, a feed-forward
artificial neural network (ANN) is first used for develop-
ing a black-box model for correlating process inputs and

1358

R LT T TN
Measured fermentation Input (X)-Output (y) data

[

DEVELOPMENT OF GP-BASED MODEL
y=fX,a)

1

OPTIMIZATION OF THE INPUT SPACE (X) OF THE

GP-BASED MODEL USING GA/SPSA METHOD

{1

OPTIMIZED PROCESS OPERATING
CONDITIONS

Figure 2. Summary sketch of the hybrid modeling-optimization
strategy.

outputs. Next, the input space of the ANN model is
optimized, as in the GP-GA and GP-SPSA strategies,
using GA and SPSA methods, respectively. Replacing the
GP-based model with an ANN-based model in Figure 2
leads to the ANN-GA and ANN-SPSA hybrid formalisms.
The optimal conditions obtained using the GP-GA, GP-
SPSA, ANN-GA, and ANN-SPSA hybrid methodologies
have been compared, and the best solution (as given by
the GP-GA method) was subjected to experimental
verification. The results of verification experiment sug-
gest that the optimized fermenter operating conditions
have indeed succeeded in improving the gluconic acid
yield.

This paper is organized as follows. In section 2, the
conceptual framework of the GP formalism and its
implementation details are provided. Next, in section 3
the GA and SPSA optimization formalisms have been
described. A brief description of the ANN-based modeling
and optimization of the ANN model using GA and SPSA
methods is provided in section 4. Finally, section 5
presents the numerical results of the optimization of the
GP-based model using GA and SPSA methods, respec-
tively. This section also compares the optimized condi-
tions obtained using the ANN-GA and ANN-SPSA hybrid
formalisms and describes the results of the experimental
validation of the overall optimum operating conditions.

2. Genetic Programming Based Process
Modeling

The GP formalism (Koza, 1992; Kinnear, 1994) is
closely related to the genetic algorithms, which are
stochastic function optimization techniques. Both ap-
proaches are based on the principles of natural selection
and genetics followed by the biologically evolving species.
Given an objective function, the GAs can efficiently and
robustly obtain the optimal values of the decision vari-
ables that would maximize or minimize the function. The
GP technique, though it uses the same principles as
employed by the GAs, performs symbolic regression. It
is a process of discovering both the functional form of a

Biotechnol. Prog., 2002, Vol. 18, No. 6

data-fitting function and all of its necessary coefficients
(parameters) or at least an approximation to these. Thus,
it is seen that the GP technique is capable of automati-
cally obtaining the mathematical equation that fits a
given set of process input-output data. In contrast, the
GAs search and optimize values of the decision variables
appearing in the prespecified objective function. In earlier
applications of GP, the technique has been used for
process identification (Kulkarni et al., 1999), dynamic
modeling (McKay et al., 1997), time series prediction
(Szpiro, 1997), and steady-state modeling of the FCC
reactor (Nandi et al., 2000). It may be noted that the GP-
based models are good at interpolation but not so good
at extrapolation. This weakness, which is shared by all
nonlinear models obtained exclusively from the process
input-output data, can be overcome by gathering more
data in the regions where extrapolation is desired. In the
present study, the GP formalism has been used to obtain
a model predicting the fermentation product concentra-
tion as a function of the fermenter operating conditions.
The general form of the model to be obtained is given as

y =f(X,a) (1)

where y denotes the process output variable (product
concentration); X refers to the N-dimensional vector of
process operating conditions (X = [X1, X2, -..; Xn, -y Xn]T)s
and f represents a nonlinear function whose parameters
are defined in terms of a K-dimensional vector, o (= [y,
Q, ..., O, ..., ax]T). Given process data comprising values
of the operating variables {X} and the corresponding
values of the process output {y}, the task of GP is to
obtain the best fitting functional form, f, and its param-
eter vector, a.

The GP procedure begins by creating a random popu-
lation of strings (chromosomes) representing candidate
solutions to the data fitting problem defined in eq 1; each
string in the population represents a different math-
ematical data fitting function. A string consists of mul-
tiple symbolically coded building blocks that, when
combined together, form a complete mathematical ex-
pression. A block includes operands and mathematical
operators representing addition, subtraction, multiplica-
tion, and division. Additional operators such as loga-
rithm, sine, and exponentiation, although not used in this
study, may also be considered. The methodology for
coding a mathematical expression in the form of a
symbolic string is as follows. Two arguments, i.e., oper-
ands, are selected randomly, and a randomly chosen
arithmetic operator is placed between them; the resulting
expression is enclosed in parentheses. The operands can
be either real numbers (elements of the parameter vector
a) or the process operating variables, {x,}, represented
using suitable symbols. An argument can also be a small
(sub)expression in itself comprising function parameters,
operating variables, and operators. Such arguments are
also bracketed within parentheses. The complete string
that emerges is composed of multiple building blocks; for
example, a five-block string may be obtained as

[(B, © B,) © (B; ® B, ® By)] @)

where the contents of blocks B; to Bs either represent a
parameter, a process operating variable, or a subexpres-
sion comprising both; the symbol © denotes an arithmetic
operator. In this equation coding strategy, handling of
numerous parentheses that enclose various blocks be-
comes cumbersome. This difficulty can be overcome by
using an expression coding scheme known as “post-fix”

Biotechnol. Prog., 2002, Vol. 18, No. 6

representation (Kulkarni et al., 1999; Yadavalli et al.,
1999). In this scheme, the operator follows operands. For
instance, an expression [(B; + B,) — B3], when written
using the post-fix scheme, becomes [B; B, B; = +]. It can
thus be noted that parentheses are implied but need not
be specified explicitly, which greatly simplifies the com-
puter programming effort. The detailed stepwise GP
procedure is given in (Nandi et al., 2000).

