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Abstract. We study the homogenization of a class of optimal control problems whose
state equations are given by second order elliptic boundary value problems with oscillat-
ing coefficients posed on perforated and non-perforated domains. We attempt to describe
the limit problem when the cost of the control is also of the same order as that describ-
ing the oscillations of the coefficients. We study the situations where the control and the
state are both defined over the entire domain or when both are defined on the boundary.
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1. Introduction

This paper discusses the asymptotic properties of some low-cost control problems with
distributed or boundary control. We consider both the perforated and non-perforated cases
of the problem. The low-cost control problems were studied by Kesavan and Saint Jean
Paulin in [7] and this paper addresses some problems left open there. A thorough study of
the low-cost problems is done in [11].

Let 2 be a bounded open set in R”. Let 0 < a < b be given constants. We denote by
M(a, b, Q) the set of all n x n matrices, A = A(x), whose entries are in L°°(£2) such that

alg* < A(0)E-& <blE]* ae.x VE=(§) eR"™

Let A € M(a, b, Q), U be a closed convex subset of L?($2) and let f € L*(Q2) be a
given function. Also, let N > 0 be a given constant. The basic optimal control problem
that we consider is the following: Find 6* € U such that

J(©0*) = min J(0),
oelU
where the cost functional, J (6), is defined by
Lo N 2
J() = Ellullz,g + EHGHlQ (L.D)

and the state u = u(0) is the weak solution in H(} (R2) of the boundary value problem

{ —div(AVu) = f+60, inQ,
(1.2)

u=0, onodf.
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It can be shown by the direct method in the calculus of variations that there is a unique
optimal control, 6* € U, minimizing J over U (cf. Theorem 1.15 and Proposition 1.20 of
[2]).

One is interested in the situation where the matrix A and the cost of the control N (in
(1.1)) above depend on ¢, a parameter which tends to zero. Such problems are called low-
cost control problems and the terminology is due to the fact that the cost of the control N
is of the order of ¢ that tends to zero. The notion of low-cost control was introduced by
Lions in [8]. Lions had originally called it cheap control and the current terminology was
used by Kesavan and Saint Jean Paulin in [7]. Kesavan and Saint Jean Paulin (cf. [7]) had
considered the low-cost problems when the admissible set was either L?(2) (unconstrained
case) or the positive cone in L2(2).

For the rest of the paper we consider, given a parameter ¢ > 0 which tends to zero, a
family of matrix A, € M(a, b, ©2).

The paper is organized as follows: In §2, we deal with an optimal control problem
involving L?-norm in the cost functional. In §2.1, we develop the preliminaries to prove
our result and we study the case of non-perforated domains in §2.2. In §3, we take up
the version of the low-cost problems in perforated domains and study situations when the
control is either from domain or from boundary.

2. Low-cost controls on non-perforated domains

We are interested in the limiting behaviour of the following optimal control problem:
Given 8 € U, the cost functional is defined as

1 2 € a2
Je(0) = 5”’48”2,9 + 5”9”2,9’ 2.1)

where the state u, € HO1 (€2) is the weak solution of

—div(A;Vu,) = f+6, inQ
2.2)
u, =0, onodf.
Thus, there exists a unique optimal control 8 € U such that

J:(0F) = min J;(0).
0eU

Let u} denote the state corresponding to 6. We are interested in identifying the limit
problem of the above system. This problem was considered by Kesavan and Saint Jean
Paulin in [7]. Though they were unable to identify the limit system, however, they proved
the following result when the admissible control set U C L?(2)isthe positive cone L2(Q).

Theorem 2.1 (Theorem 2.1 of [7]). If
U=1{0eL*Q)|0>0aec inQ)}

is the admissible control set for the system (2.1) solving (2.2), then there exists u™ and 6*
such that

u; — u* weakly in HO1 () and strongly in L*(S2), 2.3)
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8%9; — 0 weakly in HO1 (2) and strongly in L3 (), 2.4
* 1 * 12

Je(07) — 5”” 7.0 (2.5)

and for a subsequence, 6 — 0™ weakly in H Q). (2.6)

Further, u* is the projection of 0 on to K in L*(R), i.e., u* € K and
/ uw (o —u*)dx >0 YveKk
Q

where

: 3 a sequence v, € HO1 () s.t. ve —~vin HO1 (2),
K ={ve Hy(Q)|

—div(AVv,) € L2(Q) and is > f a.e. in Q

and K is the closure of K in L*(). O

In the above theorem though the limit optimal state, u*, was shown to satisfy a kind of
variational inequality, no relation was noted between u* and 6* and the description of the
set K is somewhat complicated. Also, the limit control 6* was not given as an optimal
control of a homogenized problem.

One also observes that the possible limit cost functional

1
1) = S Iu O3 0. @7

may not be coercive in the weak topology of L?(£2) (cf. Example 2.1). Thus J may not
have a minimiser in U. This is quite different from the case of fixed cost of the control N in
the cost functional, since there the J; were equi-coercive and the possible limit functional
J stayed coercive; thus admitting a minimiser. Refer [5] for the study of fixed cost case in
non-perforated domains.

Example 2.1. The cost functional J as defined in (2.7) is not coercive, in general, in the
weak topology of L?(£2). We give a one-dimensional example to observe this fact. Let
Q = (-1, 1). Let p, denote the sequence of mollifiers defined as

2
—&
ke™! exp <—) , Jxl<e
pe(x) = e — |x|? (2.8)
0, x| > e

where k! = f|x\51 exp (ﬁ) dx, so that f_ll pe(x)dx = 1. We now observe that

||p8||%’(_1’1) — +ooase — 0.

1 ) k2 e —282
dx = = R
/_1’)5(” T _gexp<ez—|x|2) *
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Putting y = % we have

k> ! -2
= — exp( 2)dy—>+ooasg—>0.
e Jo 1 —1yl

Using the mollifiers as controls we define u, as the solution of

d2u‘,3 .
T2 P inQ=(-1,1)

such that u.(—1) = u.(1) = 0. Hence

—u,(x) =/1ps(y)dy—u’g(—l)

and |ul(—1)| < 1 + |uj(x)|. Integrating both sides over (—1, 1), we have

1 1 1/2
20ul (~ 1) sz+/l Jul (o) dx < 2+ (/1 |u;|2) V2.

