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Abstract-—This paper presents a refined higher-order theory for free vibration analysis of unsymmetrically
laminated multilayered plates. The theory accounts for parabolic distribution of the transverse shear
strains through the thickness of the plate and rotary inertia effects. A simple C? finite element formulation
is presented and the nine-noded Lagrangian element is chosen with seven degrees of freedom per node.
Numerical results are presented showing the parametric effects of aspect ratio, length/thickness ratio,
number of layers, and lamination angle. The present theory predicts the frequencies more accurately when
compared with first-order and classical plate theories.

INTRODUCTION

With the increase in the usage of multilayered struc-
tures in the field of structural engineering, the
search for various methods for studying the dynamic
behaviour of these structures has gained momentum.
A great variety of shear deformation theories have
been proposed and some are reviewed in [1]. They
range from the first such theory by Yang et al 2}
for laminated anisotropic plates to various effective
stiffness theories such as those discussed by Sun
and Whitney [3], Whitney and Sun’s higher-order
theory [4] and the three-dimensional elasticity theory
approach of Srinivas et al.[5,6] and Noor|[7].
Fortier and Rossettos [8] analysed free vibration of
thick rectangular plates of unsymmetric cross-ply
construction, while Sinha and Rath[9] considered
both vibration and buckling for the same type of
plates. Bert and Chen [10] presented a closed form
solution for free vibration of anti-symmetric angle-
ply laminates using the theory of Yang ef al. [2].

While considerabie effort has been expended in the
finite element vibration analysis of isotropic plates,
only limited investigations of laminated anisotropic
plates can be found in the literature {11, 12, 19]. In
recent years, many refined plate theories have been
presented to improve the static {13-16] and the dy-
namic [17-21] themes of laminated construction. The
present paper attempts to provide a simple refined
higher-order theory with a C° finite element formula-
tion. With the simplicity of this model, economic
solutions can be obtained for both symmetric and
anti-symmetric multi-layered composite and sand-
wich plates. A special mass matrix diagonalization
scheme is adopted which conserves the total mass of
the element and includes the effects due to rotary
inertia terms.

GOVERNING EQUATIONS

In this section, a brief presentation of the govern-
ing equations of motion corresponding to the present
shear deformation theory is given. The matrix
equation governing free vibrations may be expressed
as

Kd — 0’Mid =0, (ia)
where K and M are the global stiffness and mass
matrices respectively (obtained by the assembly of
the corresponding element matrices), d is the vector
of global nodal displacements and w is the natural
frequency of free vibration of the system. For the
purpose of evaluation, eqn (1a) is converted to the
standard eigenvalue format,

XK~-iAMMd=0 withl=02 (1b)
A subspace iteration technique [23] is used to obtain
the eigenvalues 4, and the corresponding eigen-
vectors d,.

A Cartesian co-ordinate system (x,y,z) is con-
sidered. The total thickness of plate (hy, A, A,
etc., are the individual thicknesses in the case of a
layered plate) is assumed to be 4; g and b are assumed
to be the length and width of the plate. The compo-

nents of displacements are taken as follows (see
Fig. 1):

u(x, y, 2, t) = u(x, 3, ) + 29,(%, 3, ) + 229 2(x, 3, 1)
U(x, Y 2 t) = ”o(x,y, t) + Z‘fly(x;}’; t) + 23'#?(13 Vs t)

w(x, ¥, 2, 1) = wy(x, y, 1). (2)
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{1,2,3 )~ LAMINA REFERENCE AXES
Y

¥x LAMINATE MID-PLANE

{x,y,2) — LAMINATE REFERENCE AXES

Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes, displacement components
and fibre orientation.

In these equations, u,»,w are the displacement _ % S w
components of a generic point in plate space in T =\ ¥y + dy +23¥3)
the x-, y-, z-directions, respectively; u,, v, are the

in-plane (stretching) displacements of a point lying in ow
the middle plane, and ¢, and ¥, are the normal yn=(./,x+3.‘l)+z2(3w:). )]
rotations about the y and x axes respectively. X

The higher-order terms y ¥ and ¢ account for the

flexural mode of deformation in the Taylor series Owing to the existence of a plane of elastic symmetry,

expansion and are also defined at the midplane. the constitutive relations for any layer in the (x, y)
The strain—displacement relations, using the above  system are of the form

displacement forms, may be written as

auﬂ an a‘p x 0= Q“‘X + any + Ql!‘yxy

=TT T

0, = Q1s6, + One, + Oy
€, = % + z.% + 23 M
Y
5}’ ay ay Tay = Qliex + Q23€y + Q!J'yxy
=0
2 Ty = Qui¥y: + Qus¥x

