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Abstract. We study the homogenization of a class of optimal control problems whose
state equations are given by second order elliptic boundary value problems with oscillat-
ing coefficients posed on perforated and non-perforated domains. We attempt to describe
the limit problem when the cost of the control is also of the same order as that describ-
ing the oscillations of the coefficients. We study the situations where the control and the
state are both defined over the entire domain or when both are defined on the boundary.
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1. Introduction

This paper discusses the asymptotic properties of some low-cost control problems with
distributed or boundary control. We consider both the perforated and non-perforated cases
of the problem. The low-cost control problems were studied by Kesavan and Saint Jean
Paulin in [7] and this paper addresses some problems left open there. A thorough study of
the low-cost problems is done in [11].

Let � be a bounded open set in R
n. Let 0 < a < b be given constants. We denote by

M(a, b,�) the set of all n×nmatrices,A = A(x), whose entries are in L∞(�) such that

a|ξ |2 ≤ A(x)ξ · ξ ≤ b|ξ |2 a.e. x ∀ξ = (ξi) ∈ R
n.

Let A ∈ M(a, b,�), U be a closed convex subset of L2(�) and let f ∈ L2(�) be a
given function. Also, let N > 0 be a given constant. The basic optimal control problem
that we consider is the following: Find θ∗ ∈ U such that

J (θ∗) = min
θ∈U

J (θ),

where the cost functional, J (θ), is defined by

J (θ) = 1

2
‖u‖2

2,� + N

2
‖θ‖2

2,� (1.1)

and the state u = u(θ) is the weak solution in H 1
0 (�) of the boundary value problem{ −div(A∇u) = f + θ, in �,

u = 0, on ∂�.
(1.2)
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It can be shown by the direct method in the calculus of variations that there is a unique
optimal control, θ∗ ∈ U , minimizing J over U (cf. Theorem 1.15 and Proposition 1.20 of
[2]).

One is interested in the situation where the matrix A and the cost of the control N (in
(1.1)) above depend on ε, a parameter which tends to zero. Such problems are called low-
cost control problems and the terminology is due to the fact that the cost of the control N
is of the order of ε that tends to zero. The notion of low-cost control was introduced by
Lions in [8]. Lions had originally called it cheap control and the current terminology was
used by Kesavan and Saint Jean Paulin in [7]. Kesavan and Saint Jean Paulin (cf. [7]) had
considered the low-cost problems when the admissible set was eitherL2(�) (unconstrained
case) or the positive cone in L2(�).

For the rest of the paper we consider, given a parameter ε > 0 which tends to zero, a
family of matrix Aε ∈ M(a, b,�).

The paper is organized as follows: In §2, we deal with an optimal control problem
involving L2-norm in the cost functional. In §2.1, we develop the preliminaries to prove
our result and we study the case of non-perforated domains in §2.2. In §3, we take up
the version of the low-cost problems in perforated domains and study situations when the
control is either from domain or from boundary.

2. Low-cost controls on non-perforated domains

We are interested in the limiting behaviour of the following optimal control problem:
Given θ ∈ U , the cost functional is defined as

Jε(θ) = 1

2
‖uε‖2

2,� + ε

2
‖θ‖2

2,�, (2.1)

where the state uε ∈ H 1
0 (�) is the weak solution of

{ −div(Aε∇uε) = f + θ, in �

uε = 0, on ∂�.
(2.2)

Thus, there exists a unique optimal control θ∗
ε ∈ U such that

Jε(θ
∗
ε ) = min

θ∈U
Jε(θ).

Let u∗
ε denote the state corresponding to θ∗

ε . We are interested in identifying the limit
problem of the above system. This problem was considered by Kesavan and Saint Jean
Paulin in [7]. Though they were unable to identify the limit system, however, they proved
the following result when the admissible control setU ⊂ L2(�) is the positive coneL2(�).

Theorem 2.1 (Theorem 2.1 of [7]). If

U = {θ ∈ L2(�)|θ ≥ 0 a.e. in �}
is the admissible control set for the system (2.1) solving (2.2), then there exists u∗ and θ∗
such that

u∗
ε ⇀ u∗ weakly in H 1

0 (�) and strongly in L2(�), (2.3)
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ε
1
2 θ∗
ε ⇀ 0 weakly in H 1

0 (�) and strongly in L2(�), (2.4)

Jε(θ
∗
ε ) → 1

2
‖u∗‖2

2,�, (2.5)

and for a subsequence, θ∗
ε ⇀ θ∗ weakly in H−1(�). (2.6)

Further, u∗ is the projection of 0 on to K̄ in L2(�), i.e., u∗ ∈ K̄ and∫
�

u∗(v − u∗) dx ≥ 0 ∀v ∈ K̄

where

K =
{
v ∈ H 1

0 (�)|
∃ a sequence vε ∈ H 1

0 (�) s.t. vε ⇀ v in H 1
0 (�),

−div(Aε∇vε) ∈ L2(�) and is ≥ f a.e. in �

}

and K̄ is the closure of K in L2(�). �

In the above theorem though the limit optimal state, u∗, was shown to satisfy a kind of
variational inequality, no relation was noted between u∗ and θ∗ and the description of the
set K is somewhat complicated. Also, the limit control θ∗ was not given as an optimal
control of a homogenized problem.

One also observes that the possible limit cost functional

J (θ) = 1

2
‖u(θ)‖2

2,�, (2.7)

may not be coercive in the weak topology of L2(�) (cf. Example 2.1). Thus J may not
have a minimiser inU . This is quite different from the case of fixed cost of the controlN in
the cost functional, since there the Jε were equi-coercive and the possible limit functional
J stayed coercive; thus admitting a minimiser. Refer [5] for the study of fixed cost case in
non-perforated domains.

Example 2.1. The cost functional J as defined in (2.7) is not coercive, in general, in the
weak topology of L2(�). We give a one-dimensional example to observe this fact. Let
� = (−1, 1). Let ρε denote the sequence of mollifiers defined as

ρε(x) =

⎧⎪⎨
⎪⎩
kε−1 exp

( −ε2

ε2 − |x|2
)
, |x| < ε

0, |x| ≥ ε

(2.8)

where k−1 = ∫
|x|≤1 exp

( −1
1−|x|2

)
dx, so that

∫ 1
−1 ρε(x) dx = 1. We now observe that

‖ρε‖2
2,(−1,1) → +∞ as ε → 0.∫ 1

−1
ρ2
ε (x) dx = k2

ε2

∫ ε

−ε
exp

( −2ε2

ε2 − |x|2
)

dx

= k2

ε2

∫ ε

−ε
exp

⎛
⎝ −2

1 − |x|2
ε2

⎞
⎠ dx.
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Putting y = x
ε

, we have

= k2

ε

∫ 1

−1
exp

( −2

1 − |y|2
)

dy → +∞ as ε → 0.

Using the mollifiers as controls we define uε as the solution of

−d2uε

dx2
= ρε in � = (−1, 1)

such that uε(−1) = uε(1) = 0. Hence

−u′
ε(x) =

∫ x

−1
ρε(y) dy − u′

ε(−1)

and |u′
ε(−1)| ≤ 1 + |u′

ε(x)|. Integrating both sides over (−1, 1), we have

2|u′
ε(−1)| ≤ 2 +

∫ 1

−1
|u′
ε(x)| dx ≤ 2 +

(∫ 1

−1
|u′
ε|2
)1/2 √

2.

By the variational formulation of the equation, we have

∫ 1

−1
|u′
ε(x)|2 dx =

∫ 1

−1
ρεuε dx ≤ ‖uε‖∞,(−1,1)

and hence

‖u′
ε‖∞,(−1,1) ≤ 1 + |u′

ε(−1)|

≤ 1 + 1 + 1√
2

(∫ 1

−1
|u′
ε|2
)1/2

≤ 2 + 1√
2
‖uε‖1/2

∞,(−1,1).