By the variational formulation of the equation, we have

1 1
/ |u'£(x)|2dx =/ Pette dx < [Juglloo,(—1,1)
—1 -1

and hence

IA

L+ Jug (=)

1 | 1/2
1+14+— / [ul|?
ﬁ( o f

1 12
<2+ ﬁ”usnoo’(,]’])-

Now, since u, (x) = [~ uj(y) dy, we have

li
e loo, (—1,1)

IA

lus ()] < Ny lloo, 1,01 + 11 < 20 lloo,(-1,1)-

1

Hence, |luglloo,(—1,1) < 4 + \/§||ug||;o (—1.1)" The (positive) root of the quadratic equa-
tion a? — v/20 — 4 = 0 is 2+/2 and 50 [|ue oo (—1.1) < 8 and hence ||u|l2.(—1.1) =
(/! u2dx)'"? < 8v/2. Thus, llucll2, (1.1, is bounded while [lps|3 _, ;, — 0. Thus,
J as defined in (2.7) is not coercive in the weak topology of L2(—1, D). |

In this paper, we settle the low-cost problem for the positive cone case which was
considered in [7] and in the following section we state the results crucial to settle our
problem.
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2.1 Data from the positive cone of H ™!

In this section, we state some known results that extends the notion of H-convergence to
weakly converging data from the positive cone of H~1(Q). To begin, we shall state the
Meyers’ regularity result, whose proof can be found in (page 38 of [1]) (or cf. [9]).

Theorem 2.2. Let A € M(a, b, Q) andu € HO1 (R2) be the solution of

—div(AVu) = f, inQ
2.9)
u=0, ono

where f € H™Y(Q). There exists a number p > 2 (which depends on a, b, Q and on the
dimension n) such that if f € W=1P(), then the solution u belongs to Wol’p(Q) and
satisfies

Il 1 gy < CollF w100y (2.10)
(where Cq depends on the same quantities as p does). a

The highlight of the above theorem, other than the regularity aspect, is that p and Co will be
independent of ¢, if the equation involves oscillating coefficients, say A, € M(a, b, ),
and also that the p is same for ' A instead of A in the state equation above.

We now state a result proved by Murat [10].

Theorem 2.3 [10]. Let Q be an open subset of R". Consider a sequence {g:} ¢ H™'(Q)
such that

8e — g weakly in HY(Q)
and g > 0 for all . Then
ge — g strongly in ngcl’q(Q), Vg <2
ie.,
Ppge — ¢g strongly in Wﬁl’q(Q), Vg <2and V¢ € D(RQ).

a

The following is a H-convergence result for weak data from the positive cone of
H~' (). We now prove the theorem in a particular case. The theorem in its full generality
is stated and proved in Theorem 3.1 of [3].

Theorem 2.4. Let {A.} be a sequence of matrices in M(a, b, ) which H-converges to
a matrix Ag and let f € H Q). Ifue € HO1 (R2) is the weak solution of

—div(AVu) = f+ ge, inQ
(2.11)

u, =0, ondQ
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with g — g weakly in H~'(Q) and g;’s belong to the positive cone of H~'(Q). Then,

U — ugp weakly in HO1 (),

(2.12)
AsVug — AgVug weakly in (L*(2))",
where ugy € HO1 (R2) is the unique solution of
—div(AgVug)=f+¢g, inQ
(2.13)
up=0, ona.

Remark 2.1. We note that, in general, the energy functional does not converge for weakly
converging data (from the positive cone) in H ™! (2), even if the coefficients are fixed, as
the following example shows. Let Q2 = (—1, 1) C R. Define u.: 2 — R as

1
T ifxe(=1.—1+62),
&
ug(x) = { &, ifx e[—1+¢%1—¢?],
1—x . 5
—, ifxe(d—e71),
I

then its first derivative u/, is given as

, ifxe(=1,—-14¢&%),
. ifxe[—1+¢21—¢2],

—, ifxed—e21).

Observe that the distribution —u/] = %(571 1e2 +81_2) > 0 is in the positive cone of
H~!(Q) and converges weakly to 0. Also u, € H(; () and u, — 0 weakly in HO1 (2),
while the associated energy functional ||u/, ||% = 2 is a constant independent of ¢. O

We now state some results which seem to be intuitively obvious but do not appear to
have been proved anywhere in the available literature. For a proof of the following results
we refer to [11].

A distribution is said to be non-negative if it takes non-negative values for all non-
negative test functions. Now, if f, g € L?(Q) are non-negative functions then, clearly,
fQ fgdx > 0. At this juncture one is interested to know if a similar statement is also valid
in the dual of H} (), i.e.,if w > 0in H~!(Q) and v > 0in H} (Q) then is it true that
(w, U>H_1(Q))H01(Q) > (0? The answer is trivial to observe in the case when 2 = R” than
in the case of a bounded open set in R”.

The basic idea for the 2 = R” case is that for any v € HO1 (R™) such that v > 0 there
exists a sequence of positive test functions converging strongly to v in HO1 (R™). These
positive test functions are obtained by the convolution of v with the mollifiers (cf. (2.8))
and then using the cut-off function technique to make the support compact, i.e., define
V(x) = Lk (x)(pg, * v)(x) where the cut-off function &x(x) = ¢(x/k) for a function
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¢ € D(R") suchthat 0 < ¢ < 1,¢ = 1 on B(0, 1) and Supp(¢) C B(0, 2). This is a
standard technique in the theory of Sobolev spaces to prove results on the entire space R”.
But these techniques break down when €2 is a bounded open subset of R”. This difficulty
is overcome by Proposition 2.1.

One knows that HO1 (Q) is the closure of D(R) in H' (). In the following proposition
we prove that for a given positive H(} function we can extract a sequence of positive H(}
functions with compact support in €2 which converges to the given function in H(}.

PROPOSITION 2.1

Let Q C R" be a bounded domain. Let v € HOl (2) and v > 0. Then there exists a sequence
{yn} C HO1 (2) such that y,, — vin HOl (), ¥, > Oforalln and ¥, has compact support
in Q.