Step 1 (Initialization): Set the generation index NP
to zero and randomly create an initial population of N,
number of strings. Each string can have up to I,
number of elements representing operators and operands.
The number of blocks within a string and the respective
block sizes are also chosen randomly. Since a block of u
operands require (u — 1) operators between them, a total
of (2u —1) elements are present in the block. Similarly,
ug number of blocks require (ug —1) number of operators
between them to define an expression string. The initial
population of strings describing candidate equations is
formed by filling the blocks randomly with operands
(process operating variables and parameters) and math-
ematical operators using the post-fix representation
scheme; the numerical values of the parameters appear-
ing in an expression are chosen randomly from the
uniformly distributed interval, [-Z, +Z]. The mathemati-
cal operators and process operating variables are repre-
sented using large integer numbers as symbols. Here,
care must be exercised that the chosen integers do not
fall in the same range, [—Z, +Z], as used to select the
parameter values, {oy}.

Step 2 (Ranking): Evaluate the fitness value of the
jth population string (j = 1, 2, ..., Np) using a prespecified
fitness function, R. This function measures the data
fitting ability of the expressions represented by the
population strings. String fitness is evaluated as fol-
lows: given the training set, {Xyi}, i = 1, 2, ..., N,
comprising N, number of pairs defining the operating
condition vectors, {X;}, and the corresponding process
outputs, {yi}, the mathematical expression (model) rep-
resented by each string in the current population is used
to compute the model predicted value of the process
output variable, y. The procedure can be described as

yoe = f(X.00;

i=1,2,.,N,;i=1,2,...,Ny, 3

p!
where yffj-rd refers to the output value evaluated using
the mathematical expression, fj, represented by the jth
string. A sum-squared-error (SSE) dependent fitness
function of the following form may then be used to

compute the fitness, R?, of the jth string:

N 1 R
R’=——— j=1,2,..,N (4)
J 2! 1 L 1 p

1+ A

where A? refers to the SSE, which is computed as

Ntrn

A=Y (y; — Y2 (5)

where y; refers to the desired (target) process output
value from the training set. After evaluating fitness
values of all the N, strings in the current population, the
strings are ranked in the decreasing order of their fitness
scores.

Step 3 (Selection): From the ranked population, select
pairs of the parent strings for creating a mating pool; an
efficient scheme termed “elitist mating” (Yadavalli et al.,

1359

. . . .
parent 1 BI B2 B3 B4 BS

arent 11
‘ T TEE e
ﬂ Crossover
. .
offspring 1 Bl B2
. .
offspring 11 B3 B4 BS

Figure 3. Genetic programming crossover mechanism il-
lustrated using string blocks.

1999) may be utilized for selecting the parent pairs.
According to this scheme, (Ny/2)+ 1 number of top
ranking strings are paired in the following manner to
obtain the mating pool: [string-1 and string-2], [string-2
and string-3], ..., [string-(N,/2) and string-(Ny/2 + 1)]. The
purpose of allowing mating only among the fitter strings
is that they are most likely to contain parts of an
optimally fitting expression.

Step 4 (Reproduction and Crossover): This is a
crucial GP step wherein four offspring strings are formed
from each parent pair. The first two offspring are copies
of the parent strings, and the other two offspring are
generated by crossing over the contents of the parent
strings. In the crossover operation, a crossover point is
selected randomly along the block sequence of each
parent string followed by cutting the respective sequences
at that point. The second (first) sliced portions of the
parent strings are then mutually exchanged and com-
bined together with the respective first (second) portions
to produce two new offspring strings (see Figure 3).
Usually, the crossover operation is carried out using a
high crossover probability (PE’,) value (range 0.95—1.0).
The reproduction and crossover operations when repeated
on the Ny/2 number of parent pairs generate 2 x Np
number of offspring strings.

Step 5 (Mutation): This operation maintains popula-
tion diversity and broadens the search for good data-
fitting models. Mutation is conducted using a small
probability value (P,';ut) for its occurrence (range 0.01—
0.05), and it involves replacement of a randomly chosen
string element by another of the same type, i.e., an
operator (operand) replaces another operator (operand)
(see Figure 4). The population of strings obtained follow-
ing mutation operation represents the new generation
of candidate solutions to the data-fitting problem and
thus NP = NP + 1.

Step 6 (Termination): Repeat steps 2—5 iteratively
till one of the two stopping criteria is satisfied: (i) the
GP has evolved over a prespecified number of generations
(NP = Ns]ax), and (ii) the fitness of the best string does
not increase over sufficiently large (say 500) number of
generations.

The essence of the above-described GP procedure is
that it progressively alters the structure of mathematical
equations contained in a population with the objective
of improving their fitness. It may be noted that since
creation of initial population, crossover, and mutation are
performed stochastically (randomly), the final solution
given by the GP method depends on the sequence of
uniformly distributed random numbers used in perform-
ing the stated operations. Thus to arrive at an overall
optimal function possessing highest fitness value, it

1360

Pr ion block 1 e
X + x, - x

gt

l Select randomly the operator/operand to be mutated ‘

Operator
library
Randomly select the operator/operand for replacement
Operand
library

gt

Post- ion block e if ‘addition” operator is
replaced with the ‘multiplication” operator

% * X, - X,

Figure 4. Mutation mechanism illustrated using a block
sequence.

becomes necessary to repeat the GP runs a number of
times by using each time a different seed value for the
random number generator. Usage of different seed values
generate nonsimilar random number sequences that help
in locating the globally optimal solution.

Since the fitness of a population string is evaluated
using the training data set, it becomes essential to test
how well the model represented by that string performs
on a data set different from the training set. Such a
testing known as cross-validation is performed using a
validation data set. Specifically, the entire data available
for the model building is partitioned into two sets,
namely, training and test sets, and in each GP iteration
the fitness of a string is evaluated using these sets
separately. The model that produces highest fitness (R?)
value for the test set is taken as an overall optimal data
fitting model (f*). Once a properly cross-validated optimal
process model is secured, its parameters, {o.}, can be
refined further by using a standard nonlinear regression
technique such as Marquardt’s algorithm (Marquardt,
1963). Such a refinement, if possible, improves the
prediction accuracy of the GP-based process model.