Now, since uε(x) = ∫ x
−1 u

′
ε(y) dy, we have

|uε(x)| ≤ ‖u′
ε‖∞,(−1,1)|x + 1| ≤ 2‖u′

ε‖∞,(−1,1).

Hence, ‖uε‖∞,(−1,1) ≤ 4 + √
2‖uε‖

1
2
∞,(−1,1). The (positive) root of the quadratic equa-

tion α2 − √
2α − 4 = 0 is 2

√
2 and so ‖uε‖∞,(−1,1) ≤ 8 and hence ‖uε‖2,(−1,1) =( ∫ 1

−1 u
2
ε dx

)1/2 ≤ 8
√

2. Thus, ‖uε‖2,(−1,1) is bounded while ‖ρε‖2
2,(−1,1) → ∞. Thus,

J as defined in (2.7) is not coercive in the weak topology of L2(−1, 1). �

In this paper, we settle the low-cost problem for the positive cone case which was
considered in [7] and in the following section we state the results crucial to settle our
problem.
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2.1 Data from the positive cone of H−1

In this section, we state some known results that extends the notion of H -convergence to
weakly converging data from the positive cone of H−1(�). To begin, we shall state the
Meyers’ regularity result, whose proof can be found in (page 38 of [1]) (or cf. [9]).

Theorem 2.2. Let A ∈ M(a, b,�) and u ∈ H 1
0 (�) be the solution of

{ −div(A∇u) = f, in �

u = 0, on ∂�
(2.9)

where f ∈ H−1(�). There exists a number p > 2 (which depends on a, b,� and on the
dimension n) such that if f ∈ W−1,p(�), then the solution u belongs to W 1,p

0 (�) and
satisfies

‖u‖
W

1,p
0 (�)

≤ C0‖f ‖W−1,p(�) (2.10)

(where C0 depends on the same quantities as p does). �

The highlight of the above theorem, other than the regularity aspect, is thatp andC0 will be
independent of ε, if the equation involves oscillating coefficients, say Aε ∈ M(a, b,�),
and also that the p is same for tA instead of A in the state equation above.

We now state a result proved by Murat [10].

Theorem 2.3 [10]. Let� be an open subset of R
n. Consider a sequence {gε} ⊂ H−1(�)

such that

gε ⇀ g weakly in H−1(�)

and gε ≥ 0 for all ε. Then

gε → g strongly in W−1,q
loc (�), ∀q < 2

i.e.,

φgε → φg strongly in W−1,q(�), ∀q < 2 and ∀φ ∈ D(�).
�

The following is a H -convergence result for weak data from the positive cone of
H−1(�). We now prove the theorem in a particular case. The theorem in its full generality
is stated and proved in Theorem 3.1 of [3].

Theorem 2.4. Let {Aε} be a sequence of matrices in M(a, b,�) which H -converges to
a matrix A0 and let f ∈ H−1(�). If uε ∈ H 1

0 (�) is the weak solution of

{ −div(Aε∇uε) = f + gε, in �

uε = 0, on ∂�
(2.11)
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with gε ⇀ g weakly in H−1(�) and gε’s belong to the positive cone of H−1(�). Then,

uε ⇀ u0 weakly in H 1
0 (�),

Aε∇uε ⇀ A0∇u0 weakly in (L2(�))n,

}
(2.12)

where u0 ∈ H 1
0 (�) is the unique solution of

{ −div(A0∇u0) = f + g, in �

u0 = 0, on ∂�.
(2.13)

Remark 2.1. We note that, in general, the energy functional does not converge for weakly
converging data (from the positive cone) in H−1(�), even if the coefficients are fixed, as
the following example shows. Let � = (−1, 1) ⊂ R. Define uε: � → R as

uε(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + x

ε
, if x ∈ (−1,−1 + ε2),

ε, if x ∈ [−1 + ε2, 1 − ε2],

1 − x

ε
, if x ∈ (1 − ε2, 1),

then its first derivative u′
ε is given as

u′
ε(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

ε
, if x ∈ (−1,−1 + ε2),

0, if x ∈ [−1 + ε2, 1 − ε2],

−1

ε
, if x ∈ (1 − ε2, 1).

Observe that the distribution −u′′
ε = 1

ε
(δ−1+ε2 + δ1−ε2) ≥ 0 is in the positive cone of

H−1(�) and converges weakly to 0. Also uε ∈ H 1
0 (�) and uε ⇀ 0 weakly in H 1

0 (�),
while the associated energy functional ‖u′

ε‖2
2 = 2 is a constant independent of ε. �

We now state some results which seem to be intuitively obvious but do not appear to
have been proved anywhere in the available literature. For a proof of the following results
we refer to [11].

A distribution is said to be non-negative if it takes non-negative values for all non-
negative test functions. Now, if f, g ∈ L2(�) are non-negative functions then, clearly,∫
�
fg dx ≥ 0. At this juncture one is interested to know if a similar statement is also valid

in the dual of H 1
0 (�), i.e., if w ≥ 0 in H−1(�) and v ≥ 0 in H 1

0 (�) then is it true that
〈w, v〉H−1(�),H 1

0 (�)
≥ 0? The answer is trivial to observe in the case when � = R

n than

in the case of a bounded open set in R
n.

The basic idea for the � = R
n case is that for any v ∈ H 1

0 (R
n) such that v ≥ 0 there

exists a sequence of positive test functions converging strongly to v in H 1
0 (R

n). These
positive test functions are obtained by the convolution of v with the mollifiers (cf. (2.8))
and then using the cut-off function technique to make the support compact, i.e., define
vk(x) = ζk(x)(ρεk ∗ v)(x) where the cut-off function ζk(x) = ζ(x/k) for a function
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ζ ∈ D(Rn) such that 0 ≤ ζ ≤ 1, ζ ≡ 1 on B(0, 1) and Supp(ζ ) ⊂ B(0, 2). This is a
standard technique in the theory of Sobolev spaces to prove results on the entire space R

n.
But these techniques break down when � is a bounded open subset of R

n. This difficulty
is overcome by Proposition 2.1.

One knows that H 1
0 (�) is the closure of D(�) in H 1(�). In the following proposition

we prove that for a given positive H 1
0 function we can extract a sequence of positive H 1

0
functions with compact support in � which converges to the given function in H 1

0 .

PROPOSITION 2.1

Let� ⊂ R
n be a bounded domain. Let v ∈ H 1

0 (�) and v ≥ 0. Then there exists a sequence
{ψn} ⊂ H 1

0 (�) such thatψn → v inH 1
0 (�), ψn ≥ 0 for all n andψn has compact support

in �.

Remark 2.2. In the result proved above if we chooseψn = v−(v−φ+
n )

+ then, in addition
to the properties proved above, we also have that 0 ≤ ψn ≤ v for all n. Since, v−φ+

n → 0
strongly in H 1

0 (�) we have ‖∇(v − ψn)‖2
2,� → 0 because

‖∇(v − φ+
n )

+‖2
2,� ≤ ‖∇(v − φ+

n )‖2
2,� → 0.

Hence ψn → v strongly in H 1
0 (�) and by definition 0 ≤ ψn ≤ v. �

PROPOSITION 2.2

Let� ⊂ R
n be a bounded domain. Let g ∈ H−1(�) be such that g ≥ 0 and let u ∈ H 1

0 (�)

be such that u ≥ 0 a.e. in � then 〈g, u〉 ≥ 0, where 〈·, ·〉 denotes the duality between
H−1(�) and H 1

0 (�).

We shall now prove a result which shows the equivalence of the above result to a
statement on the closure of the positive cone.

PROPOSITION 2.3

Let � ⊂ R
n be a bounded domain. The following statements are true and are equivalent:

(i) The closure of the positive cone of L2(�) inH−1(�) is the positive cone ofH−1(�).
(ii) The closure of the positive cone of D(�) in H 1

0 (�) is the positive cone of H 1
0 (�).