_ (%40 Ot O O\, fOWE )
)’xy B (ay + ax )+z< ay + ax 2 ay + ax Tux = Q45')’yz + QSSsz’ (48)




where

Q” = C“C‘ + 2(C12 + 2C33)5202 + C:zzs4
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Qi =(Cyy + Cyy — 4C3p)5%ct + Cpy(s* + ¢

in which
Ci=rot—y Cpm 2,
1 —vpvy 1 — vy
Cu=Gy Cu=Gy; Cs5=Gy.

Qn = Cp5* +2(Cjy + 2C3p)s%c? + Cyet

Q13 =(Cy; — C;; — 2Ce)sc?
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E,
4
1 =¥y

(40)

We have the following definitions for stress-resultant

+(Ci2— Cyy + 2Cge)s’c

Qx5 =(Ciy— C, — 2Cy)s’c

tion theory:
N, M,
N,V ? M,V ’
ny b Mxy s

+(Cy; — Cp+ 2Cyy)sc?

Q1 =(Cy; + C;; — 2C,; — 2Cy)s%c?

+ Ces(s* + ¢%)

Qu = Cac? + Cyss?

Qus = (Css — Cy)sc

Qss = Cys? + Cysc?, (4b)
rNx I_Qqu OnH, QuH, QuH, Q,H, QuH, Q,H,
N, OnH, QOnH, QuH, QnpH, OnH, QH,
N, O:H, QuH, OxH, QuH, QH,
M, QuH; Q,H, QuH, Q,H;
My =2 szHs 0xH, Q1.H;
L=
M, SYMMETRIC 0uH, Q:H,
M2 ouf,
M}
M3
L d L
o, OsH, QuH, QsH; QuH,
o, =i QuH, QuH, QuH,
or| QssH; QusH,
oy SYMMETRIC QuH;

CAS 32/5—M

M}
My
M3,

expressions appropriate to the present shear deforma-

n AL 41 o,
—LEIJ;,_ o, (l’z’za)dz (58)

2., 0r|_+
[Qy, Qy‘]_;.:l

Substituting eqns (4) in eqns (5) and integrating with

T

hy,
A

& =Dt

Q12H4

Q22H 4

Q23H 4

0,

Q22H 5

O H;

Q..H,

Q22H 7

Q,,H,

Q23H 4

QH,

QIJHS

QZSH 5

QJSHS

Qi:H,

Q23H 7

xy.

W,

oy

O, ]

w:: + awﬂ/ax
wy + aWo/ay

0
3y

L oy

(1,29 dz.  (5b)

+1 tx
T

respect to z we obtain the stress-resultants expressed
in terms of seven generalized displacements as

(62)
oy ]
oy
%
oy

2,
dy ox
oW,
ox
Ny
dy
o,
oy  ox
oy

0x
42
oy
oy
* ox ]
(6b)

(6c)
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In the above relations, # is the number of layers and

1 ,
Hc=';(hil.+l~h!£.)!;= l! 23 3s 43 5: 1. (Gd)

ELEMENT STIFFNESS MATRIX

In the present paper, the element under consider-
ation is a nine-noded Lagrangian quadrilateral iso-
parametric element. At any point, the continuum
displacement vector within the element is discretized
such that

NN
§=3 Né, (7a)
i=1

where N, is the shape function associated with node
i, NN is the number of nodes in an element, and

0; = [tos, g Wors Vi ',’yh l/l:n w;'i d (7b)
The generalized strain € at any point within an

element can be expressed by the following relation-
ship:

(8a)

where
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from a consistent mass matrix and is discussed else-
where [20-22].
The mass M in eqn (1) is given by

M= j N'mN d(Area), (102)
A
where
N={N;,N2,N3,...,NNN}, (IGb)
- I .
I
m= & (100)
0 L
I
L I |
in which
7 AL +1
0L, L)y=73 J (1, 2% z%p" dz,
L=1Jh;

where p’ is the material density of the Lth layer; I, I,
and I, are normal inertia, rotary inertia and higher-
order inertia terms respectively.

avO a'l’x a"’y 6%

. auo 600 6uo o,
€= ox ox’ dy’

ax’ ay ay ox’ ox

o0, W2y e
dy ' ay

SR ,wy+a—wf,3w:,3w;]r. (8b)
oy

Elements of non-zero terms of strain~displacement
matrix B are given below:

ON,
Bl! "BJZ"B44"‘865_376_B97""8103_E

310,4 = Bu.s =N,

N,
32,2=le Bss-* BG4 Bs7v896-3113 _a_y
By =By3;=3N, (8c)

Upon evaluating the D and B, matrices as given by
eqns (6) and (8) respectively, the element stiffness
matrix can be readily computed using the standard
relation

J j TDB,|J } d¢ dn, &)
where J is the Jacobian matrix.