3. Optimization of GP-Based Model Using
Stochastic Optimization Formalisms

Having developed an optimal GP-based model, f*, in
the next phase the model’s input space representing
process operating variables (X) is optimized separately
using the GA and SPSA formalisms, wherein the opti-
mization objective is maximization of the fermentation
yield. Accordingly, the optimization objective under
consideration is defined as

Maximize y, = H(y) = H[f*(X,o)];
X5 <X, <xy,n=1,2,..,N (6)

where yg denotes the gluconic acid yield to be maximized,
H denotes a function of y, and, x5 and x' refer to,
respectively, the lower and upper bounds for the nth
process operating (decision) variable. The maximization
problem defined above assumes that the nonlinear func-
tion, f*, and its parameter vector, a, are known. In the
following, implementation details of the GA and SPSA
methods for maximizing yq are described.

Biotechnol. Prog., 2002, Vol. 18, No. 6

3.1. Genetic Algorithms. Genetic algorithms devel-
oped by Holland (1975) (also see Goldberg, 1989; Dauvis,
1991; Deb, 1995) is a nonlinear search and optimization
technique based on the mechanisms of natural selection
and genetics. Analogous to the GP technique, GAs also
use selection, reproduction, crossover, and mutation
steps. However, GAs employ these steps with an objective
of obtaining a solution that maximizes the prespecified
objective function, H(y). Details of GAs can be found at
numerous places (e.g., Deb, 1995; Venkatasubramanian
and Sundaram, 1998; Ramanathan et al., 2001; Mukher-
jee et al., 2001) and therefore only a brief description of
their implementation is provided below.

In the GA procedure, a random population of Na
number of strings is created. The strings may be coded
either using binary digits or real numbers. In binary
coding (as used in this study), each string containing I,
number of bits is divided into N segments where an nth
(n =1, 2, ..., N) segment of length I represents the
binary representation of the nth decision variable. The
decimal equivalent, x,, of the nth binary segment is
evaluated as

(XU - XrI;)Sn. N

n
p T 12 N STA, =1
W)

PR A=

where S, represents the decimal value of the nth binary
segment comprising Iﬁ bits. Upon decoding all the Na
strings in this manner, their fitness values, {RA}, are
evaluated using a prespecified fitness function. Next, the
string population is subjected to the actions of four
genetic operators, namely, selection, reproduction, cross-
over, and mutation, to obtain a new generation of
candidate solutions. The actions of these GA operators
are repeated with successive generations of solutions till
convergence is achieved. The entire GA-implementation
can now be summarized as follows:

Step 1 (Initialization): Set the generation index
NgAen to zero and randomly generate Na number of
binary strings. Each string contains I%, bits and is
divided into N segments.

Step 2 (Fitness computation): Decode jth (j = 1, 2,
..., Na) binary string to obtain the corresponding decimal
values of the decision variables, xj,, n =1, 2, ..., N (see
eq 7), and evaluate the fitness (Rf) of the jth string as
given by

Xn = Xj

R = H(y,) = H[F*(X;,00] (®)

where X refers to the real-valued decision variable vector,
Xj = [Xj1, Xj2s ---» Xjn]T. After computing fitness values of
all the N4 strings in the current population, the strings
are ranked in the decreasing order of their fitness values.

Step 3 (Selection of parents): From the current
population, form a mating pool comprising Na number
of parent strings using a suitable parent selection scheme
such as the Roulette-Wheel (RW) method, tournament
selection, and the stochastic remainder selection (Gold-
berg, 1989). According to these schemes, strings with
higher fitness values have a better chance of entering
the mating pool.

Step 4 (Crossover): From the mating pool, form (Na/
2) number of parent pairs randomly; the crossover
operation is performed on each pair using a high value
for the crossover probability, P?, (range 0.9-1.0). In a
simple crossover operation known as the “single point”

Biotechnol. Prog., 2002, Vol. 18, No. 6

crossover, a point is selected randomly along the length
of each binary parent string and both strings are cut at
that point. Next, the sliced portions are exchanged
mutually between the parent strings and combined to
obtain two offspring strings. This crossover operation,
when repeated on the (Na/2) number of parent pairs,
produces Na number of offspring strings.

Step 5 (Mutation): Mutate the bits of offspring strings
wherein the probability that a randomly selected bit
undergoes mutation is Pﬁut (range 0.01—0.05). In muta-
tion, a randomly selected bit is flipped from zero to one
and vice versa. The population emerging after the muta-
tion operation represents a new generation of solutions
and thus, N, = Nj., + 1.

Step 6 (Termination): Repeat steps 2 to 5 on the new
generation of strings till it is observed that the fitness of
the best solution shows no increase over a large number
(say 500) of successive generations, or the GA has evolved
over the specified number (Nﬁ,ax) of generations. Finally,
the N binary segments in the string possessing maximum
fitness score are decoded (see eq 7), and the optimal
values of the decision variables obtained thereby repre-
sent the optimized solution, X* = [x*, Xo*, ..., Xn*]".

Analogous to the GP procedure, it is necessary in the
GA procedure also that the entire GA implementation is
repeated several times using different seed values for the
random number generator. The optimal solutions ob-
tained thereby are compared, and the one leading to
maximum gluconic acid yield is selected as an overall
optimal solution.