(iii) If g ∈ H−1(�) is such that g ≥ 0 and u ∈ H 1
0 (�) is such that u ≥ 0 a.e. in � then

〈g, u〉 ≥ 0.

2.2 The limit problem

We now completely settle the problem (2.1)–(2.2) for the positive cone case using the
machinery developed in §2.1.

Let the admissible control set U be the positive cone in L2(�), i.e.,

U = {θ ∈ L2(�)|θ ≥ 0 a.e. in �}.

We shall now introduce the adjoint problem and the optimality condition associated with
the above described system.
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The minimizer θ∗
ε is characterised by the optimality condition∫

�

(u∗
ε(uε − u∗

ε)+ εθ∗
ε (θ − θ∗

ε )) dx ≥ 0, ∀θ ∈ U (2.14)

where uε is the state corresponding to θ . We can rewrite the optimality condition as∫
�

(p∗
ε + εθ∗

ε )(θ − θ∗
ε ) dx ≥ 0 ∀θ ∈ U,

using the adjoint optimal state p∗
ε ∈ H 1

0 (�) given as the weak solution of

{ −div(tAε∇p∗
ε ) = u∗

ε , in �

p∗
ε = 0, on ∂�.

(2.15)

Now,

‖u∗
ε‖2

2,� ≤ Jε(θ
∗
ε ) ≤ Jε(θ), ∀θ ∈ U.

Therefore

‖u∗
ε‖2

2,� ≤ 1

2
‖uε‖2

2,� + ε

2
‖θ‖2

2,�

≤ 1

2
‖uε‖2

H 1
0 (�)

+ 1

2
‖θ‖2

2,�

≤ 1

2a
‖f + θ‖2

2,� + 1

2
‖θ‖2

2,�.

Thus, since {u∗
ε} is bounded in L2(�), byH -convergence, there exists a matrixA0 (called

the H -limit of {Aε}) such that{ −div(tA0∇p∗) = u∗, in �

p∗ = 0, on ∂�
(2.16)

and p∗
ε ⇀ p∗ weakly in H 1

0 (�).

Theorem 2.5. If U = {θ ∈ L2(�)|θ ≥ 0 a.e. in �} is the admissible control set for the
system (2.1) solving (2.2), then there exist u∗ and θ∗ such that

(a)

u∗
ε ⇀ u∗ weakly in H 1

0 (�) and strongly in L2(�), (2.17)

ε
1
2 θ∗
ε ⇀ 0 weakly in H 1

0 (�) and strongly in L2(�), (2.18)

Jε(θ
∗
ε ) → 1

2
‖u∗‖2

2,�, (2.19)

(b) θ∗
ε ⇀ θ∗ weakly in H−1(�) for the entire sequence.
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(c) u∗ solves{ −div(A0∇u∗) = f + θ∗, in �

u∗ = 0, on ∂�,
(2.20)

where, now, θ∗ ∈ H−1(�).
(d) θ∗ is the unique minimizer ofJ (θ) = 1

2 ‖u(θ)‖2
2,� overV, the positive cone ofH−1(�).

(e) u∗ is the projection of 0 on to K̄ ′ in L2(�), i.e., u∗ ∈ K̄ ′ and∫
�

u∗(v − u∗) dx ≥ 0 ∀v ∈ K̄ ′

where

K ′ = {v ∈ H 1
0 (�)| − div(A0∇v)− f ∈ V }.

Proof. (a) follows from Theorem 2.1. Also, (b) holds for a subsequence (cf. (2.6)) and by
Theorem 2.4 we have that u∗ is the solution of (2.20), thus proving (c).

It follows from Proposition 2.3 that V is the strong closure of U in H−1(�). Observe
that V is a closed convex subset of H−1(�). Thus, V is also the weak closure of U in
H−1(�) and hence θ∗ ∈ V . We know that

Jε(θ
∗
ε ) ≤ Jε(θ), ∀θ ∈ U. (2.21)

Therefore, passing to the limit as ε goes to 0 we have

J (θ∗) ≤ J (θ), ∀θ ∈ U
and hence

J (θ∗) ≤ J (θ), ∀θ ∈ V. (2.22)

By the strict convexity of J , θ∗ is the unique minimizer of J over V , thus proving (d). The
uniqueness of θ∗ implies (b).

Let K̄ ′ denote the closure ofK ′ inL2(�). This is then a closed convex subset of L2(�).
Observe that u∗ ∈ K ′ ⊂ K̄ ′, since θ∗ ∈ V . Let θ ∈ U and v(θ) be the solution of{ −div(A0∇v) = f + θ, in �

v = 0, on ∂�.
(2.23)

Then passing to the limit in the optimality condition (2.14) and noting that uε ⇀ v(θ) in
H 1

0 (�), we have∫
�

u∗(v(θ)− u∗) dx ≥ 0 ∀θ ∈ U.

Let v ∈ K ′ and let θ = −div(A0∇v) − f . Then there exists a sequence {θn} ⊂ U such
that θn → θ strongly inH−1(�). Let vn ∈ K ′ be the states corresponding to θn for which
the above inequality holds. Thus,∫

�

u∗(v − u∗) dx ≥ 0 ∀v ∈ K ′

and a simple density argument proves (e). �
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Remark 2.3. Since θ∗ is a unique minimizer ofJ overV , it is characterised by the condition〈
θ − θ∗, p∗〉

H−1(�),H 1
0 (�)

≥ 0 ∀θ ∈ V.

Now, by choosing θ = 0 and θ = 2θ∗, we deduce 〈θ∗, p∗〉H−1(�),H 1
0 (�)

= 0. Also, by

choosing θ = θ∗ + η, for arbitrary η ∈ V , we get 〈η, p∗〉H−1(�),H 1
0 (�)

≥ 0 implying that

p∗ ≥ 0 a.e. in �. �

Remark 2.4. We now observe that the K ′ we defined in the above theorem is same as
the K defined in Theorem 2.1, i.e., K ′ = K . Let v ∈ K . Then there exists a sequence
{vε} ⊂ H 1

0 (�) such that vε ⇀ v weakly in H 1
0 (�) and θε = −div(Aε∇vε) − f ∈ U .

Then, by Theorem 2.4, it follows that v ∈ K ′ for some θ ∈ V which comes as the weak
limit of θε in H−1(�). Thus, K ⊂ K ′. Now, let v ∈ K ′ and θ ∈ V . Then there exists a
sequence {θε} ⊂ U such that θε → θ strongly in H−1(�). Set vε to be the solution of{ −div(Aε∇vε) = f + θε, in �

vε = 0, on ∂�,
(2.24)

and thus vε ⇀ v weakly in H 1
0 (�). Hence, we have shown v ∈ K and thereforeK ′ ⊂ K .

�

Remark 2.5. The highlight of Theorem 2.5 is the result (d). We conclude that the optimal
controls θ∗

ε converge weakly in H−1(�) to θ∗ which is a unique optimal control for the
problem of minimising

J (θ) = 1

2
‖u0(θ)‖2

2,�

over the set V , the positive cone of H−1(�), where u0 ∈ H 1
0 (�) solves{ −div(A0∇u0) = f + θ, in �

u0 = 0, on ∂�.
(2.25)

Further, Jε(θ∗
ε ) → J (θ∗). This was a problem open in [7] (cf. Theorem 2.1). They were

also unable to estabilsh the relation between u∗ and θ∗. Also, the description of the setK ′
was quite complicated. �

3. Low-cost controls on perforated domains

In this section, we study the asymptotic behaviour of low-cost control problems on perfo-
rated domains.