Remark 2.2. In the result proved above if we choose ¥, = v— (v —¢," )™ then, in addition
to the properties proved above, we also have that 0 < v, < v for all n. Since, v — q‘),;" — 0
strongly in HO1 (2) we have | V(v — w,,)||%’g2 — 0 because

IVo =D 50 < IV@ = ¢D3.q — 0.
Hence ¥, — v strongly in H|} () and by definition 0 < v, < v. |

PROPOSITION 2.2

Let Q C R" be a bounded domain. Let g € H=Y(Q) be such thatg > Oandletu € HO1 ()
be such that u > 0 a.e. in Q then (g, u) > 0, where (-, -) denotes the duality between
H~Y(Q) and Hj (Q).

We shall now prove a result which shows the equivalence of the above result to a
statement on the closure of the positive cone.

PROPOSITION 2.3

Let Q C R" be a bounded domain. The following statements are true and are equivalent:
(1) The closure of the positive cone osz(Q) in HY(Q) is the positive cone ofol ().
(ii) The closure of the positive cone of D(K2) in Hé (R2) is the positive cone of HOl ().

(iii) Ifg € H~ () is such that g > 0 and u € HO1 (2) is such that u > 0 a.e. in Q2 then
(g, u) = 0.

2.2 The limit problem

We now completely settle the problem (2.1)—(2.2) for the positive cone case using the
machinery developed in §2.1.
Let the admissible control set U be the positive cone in Lz(Q), i.e.,

U=1{0eL*)0>0ae.in Q).

We shall now introduce the adjoint problem and the optimality condition associated with
the above described system.
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The minimizer 6 is characterised by the optimality condition
/Q(u;“(u‘9 —ul)+e0f(0—0)dx >0, VOeU (2.14)
where u is the state corresponding to 6. We can rewrite the optimality condition as
/Q(p;" +e05)(0 —6)dx >0 VO eU,

using the adjoint optimal state p} € HO1 (£2) given as the weak solution of

—div( A, VpH) =u¥, inQ
(2.15)
pi=0, onodQ.
Now,
luf3.q < Je(0)) < Je(6), VO eU.
Therefore

A

1 €
2 2 2
||M:||2Q = 5”“6”29 + 5”9”2,9

1 2 1 2
< 3 luellyy g, + 51005 0

A

1w+w2+HmF
— za 2,Q 2 2,Q"

Thus, since {u}} is bounded in LZ(Q), by H-convergence, there exists a matrix Ag (called
the H-limit of {A.}) such that

—div(fAgVp*) =u*, inQ
(2.16)
p*=0, ondQ
and p} — p* weakly in HO1 ().

Theorem 2.5. If U = {# € L*()|0 > 0 a.e. in Q} is the admissible control set for the
system (2.1) solving (2.2), then there exist u™ and 6* such that

(a)
uy — u™ weakly in Hol () and strongly in L*(S2), (2.17)
8%9: — 0 weakly in HOl (2) and strongly in L2(Q), (2.18)
* 1 %12
Je(0;) — EIIM 7. (2.19)

(b) 6 — 0* weakly in H —1(Q) for the entire sequence.
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(©) u* solves
{ —div(AgVu*) = f +0*, inQ

(2.20)
u*=0, onoQ,

where, now, 0* € H=1(Q).
(d) 6*isthe unique minimizerof J () = % lu(0) ||%,s2 overV, the positive cone of H~1 ().
(e) u* is the projection of 0 on to K' in L*(2), i.e., u* € K" and

/ w@—u"dx>0 VYveK’
Q

where

K'={ve Hj(Q)| —div(AgVv) — f € V}.

Proof. (a) follows from Theorem 2.1. Also, (b) holds for a subsequence (cf. (2.6)) and by
Theorem 2.4 we have that u™ is the solution of (2.20), thus proving (c).

It follows from Proposition 2.3 that V is the strong closure of U in H ~1(Q). Observe
that V is a closed convex subset of H (). Thus, V is also the weak closure of U in
H~'(Q) and hence 6* € V. We know that

Je(0F) < J.(0), V9 eU. (2.21)
Therefore, passing to the limit as ¢ goes to 0 we have

JOH <J@®), V9eU
and hence

J(©O* < J@®), VoeV. (2.22)

By the strict convexity of J, 8* is the unique minimizer of J over V, thus proving (d). The
uniqueness of 6* implies (b).

Let K’ denote the closure of K’ in L%(£2). This is then a closed convex subset of L%(£2).
Observe that u* € K’ ¢ K’, since 8* € V. Let# € U and v(6) be the solution of

—div(AgVv) = f+6, inQ
(2.23)
v=0, ondQ.
Then passing to the limit in the optimality condition (2.14) and noting that u, — v(6) in
Hj (), we have
/ w*(@®) —u*)dx >0 VO eU.
Q

Letv € K’ and let & = —div(AgVv) — f. Then there exists a sequence {#,} C U such
that 6, — 0 strongly in H ~1(Q). Let v, € K’ be the states corresponding to 6, for which
the above inequality holds. Thus,
/ w*(w—u*dx >0 VYvek’
Q

and a simple density argument proves (e). m|
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Remark 2.3. Since 6* is aunique minimizer of J over V, itis characterised by the condition

(0 =0 P )1 i 20 VOEV.

Now, by choosing § = 0 and 6 = 20*, we deduce (6%, p*>H*1(SZ),H(}(Q) = 0. Also, by
choosing 6 = 6* + n, for arbitrary n € V, we get (n, p*)H_.(Q)’H(} () = 0 implying that
p*>0a.e. in Q. O

Remark 2.4. We now observe that the K’ we defined in the above theorem is same as
the K defined in Theorem 2.1, i.e., K’ = K. Let v € K. Then there exists a sequence
{ve} C Hy(S) such that v, — v weakly in H, (Q) and 6; = —div(A,Vv,) — f € U.
Then, by Theorem 2.4, it follows that v € K’ for some 6 € V which comes as the weak
limit of 6, in H~' (). Thus, K C K’. Now, let v € K’ and 6 € V. Then there exists a
sequence {6;} C U such that 8; — 6 strongly in H —1(Q). Set v, to be the solution of

—div(A;Vvs) = f + 6, inQ
(2.24)

v, =0, onadQ,

and thus v, — v weakly in HO1 (). Hence, we have shown v € K and therefore K’ C K.
O

Remark 2.5. The highlight of Theorem 2.5 is the result (d). We conclude that the optimal
controls 6} converge weakly in H ~1(Q) to 6* which is a unique optimal control for the
problem of minimising

1 2
J(©0) = §||u0(9)||2,g2
over the set V, the positive cone of H ~1(Q), where ug € HO1 (£2) solves

—div(AgVug) = f+6, inQ
(2.25)
uo=0, onadQ.