3.2. Simultaneous Perturbation Stochastic Ap-
proximation Algorithm (SPSA). The SPSA (Spall,
1987; Spall, 1998a,b) is a numerically efficient stochastic
optimization algorithm. Unlike the commonly utilized
gradient-based optimization methods, which evaluate the
gradient of the objective function by perturbing each
decision variable separately (as in the standard two-sided
finite difference approximation), the SPSA formalism
approximates the gradient by perturbing all the variables
simultaneously. Thus, irrespective of the number (N) of
decision variables to be optimized, only two objective
function measurements are sufficient for the gradient
approximation. In contrast, the finite difference ap-
proximation needs 2N function evaluations.

The SPSA implementation is iterative that begins with
a randomly initialized (guess) solution vector, X,. The
SPSA formalism stipulates that the objective function to
be maximized should be differentiable since it searches
for the maximum point, X*, at which the gradient of the
objective function, G(X*), attains zero magnitude. That
is

9F*(X)

G = 75x

=0 9)

X=X*

In the SPSA-based maximization of yy, an estimate of
the decision variable vector (X) is updated iteratively as
given by (Renotte et al., 2000])

Xip1 = >A<t - atét()A(t) (10)

where t denotes the iteration index; a; is a non-negative
scalar gain coefficient, and the N-dimensional vector,
Gi(Xy), is an approximation of the unknown gradient,
G(X*). The gradient approximation is carried out by
varying all the elements of X; simultaneously, and using

1361
(X, + cA) — P (X, — cA)
2¢A,,
f*()A(t + CtAt) - f*()A(t B CtAt)
2CA,,
G, = - (11)

f*(;(t + CtAt) - f*()A(t - CtAt)
2¢cA

KN

where c; is a positive scalar, and A¢ = [Ay,, Ay, ..., Ay]T IS
a vector of random variables drawn from the symmetric
Bernoulli £ 1 distribution. The decaying gain sequences,
{a¢ and {c}, are defined as

_a . —_GC
A+t+1" 1 (t+1y

a,= (12)

where y, ¢, ¢, A, and a are the SPSA-specific parameters.
Several guidelines for the judicious selection of these
parameters are provided in Spall (1998a,b). In each SPSA
iteration, the decision variable estimate is updated using
eqs 10 and 11, respectively. After a sufficiently large
number of iterations, i.e., t = tmax, the SPSA procedure
converges to an optimal solution. As with GA and GP
procedures, the SPSA procedure also needs to be repeated
several times by changing the value of the random
number generator seed for obtaining an overall optimal
solution vector, X*.

4. ANN-GA and ANN-SPSA Hybrid
Modeling-Optimization Formalisms

Artificial neural networks (ANNS) are an information
processing paradigm based on the mechanisms followed
by the highly interconnected parallel structure of the
human brain. ANNs are a set of mathematical models
that mimic some of the observed properties, such as
pattern recognition and classification, possessed by bio-
logical nervous systems; they also exhibit similarity with
the “learning-by-experience” principle followed by biologi-
cal species. ANNSs possess a structure comprising a highly
interconnected network of processing elements (also
termed “nodes”). The processing elements (PESs) serve as
the simplified artificial analogues of the biological neu-
rons, and the weighted connections linking the PEs are
analogues to the biological synapses. Given a data set
containing measurements of the input-output variables,
an ANN learns the nonlinear interrelationships existing
between them by appropriately adjusting the connection
weights. This process, termed network training, is similar
to the learning in a biological system involving adjust-
ment of the synaptic connections. There exist a wide
variety of ANN architectures and algorithms to train
them. The most commonly used ANN architecture is
known as multilayered perceptron (MLP) and the widely
used method to train an MLP network is the error-back-
propagation (EBP) algorithm (Rumelhardt et al., 1986).
The MLP network comprising three layers (input, hidden,
and output) of nodes is popular for approximating the
nonlinear relationships existing between an input set of
data (casual variables) and the corresponding output
(dependent variables) data set. It has been established
that an MLP network with a single hidden layer housing
a sufficient number of PEs can approximate any nonlin-

1362

ear function to an arbitrary degree of accuracy (Hornik
et al.,, 1989; Poggio et al.,, 1990). In the EBP-based
training of an MLP network, the weights are adjusted
iteratively such that the network, in response to the input
patterns in the example set, accurately predicts the
corresponding output values. The details of the EBP
algorithm and the various issues involved in obtaining
an optimal MLP model can be found, for example, in
Freeman and Skapura (1991), Bishop (1994), and Tambe
et al. (1996). In the second phase of implementing the
ANN-GA and ANN-SPSA hybrid formalisms, the input
space of the ANN model is optimized, in a manner similar
to the optimization of the GP-based model, using GA and
SPSA strategies (Nandi et al., 2001, 2002).

5. Results and Discussion

5.1. Experimental Details. For developing the GP-
based model for the glucose to gluconic acid bioprocess,
experimental input-output data from the fermenter were
used. In these experiments, the gluconic acid producing
strain Aspergillus niger NCIM 545 was utilized. The
details of the spore germination medium, the growth
medium, and the cellulosic fiber support have been
described earlier by Sankpal et al. (1999).

Fermentation Medium for Immobilized Mycelia.
Anhydrous purified glucose (100 g), MgSO,-7H,0 (0.035
g), KH,PO, (0.05 g), and 0.1 g of (NH,),HPO, were
dissolved in 1 L of water. The pH of this medium was
adjusted to 6.0 using 1 M H,SO,. A woven cellulosic fabric
support (69 x 85 x 0.6 cm) with void volume of
approximately 140 mL was sterilized at 15 psi for 60 min.

Submerged Fermentation. Submerged fermentation
utilizing the immobilized culture was carried out in a
modified locally fabricated batch fermenter (Figure 1).
In the fermenter, the matrix with fully grown A. niger
was folded in a spiral shape. For preventing mycelial
recirculation, the upper end of the fixed bed was closed
by the filter mesh. The batch reactor was drained after
the substrate reached its lowest concentration.

Maintaining Oxygen Partial Pressure. A constant
flow of air was used to maintain the oxygen partial
pressure and a DO probe (Ingold, 170-ppm type DO
amplifier) was used for measuring the dissolved oxygen
concentration.