Let � ⊂ R
n be a bounded domain and let Sε ⊂ � be a family of closed subsets (called

the ‘holes’). Let �ε = �\Sε represent the perforated domain.
Let Uε ⊂ L2(�ε), the set of admissible controls, be a closed convex set and let f ∈

L2(�) be given.
We consider the system with the cost functional similar to the one in the previous section

and see if this can be homogenized as has been done for the non-perforated case. We shall
consider the cases when both the control and state are given in the domain (cf. §3.1) and
when they are prescribed on the boundary (cf. §3.2).
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3.1 Control and state on the domain

In this section, we consider the analogue of the system (2.1)–(2.2). Before we describe
the problem, we introduce some notations required to proceed further. Let χε denote the
characteristic function of the set �ε in �,

χε(x) =
{

1, if x ∈ �ε
0, if x ∈ Sε

and let χ0 be a weak* limit of χε in L∞(�). Henceforth, we fix a (sub)sequence such that
χε ⇀ χ0 weak* in L∞(�). The extension of a function on �ε by zero on the holes of �
is denoted with a˜in the superscript. We shall now prove a result which will be useful in
the sequel.

It is easy to observe that when a sequence fε → f strongly in L2(�) then we have∫
�
χεfε dx → ∫

�
χ0f dx. We shall now prove a lemma that discusses about the L2-norm

convergence of χεfε.

Lemma 3.1. If fε → f strongly in L2(�) then ‖χεfε‖2
2,� → ∫

�
χ0f

2 dx.

Proof. Since fε → f in L2(�), we have ‖fε‖2,� → ‖f ‖2,�. Equivalently, we have
‖f 2
ε ‖1,� → ‖f 2‖1,�. Further, for a subsequence, fε(x) → f (x) pointwise a.e.. Now, it

can be shown as a consequence of Egoroff’s theorem and Fatou’s lemma (cf. Exercise 17(b),
page 73 of [12]) that f 2

ε → f 2 strongly in L1(�). Thus, we have (recall that χ2
ε = χε),

‖χεfε‖2
2,� =

∫
�

χεf
2
ε dx →

∫
�

χ0f
2 dx

using theL∞(�)weak* convergence of {χε}. Since the limit obtained above is independent
of the subsequence, the convergence occurs for the entire sequence. �

We begin by assuming the following two hypotheses:

H1. There exists, for each ε > 0, an extension operator

Pε: Vε → H 1
0 (�)

where Vε = {u ∈ H 1(�ε)|u = 0 on ∂�}, such that, for every u ∈ Vε,
Pεu|�ε = u and ‖∇Pεu‖2,� ≤ C0‖∇u‖2,�ε ,

where the constant C0 is independent of ε.

H2. Every weak* limit point in L∞(�) of {χε} is positive a.e. in �.

We say that the family of holes {Sε} is an admissible family of holes in�, if the conditions
(H1) and (H2) are satisfied. Throughout this paper Sε will denote an admissible family of
holes in �.

We now state the problem we are interested in. For a given θε ∈ Uε, the cost functional
is given by

Jε(θε) = 1

2
‖uε‖2

2,�ε + ε

2
‖θε‖2

2,�ε , (3.1)
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where the state uε = uε(θε) ∈ Vε is the weak solution of⎧⎪⎪⎨
⎪⎪⎩

−div(Aε∇uε) = f + θε, in �ε

Aε∇uε · nε = 0, on ∂Sε

uε = 0, on ∂�.

(3.2)

For u ∈ Vε, we define the norm on Vε as ‖u‖Vε = ‖∇u‖2,�ε .
The problem (3.1) solving (3.2) admits a unique optimal solution, which minimizes Jε

in Uε and is denoted by θ∗
ε . The corresponding optimal states is denoted by u∗

ε . We now
introduce the adjoint optimal state p∗

ε ∈ Vε as the weak solution of the problem⎧⎪⎪⎨
⎪⎪⎩

−div(tAε∇p∗
ε ) = u∗

ε , in �ε

tAε∇p∗
ε · nε = 0, on ∂Sε

p∗
ε = 0, on ∂�.

(3.3)

Then the optimality condition∫
�ε

[u∗
ε(uε − u∗

ε)+ εθ∗
ε (θε − θ∗

ε )] dx ≥ 0 ∀θε ∈ Uε (3.4)

can be rewritten as∫
�ε

(p∗
ε + εθ∗

ε )(θε − θ∗
ε ) dx ≥ 0 ∀θε ∈ Uε.

We observe that θ∗
ε is the projection in L2(�ε) of −p∗

ε

ε
onto Uε.

Given the hypothesis (H1) and assuming there exists, for each ε > 0, θε ∈ Uε such that
{θ̃ε} is bounded in L2(�), then we have both {χεPεu∗

ε}, {ε1/2θ̃∗
ε } bounded in L2(�), and

both {Pεuε} and {Pεp∗
ε } are bounded inH 1

0 (�). The proofs of these are easy to check and
can be found in [11]. It then follows that, up to a subsequence,

ε1/2θ̃∗
ε ⇀ θ ′ weakly in L2(�), (3.5)

χεPεu
∗
ε ⇀ u′ weakly in L2(�), (3.6)

Pεp
∗
ε ⇀ p∗ weakly in H 1

0 (�) and strongly in L2(�). (3.7)

We observe that the adjoint equation (3.3) can be rewritten in the following way:⎧⎪⎪⎨
⎪⎪⎩

−div(tAε∇p∗
ε ) = χεPεu

∗
ε , in �ε

tAε∇p∗
ε · nε = 0, on ∂Sε

p∗
ε = 0, on ∂�.

(3.8)

Thus, we can homogenize the adjoint equation (3.3) (cf. Proposition 2.1 of [6]). In other
words, by the theory of H0-convergence, there exists a matrix A0 such that (up to a
subsequence) Aε H0-converges to A0 and p∗ is the solution of{ −div(tA0∇p∗) = u′, in �

p∗ = 0, on ∂�.
(3.9)
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Let us now extend the admissible set to the space L2(�) in the following way:

Ũε = {θ̃ε ∈ L2(�)|θε ∈ Uε} ⊂ L2(�).

Theorem 3.1. LetA0 be theH0-limit of {Aε} and let the sequentialK-limit of {Ũε} in the
weak topology of L2(�) exist, denoted by U . Also let the optimal controls θ̃∗

ε converge to
θ∗ weakly in L2(�). Then θ∗ is the unique minimizer of

J (θ) = 1

2

∫
�

χ0|u|2 dx

in U, where u = u(θ) ∈ H 1
0 (�) is the weak solution of

{ −div(A0∇u) = χ0f + θ, in �

u = 0, on ∂�.
(3.10)

Further

Pεu
∗
ε ⇀ u∗ weakly in H 1

0 (�) and strongly in L2(�),

Jε(θ
∗
ε ) → J (θ∗),

u′ = χ0u
∗ and θ ′ = 0.

Proof. The fact that θ ′ = 0 follows from the weak convergence hypothesis of the optimal
controls θ∗

ε . Now, sinceU is the sequentialK-limit of {Ũε}, we have θ∗ ∈ U . Also, for any
given θ ∈ U , there exists a δ > 0 and a sequence {θε} such that θε ⇀ θ weakly in L2(�)

and θε ∈ Ũε, ∀ε < δ. Now, since θ∗
ε is the minimizer of Jε in Uε, we have, for ε < δ,

Jε(θ
∗
ε ) ≤ Jε(θε)

(we denote the restriction of θε to�ε by θε itself). Taking limit on both sides of the above
inequality, we have

lim
ε→0

1

2
[‖χεPεu∗

ε‖2
2,� + ε‖θ̃∗

ε ‖2
2,�] ≤ lim

ε→0

1

2
[‖χεPεuε‖2

2,� + ε‖θε‖2
2,�].