Further, J;(6)) — J(6*). This was a problem open in [7] (cf. Theorem 2.1). They were
also unable to estabilsh the relation between u* and 6*. Also, the description of the set K’
was quite complicated. O

3. Low-cost controls on perforated domains

In this section, we study the asymptotic behaviour of low-cost control problems on perfo-
rated domains.

Let 2 C R” be a bounded domain and let S; C €2 be a family of closed subsets (called
the ‘holes’). Let 2, = Q\S; represent the perforated domain.

Let U, C Lz(Qg), the set of admissible controls, be a closed convex set and let f €
L?(Q) be given.

We consider the system with the cost functional similar to the one in the previous section
and see if this can be homogenized as has been done for the non-perforated case. We shall
consider the cases when both the control and state are given in the domain (cf. §3.1) and
when they are prescribed on the boundary (cf. §3.2).
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3.1 Control and state on the domain

In this section, we consider the analogue of the system (2.1)—(2.2). Before we describe
the problem, we introduce some notations required to proceed further. Let x, denote the
characteristic function of the set 2, in €2,

1, ifx € @
Xe(x) = .
0, ifx e S,

and let xo be a weak* limit of y. in L°°(£2). Henceforth, we fix a (sub)sequence such that
Xe — xo weak*® in L°°(2). The extension of a function on €2, by zero on the holes of Q
is denoted with a™ in the superscript. We shall now prove a result which will be useful in
the sequel.

It is easy to observe that when a sequence f, — f strongly in L?(2) then we have
f o Xefe dx — f g Xof dx. We shall now prove a lemma that discusses about the L?%-norm
convergence of . fe.

Lemma3.1. If f. — f strongly in L*(2) then ||X5f8||% Q= fQ xof%dx.

Proof. Since f, — f in Lz(Q), we have | fell2.o — | fll2.q- Equivalently, we have
||f£2||1,9 — ||f2||1’g2. Further, for a subsequence, f;(x) — f(x) pointwise a.e.. Now, it
can be shown as a consequence of Egoroff’s theorem and Fatou’s lemma (cf. Exercise 17(b),
page 73 of [12]) that f2 — f2 strongly in L'(£2). Thus, we have (recall that 2 = x.),

||xsfs||3,9=/ xo f2 dx — / xof% dx
Q Q

using the L°°(2) weak* convergence of { . }. Since the limit obtained above is independent
of the subsequence, the convergence occurs for the entire sequence. O

We begin by assuming the following two hypotheses:
H1. There exists, for each ¢ > 0, an extension operator
Pe: Ve — HJ(Q)
where V, = {u € HI(Q£)|u = 0 on 02}, such that, for every u € V,
Peulg, =u and ||[VPeull2.o < CollVulz.q,,
where the constant Cy is independent of .
H2. Every weak* limit point in L*°(£2) of {x.} is positive a.e. in 2.

We say that the family of holes { S, } is an admissible family of holes in €2, if the conditions
(H1) and (H2) are satisfied. Throughout this paper S, will denote an admissible family of
holes in €2.

‘We now state the problem we are interested in. For a given 6, € U, the cost functional
is given by

1 2 € 2
Je(0:) = 5”“8”2,98 + §||9s 1.0, 3.1
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where the state u, = u.(6;) € V; is the weak solution of
—div(A:Vu,) = f +6,, inQ;
AgVug -ng =0, onadS; 3.2)
u, =0, onadQ.

For u € V;, we define the norm on V; as |lu|ly, = [|Vull2.q,.

The problem (3.1) solving (3.2) admits a unique optimal solution, which minimizes J,
in U, and is denoted by 0,". The corresponding optimal states is denoted by u}. We now
introduce the adjoint optimal state p} € V, as the weak solution of the problem

—div(fA,Vp¥) =u¥, inQ;
'AVpt-ne=0, ondS (3.3)
pr=0, ondQ.

Then the optimality condition

/ [ur(ue —ul) + €070, —0)]dx >0 Vb, € U, 34

&

can be rewritten as

(pr +€65)0: —6)dx >0 VG, € U,.
QET
We observe that 6 is the projection in L%(Q,) of _5: onto U,.
Given the hypothesis (H1) and assuming there exists, for each ¢ > 0, 8, € U, such that
{6} is bounded in L?(£2), then we have both {x. P-u*}, {¢!/26*} bounded in L*(£2), and
both { P.u.} and { P, p}} are bounded in H& (£2). The proofs of these are easy to check and
can be found in [11]. It then follows that, up to a subsequence,

e!2gx —~ ¢’ weakly in L*(), (3.5)
Xe P — u' weakly in L(2), (3.6)
P, p} — p* weakly in HO1 () and strongly in L?(£2). (3.7)

We observe that the adjoint equation (3.3) can be rewritten in the following way:
—div('A,Vp}) = xe Peul, inQ
"A;Vp¥-n,=0, ondS, (3.8)
pi=0, onodQ.

Thus, we can homogenize the adjoint equation (3.3) (cf. Proposition 2.1 of [6]). In other
words, by the theory of Hp-convergence, there exists a matrix Ag such that (up to a
subsequence) A, Hp-converges to Ag and p* is the solution of

—div(AgVp*) = u', inQ
(3.9)

p*=0, onodf.



Low-cost control problems 145

Let us now extend the admissible set to the space L?(£2) in the following way:
Ue = {0. € L*(Q)16; € U.} C L*(Q).

Theorem 3.1. Let Ag be the Hy-limit of {A¢} and let the sequential K -limit of{Ug} in the
weak topology of L*(Q2) exist, denoted by U. Also let the optimal controls 9* converge to
0* weakly in L*>(Q2). Then 0* is the unique minimizer of

1 2
J©O) =7 | xolul”dx
Q

inU, whereu = u(0) € H(; (R2) is the weak solution of

—div(AoVu) = xof +6, inQ
(3.10)

u=0, ondQ.
Further
Peu} — u* weakly in Hol (Q) and strongly in L*(2),
Je(60) — J(67),
u' = you* and 0’ = 0.