Glucose and Gluconic Acid Analyses. Feed and the
unconverted glucose were analyzed by the dinitrosalicy-
clic acid method (Miller, 1959), and the gluconic acid
concentration in the bioreactor was measured by titrating
against 6 N NaOH.

5.2, GP-Based Fermenter Modeling. For obtaining
the GP-based model, process data from 46 runs were
used. The data set (see Table 1) comprises values of the
three operating variables, namely, glucose concentration
(9/L) (x1), biomass concentration (g/L) (x,), and dissolved
oxygen (DO) concentration (mg/L) (Xs), and the corre-
sponding values of the process output variable, i.e.,
gluconic acid concentration (y). This data set was parti-
tioned into the training set (batches 1—-23) and the test
set (batches 24—46). While the training set was used for
computing the fitness of the GP-searched expressions, the
test set was used to cross-validate the expressions. The
objective of cross-validation is to test the prediction
(generalization) ability of the GP-searched expressions
on a data set different from the set used for obtaining
the expression. To secure an overall optimal data-fitting
expression, the GP procedure was repeated 100 times by
employing different seed values for the pseudo-random

Biotechnol. Prog., 2002, Vol. 18, No. 6

Table 1. Experimental Data Utilized for Building GP-
and ANN-Based Models

glucose biomass
concn concn DO

gluconic gluconic
acid concn acid yield

batch (x1) (g/L) (x2) (g/L) (xa) (mg/L) () (/L) (ya) (%)
1 100.0 1.00 10.0 6.416 5.90
2 150.0 2.00 10.0 48.015 29.42
3 120.0 2.00 15.0 27.100 20.76
4 150.0 2.50 15.0 57.946 3551
5 150.0 3.00 15.0 57.389 35.16
6 120.0 2.00 25.0 36.262 27.77
7 120.0 2.00 30.0 45.020 34.48
8 150.0 2.00 30.0 94.424 57.86
9 150.0 3.00 25.0 80.486 49.32
10 150.0 2.00 40.0 128.907 78.99
11 150.0 2.00 45.0 146.036 89.48
12 150.0 2.00 50.0 154.230 94.50
13 180.0 2.00 50.0 175.525 89.63
14 150.0 3.00 40.0 129.006 79.05
15 150.0 2.50 50.0 154.360 94.58
16 150.0 2.50 55.0 152.440 93.41
17 150.0 2.50 60.0 148.940 91.26
18 160.0 2.50 60.0 163.067 93.67
19 175.0 3.00 55.0 176.490 92.69
20 160.0 3.00 60.0 162.420 93.30
21 180.0 3.00 60.0 172.598 88.13
22 150.0 3.00 60.0 151.280 92.70
23 100.0 3.00 60.0 21.803 20.04
24 100.0 2.00 10.0 6.670 6.13
25 120.0 2.50 10.0 22.952 17.58
26 100.0 2.00 15.0 7.829 7.20
27 150.0 2.00 15.0 57.261 35.09
28 120.0 2.00 20.0 31.486 24.12
29 150.0 2.00 20.0 66.900 40.99
30 150.0 2.50 20.0 67.449 41.33
31 150.0 3.00 20.0 67.328 41.25
32 150.0 2.00 35.0 111.328 68.22
33 150.0 2.50 30.0 95.988 58.82
34 150.0 3.00 30.0 94.707 58.03
35 150.0 2.50 40.0 129.930 79.61
36 150.0 3.00 35.0 111.604 68.38
37 150.0 2.00 60.0 152.430 93.40
38 120.0 2.00 60.0 73.502 56.30
39 150.0 3.00 45.0 144.651 88.63
40 180.0 2.50 55.0 179.064 91.94
41 150.0 3.00 50.0 152.890 93.68
42 180.0 2.50 60.0 174.483 89.09
43 150.0 3.00 55.0 154.230 94.50
44 166.0 3.00 60.0 169.450 93.82
45 165.0 3.00 60.0 167.910 93.53
46 162.0 3.00 60.0 164.870 93.54

a Gluconic acid percentage yield, yg = 100y/1.088x;.

number generator. In each such repeated run, a different
mathematical expression was searched by the GP. The
expression with the highest fitness value for the training
set (R? = 0.987) and the test set (R? = 0.986) was

y =
’ 01Xy

(% — 0)" + ag

1
2 — +
X,© = 0uX, T Og

1
a6x32 — O0yX3 1+ ag

(13)

The GP-specific parameters and the mathematical opera-
tors used to obtain eq 13 are listed in Table 2. The values
of the function parameters { oy} searched by the GP are
oy = 3.1911 x 10%°, o, = 158.219, 0z = 2.974 x 10°, ay =
5.421, os = 107.15, as = 0.116, a; = 12.752, and ag =
448.112. Having obtained the best fitting functional form,
it was subjected to the nonlinear regression using Mar-
quardt’s algorithm with a view to bring about an im-
provement in the model’s prediction accuracy. The refined
{oy} values obtained thereby are o; = 3.206 x 10, o, =

Biotechnol. Prog., 2002, Vol. 18, No. 6 1363
Table 2. Functional Set, Operators, and GP-Specific Table 3. Optimized Fermenter Conditions Given by
Parameters GP-GA and GA-SPSA Methods

terminals (operands) set X1, X2, X3, Q glucose biomass gluconic maximized

(variables and constants)
operator set +,m X
relative abundance of operators equal
fitness function sum-squared-error (SSE) based
selection method elitist selection

population size 40
number of generations 550
probability of crossover 0.95
probability of mutation 0.02
number of replicates 100
(a)
200.0 _
£ 150.0 .—*’-‘—Expenmental. ,__,_,,/ M\
T : | Predicted | ’ ~_- \
E 100.0
S 500~ S NA
3 /N {
00 T T -
1 5 9 13 17 21
(b) batches
200.0 7
% 150_0- [~o— Experimentat| A J \/W
3 1 [Predicted | A /
£ 1000 - o
® 500
0.0 L T T T T T
24 28 32 36 40 44

batches

Figure 5. (a)Gluconic acid concentration as predicted by the
GP-based model (eq 13) and the corresponding actual output
values from the training set. (b) Gluconic acid concentration as
predicted by the GP-based model (eq 13) and the corresponding
actual output values from the test set.