It now follows from the theory ofH0-convergence (cf. Proposition 2.1 of [6]) that Pεu∗
ε ⇀

u∗ andPεuε ⇀ uweakly inH 1
0 (�)where theu∗ andu are the solutions of the homogenized

problem (3.10) corresponding to θ∗ and θ , respectively. Thus, u′ = χ0u
∗. Hence, it now

follows from Lemma 3.1 that

1

2

∫
�

χ0|u∗|2 dx ≤ 1

2

∫
�

χ0|u|2 dx,

i.e. J (θ∗) ≤ J (θ). Since θ ∈ U was arbitrary, we have shown that θ∗ is the minimiser of
J over U . The uniqueness of θ∗ is proved by passing to the limit in (3.4). Observe that
(3.4) can be rewritten in the following way:∫

�

[χεPεu
∗
ε(Pεuε − Pεu

∗
ε)+ εθ̃∗

ε (θε − θ̃∗
ε )] dx ≥ 0, ∀θε ∈ Uε
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where θε is as chosen above that converges to θ weakly inL2(�). Now passing to the limit
in the above inequality, we have∫

�

χ0u
∗(u− u∗) dx ≥ 0, ∀u ∈ G(U)

whereG is the map θ �→ u, where u is the solution of (3.10). Note that, since U is closed
and convex,G(U) is a closed convex subset of L2(�) and thus we have u∗ as a projection
of 0 ontoG(U) in L2

μ(�) where dμ = χ0dx. Thus, from the uniqueness of u∗ follows the
uniqueness of θ∗. �

Remark 3.1. We observe that the optimality condition involving the adjoint state∫
�ε

(p∗
ε + εθ∗

ε )(θε − θ∗
ε ) dx ≥ 0, ∀θε ∈ Uε

can be rewritten in the following way:∫
�

(Pεp
∗
ε + εθ̃∗

ε )(θε − θ̃∗
ε ) dx ≥ 0, ∀θε ∈ Uε

and by passing to the limit, we obtain the optimality condition for the limit system∫
�

p∗(θ − θ∗) dx ≥ 0, ∀θ ∈ U

where p∗ is the solution of (3.9) with u′ = χ0u
∗. �

We observe that one is, in general, unable to verify the weak convergence hypothesis
of the optimal controls as in Theorem 3.1 for the system (3.1) solving (3.2). However, we
shall observe some trivial cases of the above mentioned system. Observe that, under the
hypothesis of Theorem 3.1, if −χ0f ∈ U then by uniqueness of θ∗, we have θ∗ = −χ0f

and u∗ = 0.

COROLLARY 3.1

Under the hypothesis of Theorem 3.1, if −χ0f /∈ U then θ∗ ∈ ∂U .

Proof. Suppose θ∗ /∈ ∂U , then for some r > 0 there exists a ball B(θ∗, r) ⊂ U . Thus,

θ∗ + tη ∈ U ∀η ∈ B(0, 1) and t < r.

Using this in the optimality condition of the limit system,∫
�

p∗(θ − θ∗) dx ≥ 0, ∀θ ∈ U

we have, ∀η ∈ B(0, 1),

t

∫
�

p∗η ≥ 0.

Hence, p∗ = 0 which in turn implies u∗ = 0 and thus θ∗ = −χ0f ∈ U , a contradiction.
Thus, θ∗ ∈ ∂U . �
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PROPOSITION 3.1

If there exists a δ > 0 such that −f ∈ Uε, ∀ε < δ, then

Pεu
∗
ε ⇀ 0 weakly in H 1

0 (�),

θ̃∗
ε ⇀ θ∗ = −χ0f weakly in L2(�),

Jε(θ
∗
ε ) → 0.

Proof. It follows from the hypothesis that Jε(θ∗
ε ) ≤ Jε(−f ), ∀ε < δ. Thus,

1

2
‖χεPεu∗

ε‖2
2,� + ε

2
‖θ̃∗
ε ‖2

2,� ≤ ε

2
‖χεf ‖2

2,�.

Hence, we deduce that χεPεu∗
ε → 0 strongly in L2(�) and θ̃∗

ε ⇀ θ∗ weakly (for a
subsequence) in L2(�). Also, we have Jε(θ∗

ε ) → 0. It now follows from the theory of
H0-convergence that Pεu∗

ε ⇀ u∗ weakly inH 1
0 (�) and hence we observe that u∗ = 0 and

θ∗ = −χ0f , also the convergence of the optimal states holds for the entire sequence. �

As we observe from the results developed so far that one lacks information on the optimal
controls when the admissible sets are arbitrary. We now consider the case of the positive
cone as the admissible set and hope to establish stronger convergence results for u∗

ε and
θ∗
ε without any hypothesis on the optimal controls.

Theorem 3.2. Let Uε = {θ ∈ L2(�ε)|θ̃ ≥ 0 a.e. in �}. Then {Pεu∗
ε} is bounded in

H 1
0 (�) and hence we have ( for a subsequence),

Pεu
∗
ε ⇀ u∗ weakly in H 1

0 (�) and strongly in L2(�), (3.11)

θ̃∗
ε ⇀ θ∗ weakly in H−1(�), (3.12)

Jε(θ
∗
ε ) → 1

2

∫
�

χ0|u∗|2 dx. (3.13)

Further u′ = χ0u
∗, θ ′ = 0 and p∗ ≥ 0.

Proof. Since Uε is the positive cone, we have εθ∗
ε = (p∗

ε )
− in �ε. Observe that εθ̃∗

ε =
χεPε(p

∗
ε )

− = χε(Pεp
∗
ε )

− in �. Since 0 ∈ Uε for all ε, the convergences in (3.5), (3.6)
and (3.7) are valid.

Using u∗
ε as a test function in the weak form of the state equation satisfied by u∗

ε , we have∫
�ε

Aε∇u∗
ε · ∇u∗

ε dx =
∫
�ε

(f + θ∗
ε )u

∗
ε dx

=
∫
�

χεf Pεu
∗
ε dx + ε−1

∫
�ε

(p∗
ε )

−u∗
ε dx.

Now using (p∗
ε )

− as a test function in the weak form of the adjoint equation (3.9), we have∫
�ε

(p∗
ε )

−u∗
ε dx =

∫
�ε

Aε∇(p∗
ε )

−.∇p∗
ε dx = −

∫
�ε

Aε∇(p∗
ε )

−.∇(p∗
ε )

− dx
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and hence we derive the equality,∫
�ε

Aε∇u∗
ε · ∇u∗

ε dx + ε−1
∫
�ε

Aε∇(p∗
ε )

−.∇(p∗
ε )

− dx =
∫
�

χεf Pεu
∗
ε dx.

(3.14)

Since {χεPεu∗
ε} is bounded in L2(�), we deduce from (3.14) that {Pεu∗

ε} and
{ε−1/2Pε(p

∗
ε )

−} are bounded in H 1
0 (�). Therefore, for a subsequence, (3.11) holds and

ε−1/2Pε(p
∗
ε )

− ⇀ q weakly in H 1
0 (�) and strongly in L2(�). (3.15)

Hence

χεPεu
∗
ε ⇀ χ0u

∗ weakly in L2(�)

and by (3.6) it follows that u′ = χ0u
∗. Also

ε−1/2χεPε(p
∗
ε )

− ⇀ χ0q weakly in L2(�)

i.e.

ε1/2θ̃∗
ε ⇀ χ0q weakly in L2(�).

Therefore, by (3.5), we have θ ′ = χ0q.
For v ∈ H 1

0 (�), consider∣∣∣∣
∫
�

θ̃∗
ε v dx

∣∣∣∣ =
∣∣∣∣
∫
�ε

θ∗
ε v dx

∣∣∣∣
=
∣∣∣∣
∫
�ε

Aε∇u∗
ε · ∇v dx −

∫
�

χεf v dx

∣∣∣∣
≤ (

b‖u∗
ε‖Vε + C0‖χεf ‖2,�

) ‖v‖H 1
0 (�)

.