Proof. The fact that 8’ = 0 follows from the weak convergence hypothesis of the optimal
controls 6. Now, since U is the sequential K -limit of {U,}, we have 6* € U. Also, for any
given 6 € U, there exists a § > 0 and a sequence {0} such that 6, — 6 weakly in L3(Q)
and 0, € Ug, Ve < 8. Now, since 6; is the minimizer of J; in U, we have, for ¢ < §,

Je(07) < Je(6e)
(we denote the restriction of 6, to €2, by 6, itself). Taking limit on both sides of the above

inequality, we have

llm [”XsPau ||2 QT 8||9*||2 ol = llm —[IIXgPsuallz ot 8||9s||2 ol

It now follows from the theory of Hp-convergence (cf. Proposition 2.1 of [6]) that Pou} —
u* and Pou, — u weaklyin H(; (£2) where the u™* and u are the solutions of the homogenized
problem (3.10) corresponding to 8* and 6, respectively. Thus, u’ = xou*. Hence, it now
follows from Lemma 3.1 that

1 1
E/QXOWde < 5/9><o|u|2dx,

i.e. J(6*) < J(0). Since 6 € U was arbitrary, we have shown that 6* is the minimiser of
J over U. The uniqueness of 8* is proved by passing to the limit in (3.4). Observe that
(3.4) can be rewritten in the following way:

/ e Pott? (Potts — Pou?) + 6656, — 65)]dx = 0, V6, € U,
Q
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where 6, is as chosen above that converges to 6 weakly in L?(£2). Now passing to the limit
in the above inequality, we have

/ xou*(u —u*)dx >0, VYue GU)
Q

where G is the map 6 + u, where u is the solution of (3.10). Note that, since U is closed
and convex, G (U) is a closed convex subset of L2(§2) and thus we have u* as a projection
of O onto G(U) in LIZL(Q) where diu = xodx. Thus, from the uniqueness of u™ follows the
uniqueness of 6*. ]

Remark 3.1. We observe that the optimality condition involving the adjoint state
/Q (pr +6€6))0: —6)dx =0, V6, € U,

can be rewritten in the following way:
| Pevi +e06— Gy ax =0, Vo, €U,

and by passing to the limit, we obtain the optimality condition for the limit system
/Qp*(e —0"dx >0, VoeU

where p* is the solution of (3.9) with u’ = xou*. O

We observe that one is, in general, unable to verify the weak convergence hypothesis
of the optimal controls as in Theorem 3.1 for the system (3.1) solving (3.2). However, we
shall observe some trivial cases of the above mentioned system. Observe that, under the
hypothesis of Theorem 3.1, if —xo f € U then by uniqueness of 6*, we have 6* = —xo f
and u* = 0.

COROLLARY 3.1
Under the hypothesis of Theorem 3.1, if —xof ¢ U then 6* € 0U.

Proof. Suppose 6* ¢ dU, then for some r > 0 there exists a ball B(6*,r) C U. Thus,
0*+tmelU VneB(,1)andt <r.

Using this in the optimality condition of the limit system,
/ p*O —6%"dx >0, VoeU
Q
we have, Vi € B(0, 1),

tfp*nEO.
Q

Hence, p* = 0 which in turn implies u* = 0 and thus 6* = —xo f € U, a contradiction.
Thus, 6* € aU. m]
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PROPOSITION 3.1
If there exists a § > 0 such that — f € U,, Ve < 8, then

Pou} — 0 weakly in HO1 (),
0 — 0* = —xof weakly in L*($2),

Je(6F) — 0.
Proof. 1Tt follows from the hypothesis that J.(6)) < J.(—f), Ve < §. Thus,

1 g~ &
znxgpgu:uig + Eneg*ug,g < Eungnﬁ,g.

Hence, we deduce that . P.u} — O strongly in L%(Q) and 9:;" — 0* weakly (for a
subsequence) in L2(2). Also, we have Je(87) — 0. It now follows from the theory of
Hy-convergence that Pou} — u* weakly in H(} (£2) and hence we observe that u* = 0 and
0* = —xo f, also the convergence of the optimal states holds for the entire sequence. O

As we observe from the results developed so far that one lacks information on the optimal
controls when the admissible sets are arbitrary. We now consider the case of the positive
cone as the admissible set and hope to establish stronger convergence results for «} and
0} without any hypothesis on the optimal controls.

Theorem 3.2. Let U, = {6 € L%(2,)|0 > Oa.c.in Q). Then {Pu}} is bounded in
H(} (2) and hence we have (for a subsequence),

Pou} — u™ weakly in HOI(SZ) and strongly in L*(S), (3.11)
G — 6% weakly in H~1(R), (3.12)
* 1 *(2
Je(07) — 5 Xolu™|” dx. (3.13)
Q

Further u' = xou*, 8’ = 0 and p* > 0.

Proof. Since Uy is the positive cone, we have €6 = (p})~ in €,. Observe that 80:;‘ =
Xs Pe(p)™ = xe(Pepf)~ in Q. Since 0 € U, for all ¢, the convergences in (3.5), (3.6)
and (3.7) are valid.

Using u} as a test function in the weak form of the state equation satisfied by u}, we have

/ ASVuj~Vu:dx=/ (f +0)ufdx
Qe Qe

= / Xef Peut dx + 8_1/ (pH)"u} dx.
Q Qe
Now using (p})~ as a test function in the weak form of the adjoint equation (3.9), we have

/gz (p:)_u:dxzf AgV(p:)_.Vp:dxz—/ AV (pH ™. V(pH~ dx

QS &
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and hence we derive the equality,

/ ASVuj-Vu:dx—i—e_l/g; A€V(p:)—.V(p:)—dx=/ngfpeufgdx.
) ' (3.14)

Since {x¢Peu}} is bounded in L%(Q), we deduce from (3.14) that {Peu}} and
{5_1/ 2P, ( p¥)~} are bounded in HO1 (£2). Therefore, for a subsequence, (3.11) holds and

s_l/ng (p:)_ — g weakly in HO1 (£2) and strongly in L2(Q). (3.15)
Hence

Xe Pt — xou™ weakly in L?(£2)
and by (3.6) it follows that u’ = you™*. Also

™2 xe Pe(p})”™ — xoq weakly in L*()
i.e.

e!20x —~ yoq weakly in L>().