ELEMENT MASS MATRIX

A diagonal mass matrix is more sophisticated
than a lumped mass matrix as used here. It is derived

NUMERICAL EXAMPLES AND DISCUSSIONS

For the numerical computations, two computer
programs were developed: PHOST7—Program for
Higher Order Shear deformation Theory, with seven
degrees of freedom per node; and PFOSTS—
Program for First Order Shear deformation Theory,
with five degrees of freedom per node (i.e. Mindlin-
Reissner theory). The selective integration scheme
based on Gauss-quadrature rules, viz. 3x3 for
membrane, coupling, flexure and inertia terms and
2 x 2 for shear terms, was employed. For all the
numerical examples, a full plate is discretized with
4 x 4 mesh of the nine-noded Lagrangian quadri-
lateral elements. All the computations were carried
out on CYBER 180/840 computer in single precision.
The following material properties are used in the
examples.

Material 1: Dimensionless material property (typical
of graphite/epoxy)

Eiog, G200 _g4 O

E, E, E E -0

= 0.25.

The values of E, and p are arbitrary because of the
non-dimensionalization used (set to unity here).
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Material 2: Face-sheets (graphite/epoxy prepreg
system):

E, = 1308 x 10’ Njem?, E, = 1.06 x 106 N/em?
Gn = Gl3 =6.0 x 105 N/clnz, 623 =39 x 105 N/cm2
p = 1.58 x 1073 N-sec’/cm*, v,; =0.28

thickness of each top stiff layer =0.0254
thickness of each bottom stiff layer = 0.01825 A.

Core (U.S. commercial aluminium honeycomb 1/4-
inch cell size, 0.003-in. foil):

Gy = 1.772 x 10* Njem?, G, = 5.206 x 10* N/cm?
p = 1.009 x 10~% N-sec*/cm*
thickness of core = 0.6 h.

The boundary conditions used for the simply sup-
ported and clamped plates are as follows:

1. (a) Cross-ply boundary conditions (WSS1)
=wy=0,=0r=0 atx=0,a
Ug=wy=0,=02=0 aty=0,b.

(b) Angle-ply boundary conditions (WSS2)
Uy=wy=0,=0r=0 atx=0,q

Vo=wy=0,=0%¥=0 aty=0,b.
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2. Clamped plate (WCC)
Uy=vy=wy=0,=0,=0F=0}=00n all edges.

The results presented in Tables 1-4 pertain to
material 1. The effects of orthotropy, number of
layers and the coupling between bending and stretch-
ing of the skew—symmetric laminate on the funda-
mental frequencies are shown in Table 1. The ratio of
E\/E, was varied between 3 and 40 and number of
layers varied between two and 10. The predictions in
Table 1 are compared with those obtained by 3D
elasticity theory [7]. The present results are very close
to 3D-elasticity solutions. It was also found that for
skew-symmetrically laminated plates, as the number
of layers increased from two to four, the accuracy of
the CPT sharply deteriorated. Further increase of the
number of layers does not have a significant effect on
the accuracy. The error in the CPT predictions is
mainly attributed to the neglect of shear deformation.
This is demonstrated by the fact that the error in
the predictions of present theory did not exceed
2.5% (even for the case of a highly orthotropic thick
plate with E,/E,=40,a/h =5). It is seen that the
fundamental frequency increases with the increase
in number of layers and/or increase of degree of
orthotropy.