Hence, it follows that {θ̃∗
ε } is bounded in H−1(�) and thus there exists a θ∗ ∈ H−1(�)

such that (3.12) holds. Consequently,

ε1/2θ̃∗
ε → 0 strongly in H−1(�)

and thus θ ′ = χ0q = 0. Now, since εθ̃∗
ε = χε(Pεp

∗
ε )

− in � we have, using (3.7)

εθ̃∗
ε ⇀ χ0(p

∗)− weakly in L2(�).

Therefore, χ0(p
∗)− = 0 which implies (p∗)− = 0 and hence p∗ ≥ 0.

It now follows from (3.11) and Lemma 3.1 that

‖u∗
ε‖2

2,�ε = ‖χεPεu∗
ε‖2

2,� →
∫
�

χ0|u∗|2 dx

and from (3.15) and Lemma 3.1 that

‖ε1/2θ̃∗
ε ‖2

2,� = ‖ε−1/2χεPε(p
∗
ε )

−‖2
2,� →

∫
�

χ0q
2 dx = 0.

Since Jε(θ∗
ε ) = 1

2

(‖u∗
ε‖2

2,�ε
+ ‖ε1/2θ̃∗

ε ‖2
2,�

)
, (3.13) holds. �
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Remark 3.2. The penultimate line in the above proof shows that, in fact, ε1/2θ̃∗
ε → 0

strongly in L2(�). Also, since θ∗ and p∗ are positive, we have 〈θ∗, p∗〉H−1(�),H 1
0 (�)

≥ 0.

On the other hand, observe that
∫
�ε
(p∗
ε + εθ∗

ε )θ
∗
ε dx = 0 and hence

∫
�ε
p∗
ε θ

∗
ε dx =

−ε‖θ∗
ε ‖2

2,�ε
≤ 0. Thus

∫
�ε
p∗
ε θ

∗
ε dx ≤ 0. But we are unable to conclude that

〈θ∗, p∗〉H−1(�),H 1
0 (�)

≤ 0, owing to the weak convergences of p∗
ε in H 1

0 (�) and θ∗
ε in

H−1(�). �

Remark 3.3. Using p∗
ε as a test function in the state equation (3.2) corresponding to θ∗

ε and
u∗
ε as a test function in the adjoint-state equation (3.3), for the case Uε as in Theorem 3.2,

we have ∫
�

χε(Pεu
∗
ε)

2 dx =
∫
�ε

(u∗
ε)

2 dx =
∫
�ε

Aε∇u∗
ε · ∇p∗

ε dx

=
∫
�ε

(f + θ∗
ε )p

∗
ε dx

=
∫
�

χεf Pεp
∗
ε dx − ε

∫
�ε

(θ∗
ε )

2 dx.

Passing to the limit as ε → 0, it follows that∫
�

χ0|u∗|2 dx =
∫
�

χ0fp
∗ dx.

This result is crucial in the sense that it hints to the fact that one can have
〈θ∗, p∗〉H−1(�),H 1

0 (�)
= 0, if one could homogenize the state equation (3.2) with the

controls θ∗
ε . �

The absence of the result equivalent to Theorem 2.4 for the Neumann boundary condition
problem hinders one from writing down the limit control problem for (3.1) solving (3.2)
as was done for the non-perforated case in §2.2, which keeps the problem still open.

Due to the nature of the problem we do not have the uniqueness characterization of θ∗,
in general. We compensate this lack by proving a uniqueness characterization of u∗.

Let us define the set

E =
{
v ∈ H 1

0 (�)|
∃vε ∈ Vε s.t. Pεvε ⇀ v in H 1

0 (�),

−div(Aε∇vε) ∈ L2(�ε) and is ≥ f a.e. in �ε

}

and let Ē, a closed convex set inL2(�), denote the norm-closure ofE inL2(�). It follows
from (3.11) that u∗ ∈ E ⊂ Ē and hence E is non-empty. Let Gε: L2(�ε) → Vε be the
map θε �→ uε where uε is the solution of (3.2).

PROPOSITION 3.2

Let Uε be as given in Theorem 3.2. Then E is the K-limit of the sets Eε = PεGε(Uε) in
the weak topology of H 1

0 (�).
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Proof.

(a) Let v ∈ E. We need to find a η > 0 and a sequence vε ⇀ v in H 1
0 (�) such that

vε ∈ Eε, ∀ε ≤ η.
Given v ∈ E, by definition of E, there exists wε ∈ Vε s.t. Pεwε ⇀ v in H 1

0 (�).
Set θε = −div(Aε∇wε) − f . Hence, by definition of E, θε ∈ Uε, ∀ε. Therefore
wε = Gε(θε). Now, choose vε = Pεwε, ∀ε. Hence our claim.

(b) Suppose vε ∈ Eε and vε ⇀ v in H 1
0 (�), then we need to show that v ∈ E.

Let vε = Pεwε wherewε ∈ Gε(Uε) ⊂ Vε. Note that, in fact,wε is vε restricted to�ε .
Also, θε = −div(Aε∇wε) − f is in Uε and hence −div(Aε∇wε) ∈ L2(�ε). Hence
our claim.

Thus, we have shown that Eε
K
⇀ E in the weak topology of H 1

0 (�). �

Remark 3.4. In the non-perforated case the above proposition reduces to saying that

Gε(U)
K
⇀ E in the weak topology of H 1

0 (�) where

U = {θ ∈ L2(�)|θ ≥ 0 a.e. in �},

E =
{
v ∈ H 1

0 (�)|
∃vε ∈ H 1

0 (�) s.t. vε ⇀ v in H 1
0 (�),

−div(Aε∇vε) ∈ L2(�) and is ≥ f a.e. in �

}

andGε: L2(�) → H 1
0 (�) is the map θε �→ uε where uε is the solution of the counterpart

of (3.2) in the non-perforated case. �

Theorem 3.3. If Uε is as in Theorem 3.2, then u∗ is the projection of 0 onto Ē in L2
μ(�)

where dμ = χ0dx. In other words,∫
�

χ0u
∗(v − u∗) dx ≥ 0, ∀v ∈ Ē.

Proof. Let v ∈ E and set θε = −div(Aε∇vε)− f . Then we have θε ∈ Uε and arguing as
in Theorem 3.2 we prove θ̃ε is bounded in H−1(�). Using this θε in (3.4) we have∫

�ε

[u∗
ε(vε − u∗

ε)+ εθ∗
ε (θε − θ∗

ε )] dx ≥ 0

i.e.
∫
�ε

u∗
εvε dx + ε

∫
�ε

θ∗
ε θε dx ≥

∫
�ε

(u∗
ε)

2 dx + ε

∫
�ε

(θ∗
ε )

2 dx,

i.e.
∫
�

χεPεu
∗
εPεvε dx + ε

∫
�

θ̃∗
ε θ̃ε dx ≥

∫
�

χε(Pεu
∗
ε)

2 dx + ε

∫
�

(θ̃∗
ε )

2 dx

whence, on passing to the limit∫
�

χ0u
∗v dx ≥

∫
�

χ0(u
∗)2 dx.

Since v ∈ E was arbitrary we have∫
�

χ0u
∗(v − u∗) dx ≥ 0, ∀v ∈ E

and by simple density argument we have the inequality for all v ∈ Ē. �
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Remark 3.5. By the uniqueness of u∗, the convergence in (3.5) and (3.11) holds for the
entire sequence and not just for a subsequence. �

Let us now consider the cases where f has a sign. If f ≤ 0 a.e. in �. Then −f ∈ Uε
(as defined in Theorem 3.2) and hence the result of Proposition 3.1 holds. Moreover,
from (3.14), we have Pεu∗

ε → 0 strongly in H 1
0 (�).