158.201, o3 = 2.9795 x 105, a4 = 5.413, as = 107.16,
o = 0.117, a; = 12.753, and og = 447.389; these
parameter values brought about a 5|gn|f|cant enhance-
ment in the R2 values corresponding to the training set
(R2 = 0.9984) and the test set (R2 = 0.9979). The high R?
values for both the training and test sets are indicative
of the good prediction accuracy and generalization ability
of the GP-based fermenter model. A comparison of the
model predicted and actual process output values for the
training and test set data is presented in Figure 5a and
b, respectively.

5.3. GA and SPSA-Based Optimization of the GP
Model. The input space of the GP-based fermenter model
was optimized by employing GA and SPSA formalisms
separately. The objective of optimization was to obtain
the optimal values of the three fermenter operating
variables (x; — x3) that would maximize the gluconic acid
yield, yq. While performing the optimization, the follow-
ing values of the GA- and SPSA-specific parameters were
employed.

e GA parameters: population size (Na) = 55, crossover
probability (P4) = 0.92, mutation probability (P4.,) =
0.05, string Iength (Ichr) = 45, and maximum number of
generations (N7,,) = 500.

e SPSA parameters: a = 0.1, ¢ = 0.02, A = 250, ¢ =
0.602, y = 0.101, maximum number of iterations
(tmax) = 32,000.

The fitness function used in the GA-based optimization
was

concn concn DO (x3) acid concn gluconic acid
method (x1) (g/L) (x2) (g/L) (mg/L) (v) (/L) yield (vg) (%)
GA
157.551 2.699 54.49 170.465 99.327
157.432 2.598 54.36 170.061 99.211
157.813 2.701 54.49 170.259 99.087
SPSA
157.816 2.598 54.38 170.239 99.074
158.061 2.699 54.49 170.464 99.051
157.726 2.599 55.12 170.067 99.031
100y
Ri=y =-——""7_ 14
Yo = 1.088x, (14)

Using the above-listed parameter values several (100)
GA and SPSA replicates were run using different random
number generator seeds. From the 100 sets of optimized
operating variables obtained thereby, Table 3 lists the
top three solutions as given by the GA and the SPSA
methods, respectively.

5.4. Process Modeling and Optimization using
ANN-GA and ANN-SPSA Hybrids. For an ANN-based
fermenter modeling, the most popular MLP network has
been used. The MLP architecture contained a single
hidden layer and was trained using the EBP algorithm.
To develop an optimal MLP-based model, the network’s
structural parameter, namely, the number of hidden
layer nodes (Ny) and the EBP algorithm specific param-
eters, viz., the learning rate (7.,,) and momentum coef-
ficient (uenp), Were varied systematically. The same
training and test sets as used in the GP-based modeling
were utilized for training the MLP network. Here, the
training set was used to adjust the network weights
iteratively while the test set was used to monitor the
network’s generalization performance. The criterion used
for selecting an optimal MLP model was minimum root-
mean-squared-error (RMSE) with respect to the test set.
The values of MLP’s structural parameters and the EBP
algorithm specific parameters that led to the minimum
RMSE with respect to the test set (RMSE,) are: the
number of input nodes representing three input variables
= 3, Ny = 2, number of output nodes (representing
fermenter output variable, y) = 1, 5ep = 0.15, and uepp=
0.001. The training and test set RMSEs corresponding
to the optimal model were 0.0377 and 0.0489, respec-
tively. Once an optimal MLP-based model was obtained,
in the next phase its input space comprising the three
operating variables was optimized using the GA and
SPSA methods (Nandi et al., 2001, 2002). The GA/SPSA
procedure for this optimization remained same as used
in optimizing the input space of the GP-based model. The
optimized fermenter conditions leading to the maximized
yq Vvalue as given by the ANN-GA and ANN-SPSA
methods are listed in Table 4 for which following GA-/
SPSA-specific parameter values were utilized.

o GA parameters: population size (Np) = 35, mutation
probability (P4,,) = 0.05, crossover probability (P4,.) =
0.95, string length (I?hr) = 45, and maximum number of
generations (N4_,) = 500.

e SPSA parameters: a = 0.1, ¢ = 0.02, A =200.0, ¢ =
0.602, y = 0.101, maximum number of iterations
(tmax) = 32,000.

5.5. Experimental Validation. It can be observed
from the 12 solutions given by the GP-GA, GP-SPSA,
ANN-GA, and ANN-SPSA hybrid methods (see Tables 3
and 4) that the optimized values of the three fermenter

1364

Table 4. Optimized Fermenter Conditions Given by
ANN-GA and ANN-SPSA Methods

maximized

glucose biomass gluconic

concn concn DO (x3) acid concn gluconic acid
method (x1) (/L) (x2) (9/L) (mg/L) (y) (g/L) yield (yg) (%)
GA