Therefore, by (3.5), we have 0’ = xq.
Forv € H(; (R2), consider
/ 0Fvdx
Qe

/ijvdx

Q
/ ASVu?Vvdx—/xsfvdx
Q; Q

=< (b”’/i:”Vg + CO”X@f”Z,Q) ”v”H&(Q)'

Hence, it follows that {9;?‘} is bounded in H~!(2) and thus there exists a 0* € H~1(Q)
such that (3.12) holds. Consequently,

26 — 0 strongly in H~1(Q)
and thus 0’ = xoq = 0. Now, since e = x. (P, p})~ in Q we have, using (3.7)
e — yo(p*)~ weakly in LX(2).

Therefore, xo(p*)~ = 0 which implies (p*)~ = 0 and hence p* > 0.
It now follows from (3.11) and Lemma 3.1 that

lufl3.q, = IxePeul3 o — f Xolu*|* dx
Q
and from (3.15) and Lemma 3.1 that
120512 o = ™ P xe Pe(p?) 1B o — /Q x0q? dx = 0.

Since J(0) = %(IIM?II%’QE + le'/2613 o) (3.13) holds. ]
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Remark 3.2. The penultimate line in the above proof shows that, in fact, ¢!/ 29} —- 0
strongly in L2(£2). Also, since * and p* are positive, we have (6%, p*)H,l(Q)’HOl @ = 0.
On the other hand, observe that [, (p} + €67)0dx = 0 and hence [, p;6;dx =
—8||9j||%,95 < 0. Thus st pr6rdx < 0. But we are unable to conclude that
(0%, p*)H*l(Q),HOl(Q) < 0, owing to the weak convergences of p} in HO1 (€2) and 6} in
H Q). O

Remark 3.3. Using p} as atest function in the state equation (3.2) corresponding to 6; and
u} as a test function in the adjoint-state equation (3.3), for the case U, as in Theorem 3.2,
we have

/;ZXs(Psu:)zdxz/s; (M:)ZdXZ/ ASVMZ-Vp:dx
=/ (f +0)ps dx
Qe

=/ ngng;kdx—S/ (6))? dx.
Q Qe

Passing to the limit as ¢ — 0, it follows that

/xo|u*|2dx=f xop* dx.
Q Q

This result is crucial in the sense that it hints to the fact that one can have
6*, p*),,_ = 0, if one could homogenize the state equation (3.2) with the
0%, p" )y 1(Q), H} (@) g q (3.2)

controls 6. O

The absence of the result equivalent to Theorem 2.4 for the Neumann boundary condition
problem hinders one from writing down the limit control problem for (3.1) solving (3.2)
as was done for the non-perforated case in §2.2, which keeps the problem still open.

Due to the nature of the problem we do not have the uniqueness characterization of 6*,
in general. We compensate this lack by proving a uniqueness characterization of u™*.

Let us define the set

v, € Ve s.t. Peve — vin Hy (Q),
E=1ve Hi(Q)|
—div(AsVv,) € L2(%,) and is > fa.e.in 2,

and let E, a closed convex set _in L2(2), denote the norm-closure of E in LZ(Q). It follows
from (3.11) that u* € E C E and hence E is non-empty. Let G: L%(Q.) — V, be the
map 6; — u; where u, is the solution of (3.2).

PROPOSITION 3.2

Let U, be as given in Theorem 3.2. Then E is the K -limit of the sets E. = P.G.(U,) in
the weak topology of HO1 ().
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Proof.

(a) Let v € E. We need to find a n > 0 and a sequence vy — v in HOI(SZ) such that
ve € Eg, Ve <.
Given v € E, by definition of E, there exists w, € V; s.t. P,w, — v in HO1 (2).
Set 6, = —div(A,Vw,) — f. Hence, by definition of E, 6, € U,, Ve. Therefore
we = G¢(0¢). Now, choose v, = P.w,, Ve. Hence our claim.

(b) Suppose v; € E; and v, — v in HO1 (€2), then we need to show that v € E.
Let v, = P.w, where we € G.(U,) C V. Note that, in fact, w; is v, restricted to 2.
Also, 8, = —div(A,Vw,) — f is in U, and hence —div(A,Vw,) € LZ(QS). Hence
our claim.

K
Thus, we have shown that E; — E in the weak topology of H& (). O

Remark 3.4. In the non-perforated case the above proposition reduces to saying that
K
G:(U) — E in the weak topology of Hé (2) where

U=1{0eL*)0 > 0ae.inQ},
v, € H} (Q) s.t. v, — vin H}(Q),
E=1{veH(Q)
—div(A,Vv,) € L>(Q) andis > fae.in Q

and G.: L%(Q) — H& (2) is the map 6, — u, where u; is the solution of the counterpart
of (3.2) in the non-perforated case. O

Theorem 3.3. If U, is as in Theorem 3.2, then u* is the projection of O onto E in Li(Q)
where diu = xodx. In other words,

/Xou*(v—u*)dx >0, VYvekE.
Q

Proof. Letv € E and set 618 = —div(AgVve) — f. Then we have 8, € U, and arguing as
in Theorem 3.2 we prove 6, is bounded in H -1(Q). Using this 6, in (3.4) we have

/ [uf(ve —ul) 4+ €66, —6;)1dx >0
Qe

i.e./ u:vgdx—i-s/ Qs*égdxz/ (u:)zdx—i-s/ (0 dx,
Qe Qe Qe Qe

ie. / XgPsu:PSvgdx+8/ 9:;“678dxzf Xg(Pgu:)zdx+8/(9~g‘)2dx
Q Q Q Q

whence, on passing to the limit

/Xou*vdxz/ xo(u*)? dx.
Q Q

Since v € E was arbitrary we have
[ xou*(v—u*)dx >0, VveE
Q

and by simple density argument we have the inequality for all v € E. a
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Remark 3.5. By the uniqueness of u*, the convergence in (3.5) and (3.11) holds for the
entire sequence and not just for a subsequence. a

Let us now consider the cases where f has a sign. If f < 0 a.e. in Q. Then —f € U,
(as defined in Theorem 3.2) and hence the result of Proposition 3.1 holds. Moreover,
from (3.14), we have P,u} — O strongly in HO1 (2).