Observe that the weak maximum principle remains valid for the state equation (3.2) due
to the homogeneous Dirichlet boundary condition on ∂� and the homogeneous Neumann
boundary condition on the holes. If f ≥ 0 a.e. in � and since θ∗

ε ≥ 0 a.e. in �ε, it
follows from the weak maximum principle that u∗

ε ≥ 0 a.e. in�ε. Thus by using the weak
maximum principle for the adjoint equation (3.3), we have p∗

ε ≥ 0 a.e. in �ε and hence
θ∗
ε = 0 in �ε. Thus, θ∗ = 0 and the state equation becomes

⎧⎪⎪⎨
⎪⎪⎩

−div(Aε∇u∗
ε) = f, in �ε

Aε∇u∗
ε · nε = 0, on ∂Sε

u∗
ε = 0, on ∂�.

(3.16)

Then, by H0 convergence, it follows that u∗ is the solution of the homogenized problem

{ −div(A0∇u∗) = χ0f, in �

u∗ = 0, on ∂�.
(3.17)

Theorem 3.4. Let Uε = L2(�ε) then we have, u′ = θ ′ = p∗ = 0 and

Pεu
∗
ε → 0 strongly in H 1

0 (�),

Pεp
∗
ε → 0 strongly in H 1

0 (�),

ε1/2θ∗
ε → 0 strongly in L2(�),

θ∗
ε ⇀ θ∗ weakly in L2(�) and θ∗ = −χ0f,

Jε(θ
∗
ε ) → 0.

Proof. Since −f restricted to �ε is in Uε = L2(�ε), the results of Proposition 3.1 stays
valid. Also, the convergences (3.5), (3.6) and (3.7) remain valid. It follows from the strong
convergence of Pεu∗

ε that u′ = 0 and hence p∗ = 0. Now, since {θ∗
ε } is bounded in L2(�),

we have ε1/2θ∗
ε → 0 strongly in L2(�) and thus θ ′ = 0.

Also, from the optimality condition, we have εθ∗
ε = −p∗

ε in �ε and hence εθ̃∗
ε =

−χεPεp∗
ε in �. An argument similar to the one in Theorem 3.2 gives the equality corre-

sponding to (3.14), i.e.,∫
�ε

Aε∇u∗
ε · ∇u∗

ε dx + ε−1
∫
�ε

Aε∇p∗
ε .∇p∗

ε dx =
∫
�

χεf Pεu
∗
ε dx.

We deduce from the above equality that Pεp∗
ε → 0 and Pεu∗

ε → 0 strongly in H 1
0 (�).

�
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3.2 Control and state on boundary

In this section, we consider the case of perforated domain for the boundary control problem.
To begin we need to reformulate the notion of admissible family of holes. For this section,
the family of holes, {Sε}, is said to be admissible in � if, along with (H2), the following
is satisfied:

H3. There exists, for each ε > 0, an extension operator

Qε: H
1(�ε) → H 1(�)

such that, for every u ∈ H 1(�ε),

Qεu|�ε = u and ‖Qεu‖H 1(�) ≤ C0‖u‖H 1(�ε)

where C0 is independent of ε.

Such family of admissible holes has been considered by Hruslov in [4]. We note that the
holes allowed by (H2) and (H3) is not very different from those allowed by (H2) and (H1).
We can, in fact, construct Qε from the extension operator Pε obtained in (H1), provided
we have the following:

H4. There exists a positive constant C0 independent of ε such that for every u ∈ H 1(�ε),

‖u‖H 1/2(∂�) ≤ C0‖u‖H 1(�ε)
.

(Recall that H 1/2(∂�) is the range of the trace map γ : H 1(�) → L2(∂�).)

To see this, assume (H4). Let u ∈ H 1(�ε). Since u restricted to ∂� is in H 1/2(∂�),
there exists a v ∈ H 1(�) such that

‖v‖H 1(�) ≤ C0‖u‖H 1/2(∂�). (3.18)

Thus, u − v ∈ Vε. Then, by (H1), Pε(u − v) ∈ H 1
0 (�). Define Qεu = Pε(u − v) + v.

Then v restricted to ∂� is same asQεu restricted to ∂�, which is u restricted to ∂�. Now,
consider

‖Qεu‖H 1(�) = ‖Pε(u− v)+ v‖H 1(�)

≤ ‖Pε(u− v)‖H 1(�) + ‖v‖H 1(�)

= ‖Pε(u− v)‖H 1
0 (�)

+ ‖v‖H 1(�)

≤ C0‖u− v‖Vε + ‖v‖H 1(�)

≤ C0
(‖u‖Vε + ‖v‖Vε

)+ ‖v‖H 1(�)

≤ C0
(‖u‖Vε + ‖∇v‖2,�

)+ ‖v‖H 1(�)

≤ C0‖u‖Vε + C1‖v‖H 1(�).
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Therefore, by (3.18), we have

‖Qεu‖H 1(�) ≤ C0‖u‖Vε + C1‖u‖H 1/2(∂�)

and then by, (H4),

‖Qεu‖H 1(�) ≤ C0‖u‖Vε + C1‖u‖H 1(�ε)

≤ C2‖u‖H 1(�ε)
.

Thus, we have constructed a Qε such that (H3) is valid.
Conversely, if (H3) is valid then we always have (H4). To see this, note that for u ∈

H 1(�ε), u restricted to ∂� is same as Qεu restricted to ∂�. Now, it follows from trace
theory that, for Qεu ∈ H 1(�),

‖u‖H 1/2(∂�) ≤ C0‖Qεu‖H 1(�)

and from (H3), it follows that

‖u‖H 1/2(∂�) ≤ C0‖u‖H 1(�ε)
.

In short, for state equations with Neumann (or more general) condition on the boundary
∂� in perforated domains, the discussion above suggests that the admissible family of
holes are required to satisfy either (H2) and (H3) or, equivalently, (H1), (H2) and (H4). To
maintain consistency throughout the section, we shall work with the hypotheses (H2) and
(H3).

We now state the optimal control problem to be studied in this section. LetUε ⊂ L2(∂�)

and f ∈ L2(∂�) be given. For θε ∈ Uε, the cost functional is given by

Jε(θε) = 1

2
‖uε‖2

2,∂� + ε

2
‖θε‖2

2,∂�, (3.19)

where the state uε = uε(θε) in H 1(�ε) is the unique solution of⎧⎪⎪⎨
⎪⎪⎩

−div(Aε∇uε)+ uε = 0, in �ε

Aε∇uε · nε = 0, on ∂Sε

Aε∇uε · ν = f + θε, on ∂�

. (3.20)

nε and ν are the unit outward normal on ∂Sε and ∂�, respectively.
As usual, (3.19) and (3.20) admit a unique optimal solution, which minimizes Jε in

Uε and is denoted by θ∗
ε . The corresponding optimal states are denoted by u∗

ε . Also, the
adjoint optimal state p∗

ε ∈ H 1(�ε) is given as the weak solution of the problem⎧⎪⎪⎨
⎪⎪⎩

−div(tAε∇p∗
ε )+ p∗

ε = 0, in �ε

tAε∇p∗
ε · nε = 0, on ∂Sε

tAε∇p∗
ε · ν = u∗

ε , on ∂�

. (3.21)

Then the optimality condition∫
∂�

[u∗
ε(uε − u∗

ε)+ εθ∗
ε (θε − θ∗

ε )] dσ ≥ 0 ∀θε ∈ Uε (3.22)
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can be rewritten as∫
∂�

(p∗
ε + εθ∗

ε )(θε − θ∗
ε ) dσ ≥ 0 ∀θε ∈ Uε

and hence εθ∗
ε is the projection in L2(∂�) of −p∗

ε onto Uε.
Assume that there exists a sequence θε ∈ Uε such that {θε} is bounded in L2(∂�). We

can then show that (cf. [11]) {u∗
ε} and {ε1/2θ∗

ε } are bounded in L2(∂�) and, {Qεuε(θε)}
and {Qεp

∗
ε } are bounded in H 1(�). It then follows that, up to a subsequence,

ε1/2θ∗
ε ⇀ θ ′ weakly in L2(∂�), (3.23)

u∗
ε ⇀ u′ weakly in L2(∂�), (3.24)

Qεp
∗
ε ⇀ p∗ weakly in H 1(�) and hence we have

p∗
ε ⇀ p∗ weakly in H 1/2(∂�) and strongly in L2(∂�). (3.25)

We can homogenize the adjoint-state equation (3.21) (cf. Proposition 2.1 of [6]) and, by
the theory of H0 convergence, there exists a matrix A0 such that Aε H0-converges to A0
and p∗ is the solution of{ −div(tA0∇p∗)+ χ0p

∗ = 0, in �

tA0∇p∗ · ν = u′, on ∂�
. (3.26)

A proof analogous to that of Theorem 3.1 will prove the following theorem.