158.265 2.622 54.42 170.524 98.958

157.985 2.671 54.48 170.217 98.955

158.132 2.625 54.51 170.212 98.861
SPSA

158.415 2.593 54.49 170.248 98.704

158.523 2.577 54.38 170.311 98.673

158.723 2.642 55.13 170.472 98.642

operating conditions differ only marginally. The maxi-
mized yield (y;,) values listed in Tables 3 and 4 indicate
that the first solution given by the GP-GA method is an
overall optimal solution (x; = 157.5, x, = 2.699, x3 =
54.49, y = 170.465, and y;, = 99.3). Thus, this set of the
operating variables was chosen for the experimental
validation. The bioreactor operating under the stated
conditions resulted in the gluconic acid concentration of
170.237 (g/L). This value, which is in close agreement
with the GA maximized value of 170.465 (g/L), corre-
sponds to 99.08% gluconic acid yield. From the yield data
listed in Table 1, it is observed that the best yield value
obtained using the unoptimized operating conditions was
94.58% (batch 15). It can thus be seen that the optimized
solution has improved the yield by 4.5%. In the absence
of a nonlinear process model, an unaided manual inspec-
tion of the process data would give no clue to the precise
values of the optimized operating conditions necessary
for the maximization of gluconic acid yield. However, the
usage of the GP-GA and GP-SPSA hybrid modeling-
optimization techniques has allowed us to obtain the
optimized fermenter operating conditions that have
imparted a significant improvement in the gluconic acid
yield.

6. Conclusions

To summarize, this paper presents two process model-
ing and optimization strategies integrating genetic pro-
gramming (modeling formalism) with the two stochastic
optimization formalisms, namely, GA and SPSA, respec-
tively. The principal advantage of using the GP formal-
ism for process modeling is that the model can be
developed exclusively from the historic process input-
output data without invoking the detailed process phe-
nomenology. Also, the GP technique automatically ob-
tains a closed-form equation relating process inputs and
outputs; this is in contrast to the ANNSs using a generic
universally applicable nonlinear functional form for the
data fitting. Upon constructing a GP-based process
model, its input space comprising process input variables
is optimized using GA and SPSA techniques. These
optimization paradigms possess certain unique advan-
tages over the commonly utilized gradient-based tech-
niques. Moreover, the GA methodology can be used even
when the objective function is not smooth, differentiable,
and continuous. In the present study, the GP-GA and GP-
SPSA formalisms have been utilized for the modeling and
optimization of glucose to the gluconic acid batch fer-
mentation process. The overall optimized process condi-
tions obtained thereby, when verified experimentally,
have brought about a significant improvement in the
gluconic acid yield. The GP-GA and GP-SPSA formalisms
proposed in this paper are sufficiently general and thus
can be utilized for modeling and optimization of other
batch and continuous bioprocesses.

Biotechnol. Prog., 2002, Vol. 18, No. 6

Notation
a, A SPSA specific parameters
f nonlinear function for input-output data fitting
f* optimally fitting nonlinear model
G(+) gradient function in SPSA-based optimization
|CAhr length of a chromosome or a string in GA
simulation
1" number of bits to represent nth decision variable
|§’hr number of elements in a symbolically coded
string
Ny number of nodes in MLP network’s hidden layer
Na number of binary strings (population size) in GA
simulation
Nt number of training patterns
Ng\en generation index in GA simulation
Ngax metl?dmum number of generations for GA evolu-
ion
Nﬁax mett?dmum number of generations for GP evolu-
ion
pg\r crossover probability in GA procedure
Pﬁ'lut mutation probability in GA procedure
pcpr crossover probability in GP procedure
P;ut mutation probability in GP procedure
F}J{* squared fitness of jth string in GP procedure
RA string fitness in GA procedure
Sh decoded decimal value of nth binary segment
tmax maximum number of iterations for the SPSA
procedure
Xi ith decision variable
X N-dimensional vector of decision variables
X* optimal decision variable vector
Xo randomly initialized (guess) solution vector in
SPSA procedure
y process output variable defining gluconic acid
concentration
Yol gluconic acid yield
ysl maximized gluconic acid yield
Yord GP model predicted value of the output variable
Z limit for the parameter values searched by the
GP
Greek Symbols
a vector of parameters appearing in the GP-based
model
y SPSA specific parameter
1) SPSA specific parameter
Uebp learning rate in the EBP-based training proce-
dure
Tebp momentum coefficient in the EBP-based training
procedure

Acknowledgment

J.J.S.C. thanks Council of Scientific and Industrial
Research (CSIR), New Delhi, for a Senior Research
Fellowship.

References and Notes

Bishop, C. Neural Networks and their Applications. Rev. Sci.
Instrum. 1994, 65, 1803.

Davis, L. Handbook of Genetic Algorithms; Von Nostrand
Reinhold: New York, 1991.

Deb, K. Optimization for Engineering Design: Algorithms and
Examples; Prentice-Hall: New Delhi, 1995.

Biotechnol. Prog., 2002, Vol. 18, No. 6

Freeman, J. A.; Skapura, D. M. Neural Networks: Algorithms,
Applications, and Programming Techniques; Addison-Wes-
ley: Reading, MA, 1991.

Goldberg, D. E. Genetic Algorithms in Search, Optimization, and
Machine Learning; Addison-Wesley: New York, 1989.

Holland, J. H. Adaptation in Natural and Artificial Systems;
University of Michigan Press: Ann Arbor, 1975.

Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward
Networks are Universal Approximators. Neural Networks
1989, 2, 359.

Karel, S. F.; Robertson, C. R. Autoradiographic Determination
of Mass Transfer Limitations in Immobilized Cell Reactors.
Biotech. Bioeng. 1989, 34, 320—336.

Kinnear, K. E., Jr., Ed.; Advances in Genetic Programming; The
MIT Press: Cambridge, MA, 1994.

Koza, J. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection; The MIT Press:
Cambridge, MA, 1992.

Kulkarni, B. D.; Tambe, S. S.; Dahule, R. K.; Yadavalli, V. K.
Consider Genetic Programming for Process lIdentification.
Hydrocarbon Process. 1999, 78, 89—97.

Marquardt, D. W. An Algorithm for Least Squares Estimation
of Nonlinear Parameter. J. Soc. Ind. Appl. Math. 1963, 11,
431—-441.

McKay, B.; Willis, M.; Bartob, G. W. Steady-State Modeling of
Chemical Process Systems Using Genetic Programming.
Comput. Chem. Eng. 1997, 29, 981—996.