Observe that the weak maximum principle remains valid for the state equation (3.2) due
to the homogeneous Dirichlet boundary condition on 92 and the homogeneous Neumann
boundary condition on the holes. If f > 0 a.e. in € and since 67 > 0 a.e. in €2, it
follows from the weak maximum principle that u} > 0 a.e. in €2,. Thus by using the weak
maximum principle for the adjoint equation (3.3), we have p} > 0 a.e. in €2, and hence
0} = 0in . Thus, 6* = 0 and the state equation becomes

—div(A,Vu}) = f, in;
AVul-n, =0, onaS; (3.16)
uy =0, ondQ.

Then, by Hy convergence, it follows that u* is the solution of the homogenized problem

{ —div(AgVu*) = xof, inQ
(3.17)

u*=0, ond.

Theorem 3.4. Let U, = L?>(Q;) then we have,u’' =6’ = p* = 0 and

P.u} — 0 strongly in H(% (),

P:pk — 0 strongly in H(% (),

81/29;k — 0 strongly in L*(S2),

0F — 0% weakly in L*(Q) and 6* = —xo f,

J(6F) — 0.
Proof. Since — f restricted to 2, isin U, = L%(Q,), the results of Proposition 3.1 stays
valid. Also, the convergences (3.5), (3.6) and (3.7) remain valid. It follows from the strong
convergence of P.u that u” = 0 and hence p* = 0. Now, since {0} is bounded in L3(),
we have 81/29: — 0 strongly in L?(2) and thus 6’ = 0.

Also, from the optimality condition, we have 6 = —p* in Q. and hence 0¥ =

—Xe Pepf in Q. An argument similar to the one in Theorem 3.2 gives the equality corre-
sponding to (3.14), i.e.,

/ ASVu:.Vu:fdx—{—e_l/ AEVp;k.Vp:dx:/ Xe f Peu} dx.
Qe Qe Q

We deduce from the above equality that P, p} — 0 and P.u} — O strongly in HO1 (£2).
O
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3.2 Control and state on boundary

In this section, we consider the case of perforated domain for the boundary control problem.
To begin we need to reformulate the notion of admissible family of holes. For this section,
the family of holes, {S;}, is said to be admissible in €2 if, along with (H2), the following
is satisfied:

H3. There exists, for each ¢ > 0, an extension operator

Q:: H'(R) - H'(Q)
such that, for every u € H'(Q2,),

Qeulo, =u and || Qeullgi(q) = Collullg1(q,)
where Cy is independent of ¢.

Such family of admissible holes has been considered by Hruslov in [4]. We note that the
holes allowed by (H2) and (H3) is not very different from those allowed by (H2) and (H1).
We can, in fact, construct Q, from the extension operator P, obtained in (H1), provided
we have the following:

H4. There exists a positive constant C independent of & such that for every u € H' (),
lull grrzpo) < Collullgiq,)-
(Recall that H'/2(3Q) is the range of the trace map y: H!(Q) — L*(3%).)

To see this, assume (H4). Let u € H'(S2,). Since u restricted to 92 is in H1/2(3Q),
there exists a v € H' () such that

vl = Collull gzpa- (3.18)
Thus, u — v € V,. Then, by (H1), Po(u — v) € H} (). Define Q.u = P.(u — v) + v.
Then v restricted to €2 is same as Q. u restricted to d€2, which is u restricted to d<2. Now,
consider
I Qeullyiq) = 1P —v) +vllg1q)
SNPe(u = V)l g + Ivllg @)
= 1P = )l g1 + IVl 1@
< Collu = vllv, + vl g1 ()
< Co (lullv, + lvllv,) + vl g1 (g
< Co(lullv, + IVvl2.Q) + vl g1 g

< Collully, + Cillvl g1 q)-
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Therefore, by (3.18), we have

1Qcull g1 () = Collullv, + Cillull g12@q)

and then by, (H4),
I Qeullyiq) < Collullv, + Cillullgi (g,

= Collull g1(g,)-

Thus, we have constructed a Q. such that (H3) is valid.

Conversely, if (H3) is valid then we always have (H4). To see this, note that for u €
HY(Q,), u restricted to 9S2 is same as Q.u restricted to Q2. Now, it follows from trace
theory that, for Q.u € H'(Q),

lull gi2pa) < CollQettll gi(q)

and from (H3), it follows that

lullgi20) < Collullgi(q,)-

In short, for state equations with Neumann (or more general) condition on the boundary
0% in perforated domains, the discussion above suggests that the admissible family of
holes are required to satisfy either (H2) and (H3) or, equivalently, (H1), (H2) and (H4). To
maintain consistency throughout the section, we shall work with the hypotheses (H2) and
(H3).

We now state the optimal control problem to be studied in this section. Let U, C L?(3S)
and f € L?(dQ) be given. For 6, € Uy, the cost functional is given by

1 2 € 2
Je () = zlluallz,ag + 5”95”2,39» (3.19)

where the state u, = u.(6;) in H! (£2¢) is the unique solution of
—div(A:Vu,) +u, =0, in €,
AVug -ng =0, ondS; . (3.20)
AVug -v=f+6,, onaQ

ne and v are the unit outward normal on 9.5, and 9€2, respectively.

As usual, (3.19) and (3.20) admit a unique optimal solution, which minimizes J; in
U, and is denoted by 6. The corresponding optimal states are denoted by u}. Also, the
adjoint optimal state p; € H 1(Q,) is given as the weak solution of the problem

—div('A,VpH + pf=0, inQ,
"A;VpY-ng=0, ondS, . (3.21)

"AVpt-v=ul, ondQ

e

Then the optimality condition

/ [ (e — u*) + €650 — 6)]do =0 V0, € U, (3.22)
Q2
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can be rewritten as

/ (pX 4+ €01)(0: — 0F)do >0 VO, € U,
Q2

and hence &6 is the projection in L?(32) of — p* onto U,.