Two problems are further considered with
material 1: (1) a two-layer, equal thickness, anti-
symmetric angle-ply (45°/ — 45°) square plate, (2) an
eight-layer, equal thickness, antisymmetric angle-ply
(45°/ — 45°/45° . . ) square plate. The smallest circu-
lar frequencies as a function of plate side-to-thickness
ratios are tabulated in Table 2. The CPT solution is
obtained with the rotary inertia terms included. It
is found that the results of the present higher-order

Table 1. Effect of degree of orthotropy of individual layers on the fundamental frequency of simply supported
square multilayered composite plates with a/h = 5; @ = w(ph?/E,)'?, material 1 (WSS1)

E\/E,
No. of
Source layers 3 10 20 30 40
3D elasticity theory (7] 2 0.25031 0.27938 0.30698 0.32705 0.34250
Present 0.24909 0.27981 0.31252 0.33414 0.35138
(—048) (+0.15) (+1.80) (+2.16) (+2.59)
CPT 0.27082 0.30968 0.35422 0.39335 0.42884
(+8.19) (+10.84) (+15.38) (+20.27) (+25.21)
3D elasticity theory (7] 4 0.26182 0.32578 0.37622 0.40660 0.42719
Present 0.26055 0.32870 0.38014 0.41247 0.43786
(—0.48) (+0.89) (+1.04) (+1.49) (+2.49)
CPT 0.28676 0.38877 0.49907 0.58900 0.66690
(+9.52) (19.33) (+32.65) (+44.86) (+56.11)
3D elasticity theory [7} 6 0.26440 0.33657 0.39359 0.42783 0.45091
Present 0.26275 0.33712 0.39784 0.43526 0.46090
(—0.62) (+1.16) (+1.07) (+1.73) (+221)
CPT 0.28966 0.40215 0.52234 0.61963 0.70359
(+9.55) (+19.48) (+32.71) (+44.83) (+56.03)
3D elasticity theory [7] 10 0.26583 0.34250 0.40337 0.44011 0.46498
Present 0.26389 0.34142 0.40377 0.44178 0.46771
(-0.72) (—-0.31) (+0.09) (+0.37) (+0.58)
CPT 0.29115 0.40888 0.53397 0.63489 0.72184
(+9.52) (+19.38) (+3237) (+44.25) (+55.24)

Values in parenthesis give percentage errors with respect to the elasticity solution [7].
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Table 2. Non-dimensionalized fundamental frequencies, @ =(wa2/h)J(p/Ez) of simply supported
anti-symmetric angle-ply square plates (WSS2), material 1

[45/—45] {45/ —45/.conereennn. ] 8-layer
Closed form Closed form

ajh  Present HOST solution {17} CPT Present HOST solution [17] CPT
5 10.692 10.840 13.885 12.967 12,972 15.708

(—1.36) (+28.09) (—0.038) (+21.09)
10 13.207 13.263 14.439 19.274 19.266 25.052

(—0.42) (+8.86) (—0.041) (30.03)
20 14.228 14.246 14.587 23.236 23.239 25212

(~0.12) (+2.39) {~0.012) (+8.49)
50 14.568 14.572 14.630 24.901 24.905 25.258

{(~0.027) (+0.39) (—-0.016) (+141)
100 14.619 14.621 14.636 25.173 25.174 25.264

(~0.013) (+0.102) (—0.004) (+0.35)

Values in brackets give percentage errors with respect to the closed form solution [17].

Table 3. Dimensionless fundamental frequencies, & = wa’(p/E;#*}'?, for various longitudinal and transverse
wave numbers (i and n) of a simply supported square plate; a/h = 10, material [ stacking sequence:
45/ — 45/45/ — 45, WSS2

Reddy [12)
Half-plate Half-plate  Half-plate  Classical
Present Present Bert and 2x2 2x2 4x2 plate
m n HOST FOST Chen [10] NDF =5 NDF =3 NDF =3 theory
1 1 18.32 18.45 18.46 18.259 19.244 19.153 23.53
1 2 34.54 34.54 34.87 35.585 36.512 35.405 53.74
2 2 49.71 49.99 50.52 —_ — — 94.11
1 3 53.63 53.87 54.27 54.367 55.727 55.390 98.87
2 3 65.02 65.08 67.17 70.315 70.895 67.637 147.65
i 4 75.65 75.25 75.28 79.315 79.882 76.412 160.35
3 3 83.14 81.99 82.84 99.597 100.012 84.725 21175
2 4 86.75 85.05 85.27 — —— — 21497
1 5 99.45 98.46 97.56 108.665 109.792 105.057 238.72
3 4 100.88 99.45 99.02 — 182.255 109.292 288.76
2 5 103.28 100.22 104.95 — 226.432 116.385 297.30

shear—deformation theory (HOST) are in excellent
agreement with the closed form solution (CFS)
[17]. 1t is obvious that the CPT overestimates the
frequencies.