Metz, B.; Kossen, N. F. W. The Growth of Molds in the Form of
Pellets: Literature Review. Biotechnol. Bioeng. 1977, 19,
781—-799.

Miller, G. L. Use of Dinitrosalicyclic Acid Reagent for Deter-
mination of Reducing Sugar. Anal. Chem. 1959, 31, 426—429.

Mukherjee, S.; Dahule, R. K.; Tambe, S. S.; Ravetkar, D. D.;
Kulkarni, B. D. Consider Genetic Algorithms To Optimize
Batch Distillation. Hydrocarbon Process. 2001, 80, 121—-127.

Nandi, S.; Ghosh, S.; Tambe, S. S.; Kulkarni, B. D. Artificial
Neural-Network-Assisted Stochastic Process Optimization
Strategies. AIChE J. 2001, 47, 126—135.

Nandi, S.; Mukherjee, P.; Tambe, S. S.; Kumar, R.; Kulkarni,
B. D. Reaction Modeling and Optimization Using Neural
Networks and Genetic Algorithms: Case Study Involving
TS-1 Catalyzed Hydroxylation of Benzene. Ind. Eng. Chem.
Res. 2002, 41, 2159—-2169.

Nandi, S.; Rahman, I.; Tambe, S. S.; Sonalikar, R. L.; Kulkarni,
B. D. Process identification using genetic programming: a
case study involving fluidized catalytic cracking (FCC) unit.
In Petroleum Refining and Petrochemical Based Industries
In Eastern India; Saha, R. K., Ed.; Allied Publisher Ltd.:
Mumbai, India, 2000; pp 195—201.

Ramanathan, S. P.; Mukherjee, S.; Dahule, R. K.; Ghosh, S.;
Rahman, I.; Tambe, S. S.; Ravetkar, D. D.; Kulkarni, B. D.
Optimization of Continuous Distillation Columns Using
Stochastic Optimization Approaches. Trans. Inst. Chem. Eng.
2001, 79, 310—321.

Rao, D.; Subba, A.; Panda, T. Comparative Analysis of Different
Whole Cell Immobilized Aspergillus niger Catalysts for Glu-
conic Acid Fermentation Using Pretreated Cane Molasses.
Bioprocess Eng. 1994, 11, 209—212.

1365

Roehr, M.; Kubicek, C. P.; Kominek, J. In Biotechnology; Rehm,
H. J., Reed, G., Eds.; VCH: New York, 1996; Vol. 6, pp 348—
362.

Ronnette, C.; Vande, W. A.; Remy, M. Neural modeling and
control of a heat exchanger based on SPSA techniques. Proc.
Am. Control Conf. 2000, 3299—3303.

Rumelhart, D.; Hinton, G.; Williams, R. Learning Representa-
tions by Back-Propagating Errors. Nature 1986, 323, 533.
Sankpal, N. V.; Cheema, J. J. S.; Tambe, S. S.; Kulkarni, B. D.
An Artificial Intelligence Tool for Bioprocess Monitoring:
Application to Continuous Production of Gluconic Acid by
Immobilized Aspergillus niger. Biotechnol. Lett. 2001a, 23,

911-916.

Sankpal, N. V.; Joshi, A. P.; Sutar, I. I.; Kulkarni, B. D.
Continuous Production of Gluconic Acid by Aspergillus niger
Immobilized on a Cellulosic Support: Study of Low pH
Fermentative Behavior of A. niger. Process Biochem. 1999,
35, 317—325.

Sankpal, N. V.; Sahasrabuddhe, N. A. Production of organic
acids and metabolites on fungi and applications in food
industry. In Applied Mycology and Biotechnology; Khacha-
tourians, G. G., Arora, D. K., Eds.; Elsevier Science: Neth-
erlands, 2001b.

Spall, J. C. A Stochastic Approximation Technique for Generat-
ing Maximum Likelihood Parameter Estimates. Proc. Am.
Control Conf. 1987, 12, 1161—-1167.

Spall, J. C., An Overview of the Simultaneous Perturbation
Method for Efficient Optimization. Johns Hopkins APL Tech.
Dig. 1998a, 19, 482—491.

Spall, J. C. Implementation of the Simultaneous Perturbation
Algorithm for Stochastic Optimization. IEEE Trans. Aerosp.
Electron. Syst. 1998b, 34, 817—822.

Szpiro, G. G. Forecasting chaotic time series with genetic
algorithms. Phys. Rev. E 1997, 55, 2557—2568.

Tambe, S. S.; Kulkarni, B. D.; Deshpande, P. B. Elements of
Artificial Neural Networks with Selected Applications in
Chemical Engineering, and Chemical & Biological Sciences;
Simulation & Advanced Controls Inc.: Louisville, KY, 1996.

Taguchi, H.; Yoshida, T.; Tomita, Y.; Teramoto, S. The Effects
of Agitation on Disruption of the Mycelial Pellets in Stirred
Fermenters. J. Ferment. Technol. 1968, 46, 814—822.

Venkatasubramanian, V.; Sundaram, A. Genetic Algorithms:
Introduction and Applications. In Encyclopedia of Computa-
tional Chemistry; John Wiley: Chichester, 1998; pp 1115—
1136.

Wittler, R.; Baumgartl, H.; Lubbers, D. W.; Schugerl, K.
Investigations of Oxygen Transfer into Penicillium chrysoge-
num Pellets by Microprobe Measurements. Biotechnol. Bioeng.
1986, 28, 1024—1036.

Yadavalli, V. K.; Dahule, R. K.; Tambe, S. S.; Kulkarni, B. D.
Obtaining Functional Form for Chaotic Time Series Evolution
Using Genetic Algorithm. Chaos 1999, 9, 789—794.

Accepted for publication August 30, 2001.
BP015509S