Assume that there exists a sequence 6; € U, such that {6,} is bounded in L*(392). We
can then show that (cf. [11]) {u} and {¢!/26}} are bounded in L?(3Q) and, {Q.u.(6:)}
and { Q. p}} are bounded in H 1(Q). It then follows that, up to a subsequence,

e!20¥ —~ ¢’ weakly in L*(92), (3.23)
u® — u' weakly in L*(32), (3.24)
Q.ps — p* weakly in H'($2) and hence we have

pr — p* weakly in H'2(392) and strongly in L?(3S2). (3.25)

We can homogenize the adjoint-state equation (3.21) (cf. Proposition 2.1 of [6]) and, by
the theory of Hy convergence, there exists a matrix Ag such that A, Hp-converges to Ag
and p* is the solution of

—div("AgVp*) + xop* =0, inQ
. (3.26)
"AgVp*-v=u', ondQ

A proof analogous to that of Theorem 3.1 will prove the following theorem.

Theorem 3.5. Let Ag be the Hy-limit of { A} and let the sequential K -limit of {U.} in the
weak topology of L*(9RQ) exist, denoted by U. Also let the optimal controls 0} converge
10 0* weakly in L*>(3K2). Then 0* is the unique minimizer of

1
J(G):—[ u* do
2 Jaa

in U, where u = u(9) € H'(Q) is the weak solution of
—div(AgVu) + xou =0, in Q2
(3.27)
AogVu-v=f+60, ondQ.

Further u' = u* and ' = 0.

We now establish stronger convergence results for «} and ;" and homogenize the system
when the admissible control set is the positive cone of L2(3).

Theorem 3.6. LetU = {§ € L*(3Q)|0 > 0a.e. on 9}, forall e > 0. Then Qoul — u*
weakly in HY(Q) and hence,

ul = u* =u' weakly in H'?(3Q) and strongly in L*(9S2), (3.28)

0F — 6% weakly in H~'/2(3Q), (3.29)
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e!20% —~ 0" = 0 weakly in H'/*(8R2) strongly in L*(9R), (3.30)

1
Je(0F) — -/ lu*|? do. (3.31)
2 e

Further, u* and 6* satisfy the homogenized problem as in (3.27).

Proof. Since U is the positive cone, we have 6 = (p})~ a.e. in 2. Since 0 € U, the
convergences in (3.23), (3.24) and (3.25) are valid.
Now computing, as done in the proof of Theorem 3.2, we derive the equality

ac(uf, u) + e a. (pH) ™, (pH7) =/ fuj do, (3.32)
02
where

ag (v, w):/ A8Vv-dex+/ vw dx
Qe Qe

is the bilinear form on H'(Q,) x H'(Q,).

Since {u}} is bounded in L?(3S), we deduce from (3.32) that {Qqu}} and
{120, (p¥)~} are bounded in H'(Q). Therefore, for a subsequence, (3.28) holds and
(3.23) holds weakly in H'2(3) and strongly in L2(32) . To show 6’ = 0, we shall
show that 6 is bounded in H~12(3€2). We have for v € H'(Q),

/ 0fvdo = ap(u},v) — fvdo.
Q2 oQ

Therefore, (6, V) g-11250), H1/2(352) 1s bounded uniformly with respect to ¢ for each v,

since any ¥ € H'/2(32) can be continuously lifted toa v € H'(2). Hence 0} is bounded
in H~1/2(3Q). Thus, (3.29) holds for some 6* € H~!/2(3Q) and also " = 0. Thus we
have shown (3.30), and (3.31) follows from (3.28) and (3.30). Moreover, since 6; > 0,
we have that * > 0 in the sense of H~1/2(3).

It follows from the Hp-convergence that

(AeVur) — AgVu* weakly in (L2(Q))".

Let v € H'(). Then, by passing to the limit in

fejvdazf ASVu:-Vvdx—f-/ urvdx — fvdo
aQ Q Q. aQ

=/ (Aﬁg)-v:;dwr/ qu:)(gvdx—/ fvdo,
Q Q 0Q
we have

(0%, v) AoVu* - Vudx +f xou*vdx — fvdo

1 1 =
H 2(09Q),H2 (%) /Q Q Ple)

=/ —div(AOVu*)-Vvdx—i—/ xou v dx
Q Q

+f AoVu* -vvdo — fvdo
Q2 IR
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and hence for all v € H! (),

[ AoVu* -vvdo = (0%, v) 1 1 +/ fvdo.
IQ H 2(0R),H2(0) 90

Thus, 0* and u™* satisfy the homogenized problem as in (3.27). O

Remark 3.6. Using p} as a test function in the state equation for 1} and u as a test function
in the adjoint-state equation, for U as in Theorem 3.6, we have

/ WP do = asut, p?) = / (f +65)pf do
02 02

:/ fr¥ da—s/ (65)? do.
a2 a2

Passing to the limit as ¢ — 0, it follows that

/ u*)?do = / fp*dx. (3.33)
Q2 R

Since, we could homogenize the state equation, it follows that

o fp*do + 0%, ") -1200). H1200)

=/ AOVu*-Vp*dx—i—/ xou* p* dx
Q Q
:/ "AoVp* - vu*do

Fle}

= | @*do.
Ele}
Hence, using (3.33), we deduce that (0%, p*) y-1230) m12030) = 0 O

We now study the unconstrained control set case.
Theorem 3.7. Let U = L?(3S2). Then we have, u' =6’ = p* = 0 and
Q.u; — u* =0 strongly in HY(Q),

0* = —f,

To(0F) > 0.

Proof. Since 0 € U, the convergences in (3.23), (3.24) and (3.25) are valid. Also, by the
optimality condition, we have €6} = p¥ a.e. in 9.
The analogous equality of (3.32) will be

as (uf, u¥) + e lac (pf, pt) = / fuy do.
0

It follows from the above equality that p* = 0 and from the homogenized adjoint equation,
it follows that #’ = 0. Hence, by the above equality and (3.24), we have Q.u’ — u* =0
strongly in H'(S). Also, we have e~'/2Q, p* — 0 strongly in H'(£2) and hence, by
(3.23), 0" = 0. Thus 6* = — f and J.(6)) — 0. ad
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