Theorem 3.5. LetA0 be theH0-limit of {Aε} and let the sequentialK-limit of {Uε} in the
weak topology of L2(∂�) exist, denoted by U . Also let the optimal controls θ∗

ε converge
to θ∗ weakly in L2(∂�). Then θ∗ is the unique minimizer of

J (θ) = 1

2

∫
∂�

u2 dσ

in U, where u = u(θ) ∈ H 1(�) is the weak solution of{ −div(A0∇u)+ χ0u = 0, in �

A0∇u · ν = f + θ, on ∂�.
(3.27)

Further u′ = u∗ and θ ′ = 0.

We now establish stronger convergence results for u∗
ε and θ∗

ε and homogenize the system
when the admissible control set is the positive cone of L2(∂�).

Theorem 3.6. LetU = {θ ∈ L2(∂�)|θ ≥ 0 a.e. on ∂�}, for all ε > 0. ThenQεu
∗
ε ⇀ u∗

weakly in H 1(�) and hence,

u∗
ε ⇀ u∗ = u′ weakly in H 1/2(∂�) and strongly in L2(∂�), (3.28)

θ∗
ε ⇀ θ∗ weakly in H−1/2(∂�), (3.29)
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ε1/2θ∗
ε ⇀ θ ′ = 0 weakly in H 1/2(∂�) strongly in L2(∂�), (3.30)

Jε(θ
∗
ε ) → 1

2

∫
∂�

|u∗|2 dσ. (3.31)

Further, u∗ and θ∗ satisfy the homogenized problem as in (3.27).

Proof. Since U is the positive cone, we have εθ∗
ε = (p∗

ε )
− a.e. in ∂�. Since 0 ∈ U , the

convergences in (3.23), (3.24) and (3.25) are valid.
Now computing, as done in the proof of Theorem 3.2, we derive the equality

aε(u
∗
ε , u

∗
ε)+ ε−1aε((p

∗
ε )

−, (p∗
ε )

−) =
∫
∂�

f u∗
ε dσ, (3.32)

where

aε(v,w) =
∫
�ε

Aε∇v · ∇w dx +
∫
�ε

vw dx

is the bilinear form on H 1(�ε)×H 1(�ε).
Since {u∗

ε} is bounded in L2(∂�) , we deduce from (3.32) that {Qεu
∗
ε} and

{ε−1/2Qε(p
∗
ε )

−} are bounded in H 1(�). Therefore, for a subsequence, (3.28) holds and
(3.23) holds weakly in H 1/2(∂�) and strongly in L2(∂�) . To show θ ′ = 0, we shall
show that θ∗

ε is bounded in H−1/2(∂�). We have for v ∈ H 1(�),∫
∂�

θ∗
ε v dσ = aε(u

∗
ε , v)−

∫
∂�

f v dσ.

Therefore, (θ∗
ε , ψ)H−1/2(∂�),H 1/2(∂�) is bounded uniformly with respect to ε for each ψ ,

since anyψ ∈ H 1/2(∂�) can be continuously lifted to a v ∈ H 1(�). Hence θ∗
ε is bounded

in H−1/2(∂�). Thus, (3.29) holds for some θ∗ ∈ H−1/2(∂�) and also θ ′ = 0. Thus we
have shown (3.30), and (3.31) follows from (3.28) and (3.30). Moreover, since θ∗

ε ≥ 0,
we have that θ∗ ≥ 0 in the sense of H−1/2(∂�).

It follows from the H0-convergence that

˜(Aε∇u∗
ε) ⇀ A0∇u∗ weakly in (L2(�))n.

Let v ∈ H 1(�). Then, by passing to the limit in∫
∂�

θ∗
ε v dσ =

∫
�ε

Aε∇u∗
ε · ∇v dx +

∫
�ε

u∗
εv dx −

∫
∂�

f v dσ

=
∫
�

˜(Aε∇u∗
ε) · ∇v dx +

∫
�

Qεu
∗
εχεv dx −

∫
∂�

f v dσ,

we have

〈θ∗, v〉
H

− 1
2 (∂�),H

1
2 (∂�)

=
∫
�

A0∇u∗ · ∇v dx +
∫
�

χ0u
∗v dx −

∫
∂�

f v dσ

=
∫
�

−div(A0∇u∗) · ∇v dx +
∫
�

χ0u
∗v dx

+
∫
∂�

A0∇u∗ · ν v dσ −
∫
∂�

f v dσ
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and hence for all v ∈ H 1(�),∫
∂�

A0∇u∗ · ν v dσ = 〈θ∗, v〉
H

− 1
2 (∂�),H

1
2 (∂�)

+
∫
∂�

f v dσ.

Thus, θ∗ and u∗ satisfy the homogenized problem as in (3.27). �

Remark 3.6. Usingp∗
ε as a test function in the state equation for u∗

ε and u∗
ε as a test function

in the adjoint-state equation, for U as in Theorem 3.6, we have∫
∂�

(u∗
ε)

2 dσ = aε(u
∗
ε , p

∗
ε ) =

∫
∂�

(f + θ∗
ε )p

∗
ε dσ

=
∫
∂�

fp∗
ε dσ − ε

∫
∂�

(θ∗
ε )

2 dσ.

Passing to the limit as ε → 0, it follows that∫
∂�

(u∗)2 dσ =
∫
∂�

fp∗ dx. (3.33)

Since, we could homogenize the state equation, it follows that∫
∂�

fp∗ dσ + 〈θ∗, p∗〉H−1/2(∂�),H 1/2(∂�)

=
∫
�

A0∇u∗ · ∇p∗ dx +
∫
�

χ0u
∗p∗ dx

=
∫
∂�

tA0∇p∗ · ν u∗ dσ

=
∫
∂�

(u∗)2 dσ.

Hence, using (3.33), we deduce that 〈θ∗, p∗〉H−1/2(∂�),H 1/2(∂�) = 0. �

We now study the unconstrained control set case.

Theorem 3.7. Let U = L2(∂�). Then we have, u′ = θ ′ = p∗ = 0 and

Qεu
∗
ε → u∗ = 0 strongly in H 1(�),

θ∗ = −f,

Jε(θ
∗
ε ) → 0.

Proof. Since 0 ∈ U , the convergences in (3.23), (3.24) and (3.25) are valid. Also, by the
optimality condition, we have εθ∗

ε = p∗
ε a.e. in ∂�.

The analogous equality of (3.32) will be

aε(u
∗
ε , u

∗
ε)+ ε−1aε(p

∗
ε , p

∗
ε ) =

∫
∂�

f u∗
ε dσ.

It follows from the above equality thatp∗ = 0 and from the homogenized adjoint equation,
it follows that u′ = 0. Hence, by the above equality and (3.24), we have Qεu

∗
ε → u∗ = 0

strongly in H 1(�). Also, we have ε−1/2Qεp
∗
ε → 0 strongly in H 1(�) and hence, by

(3.23), θ ′ = 0. Thus θ∗ = −f and Jε(θ∗
ε ) → 0. �
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