A comparison of the effects of both the longi-
tudinal and transverse wave numbers (m and n) on

Table 4. Effects of plate aspect ratio (a/b), lamination angle

and length-to-thickness ratio (a/4) on the dimension-

less fundamental frequency, & = (ph*E;)"? x 10, of a

simply supported rectangular plate (material 1) of stacking
sequence (0/—-8/6/—0)

a alb

ho 9 05 10 20 4.0
30 37448 48554 7.5261 153144

5< 45 34594 50178 8.5404  17.0529
60 29357 48554 89875 116581
30 12829 17513 29357 61819

104 45 L1501 18326 34594  7.5371
60 09376 17513 37448 59289
30 03646 05165 09376  2.1461

204 45 03213 05450 11501 28785
60 02563 05165 12829 29793
30 00609 00877 0.1660 04121

504 45 00533 00928 02088  0.5962
60 00422 00877 02376  0.7621

the associated frequencies, as predicted by the present
HOST and FOST with the CFS{10] and finite ele-
ment results using FOST [12] and CPT, is made in
Table 3. Just as in the cases of isotropic plates and
cross-ply plates [24], it is seen that the difference
between the predictions of the present theories
(HOST and FOST) and CPT increases with increas-
ing m and n. Results of the present HOST and FOST
are very close to CFS[10], whereas FOST finite
element results using an eight-noded serendipity
element given by Reddy [12] are far away from the
CFS[10]. This could be due to analysing angle-ply
laminate by discretizing quarter- and/or half-plates.
It should be noted that no mirror image of the
cross-sectional plane of symmetry exists for angie-ply
laminates and thus a full plate should be discretized
for the analysis.

To facilitate extrapolation to aspect ratio (a/b)
other than one or infinity, Table 4 presents dimen-
sionless frequency as a function of a/b for various
values of a/h and lamination angle. It is observed
from the table that the fundamental frequencies
decrease with the increase in lamination angle for
a/b = 0.5, and for a/b = 2.0 frequencies increase with
the increase in the lamination angle. As the a/A ratio
increases, the fundamental frequency decreases.



b =100 cm)

Table 5. Comparison of natural frequencies (w/2n) of an eight-layer (0/45/90/core/90/45/30/0) square composite-sandwich plate (material 2, a

Neglecting Gy; and G; of stiff layers

Simply supported (WSS2)

afh = 10

HOST FOST HOST FOST HOST FOST HOST FOST HOST FOST HOST FOST HOST FOST

Considering G,, and G,; of stiff layers

Clamped (WCC)

Clamped (WCC)

ajh =10

Simply supported (WSS2)

alh = 100
HOST FOST

ath =10

alh = 100 afh = 100

afh =100

alh =10

Modal
nos
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98
176
216
268
314
374
411
432

98
177
216
269
320
330
411
445

33
446
586
595
666
674
630
750

341
470
607
628
691
735
737
792

58
123
150
201
243
297
309
357

58
123
150
202
246
299
309
359

297
430
579
582
656
673
678
744

305
452
580
619
673
731
737
780

102
192
231
296
378
462
531

102
192
231
295
375
440 444
459
526

754
1244
1382
1706
1961
2150
2173
2222

1664

686
1093
1238
1508
1825
1916
1921

59

127
154
211
265
322
327
389

59
127
154
210
265
321
326
387

516
1013
1154
1501
1773
1993
2042
2173

485

926
1063
1355
1531
1747
1781
1791

In the last example, thick and thin composite-
sandwich plates (material 2) were analysed using
present HOST and FOST for two different boundary
conditions: simply supported and clamped. It is seen
from Table § that for a thick plate (a/h = 10), the
difference between the predictions of the two theories
(HOST and FOST) increases with increasing mode
numbers. The effect of shear modulii G,; and G,; of
stiff layers are more pronounced in thicker plates
than for thin plates.

CONCLUSION

A refined higher-order theory with simple C° finite
element formulation for the vibration of anisotropic
laminates is presented. This model can take into
account any lamina material properties. The predic-
tions of anisotropic laminated plate behaviour are in
good agreement with 3D elasticity solutions and
closed form solutions of a higher-order theory. The
effects of plate aspect ratio on the fundamental
frequencies and transverse shear moduli of stiff layers
on the natural frequencies are more pronounced in
thicker plates than in thin plates. The errors in CPT
and FOST as compared with HOST increase very
severely with an increase in either the longitudinal or
the transverse wave numbers. The present theory
does not require any shear correction coefficients and
the results reaffirm that the effects of anisotropy,
transverse shear deformation, thickness and plate
aspect ratio play an important role in the free vibra-
tion frequencies of anisotropic laminates.
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