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Study of quantum current enhancement, eigenenergy spectra and magnetic moments

in a multiply connected system at equilibrium
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A multiply connected system in both its open and closed form variations but in equilibrium is
studied using quantum waveguide theory. The system exhibits remarkable features, in its open form
variation we see current enhancement, hitherto seen only in non-equilibrium systems in absence of
magnetic flux. In its closed form analog parity effects are broken. Further we analyse the global
and local current densities of our system and also show that the orbital magnetic response of the
system calculated from the current densities (and inherently linked to the topological configuration)
is qualitatively not same as that calculated from the eigenenergy spectra.

PACS numbers: 73.23.-b, 05.60.Gg, 72.10.Bg, 72.25.-b

Mesoscopic systems are those whose dimensions lie be-
tween the macroscopic and the atomic scale. Typically
the system sizes are in the nano-range. Thus, meso-
scopic physics addresses fundamental problems which oc-
cur when a macroscopic object is miniaturized. Over the
past decade, research into the electrical transport prop-
erties of mesoscopic systems has provided insight into
fundamental questions in physics especially the role of
quantum fluctuations, quantum mechanics of interacting
electrons, the quantum classical crossover, and the grad-
ual buildup of macroscopic classical behavior. In these
systems electron retains its quantum coherence over the
entire sample and thus classical laws which hold in the
macroscopic regime breakdown1,2,3,4. Some of them be-
ing breakdown of classical Ohm’s law, sample specific
resistance and its fluctuations, quantization of point con-
tact conductance, breakdown of Onsager’s reciprocity re-
lations, etc.

If the system dimensions are less than the electron
phase relaxation length then electron retains its phase
coherence and scattering in the sample is only elastic, in-
deed electronic motion in such systems is not unlike light
propagation in waveguide structures and Fabry-Perot in-
terferometers. The study of open and closed mesoscopic
rings has given rise to some surprising findings. In closed
mesoscopic rings pierced by a magnetic flux persistent
currents have been predicted5 and also experimentally
seen6,7,8. The magnetic flux destroys the time-reversal
symmetry and as a consequence persistent current flows
in a ring. These currents are periodic in magnetic flux,
with a period Φ0, Φ0 being the elementary flux quanta
(Φ0 = hc

e ). At zero temperature in a ballistic ring of cir-
cumference l the amplitude of persistent current is given
by

evf

l , where vf is the Fermi velocity. For, spinless elec-
trons, the persistent current can be either diamagnetic or
paramagnetic depending upon whether the total number
of electrons present in the isolated ring is odd or even re-
spectively. This behavior of the persistent current is also
known as the parity effect. In open rings pierced by the
same magnetic flux, normal state Aharonov-Bohm (AB)
oscillations have been observed apart from this currently
these AB oscillations in open rings are at the heart of a

large number of experiments, especially some wherein the
quantum phase shift is purported to have been measured
by inserting a quantum dot in one of the arms of the
ring9 and measurement of which path detection which is
crucial in understanding the nature of dephasing via the
role of quantum entanglement.

Another, purely quantum mechanical phenomena in
such mesoscopic rings although in the absence of flux
is that of current enhancement or magnification10,11,12.
Current enhancement can be defined as follows- In a
metallic loop connected to two reservoirs at chemical po-
tentials µ1 and µ2 (with µ1 > µ2) by means of two ideal
leads (as in inset of figure 1), transport current I flows
through the system. This transport current divides into
I1 and I2 in the upper and lower arms of the ring. In
classical case both I1 and I2 are positive and flow in the
same direction as the input transport current. In quan-
tum mechanics, however for particular values of Fermi
energy intervals I1 or I2 can become much larger than
I, this implies to obey Kirchoff’s law the current in the
other loop must be negative. This property that current
in one of the arms is larger than the transport current
is referred to as current enhancement effect. In this sit-
uation, we interpret the negative current flowing in one
arm of the ring as a circulating current that flows contin-
ually in the loop. When the negative current flows in the
upper arm the circulating current direction is taken to
be anti-clockwise (or negative) and when it flows in the
lower arm the circulating current direction is taken to be
clockwise (or positive)13. Studies on current magnifica-
tion effect in mesoscopic open rings have been extended
to thermal currents14 and to spin currents in the presence
of Aharonov-Casher flux15. Recently this effect has been
studied in presence of spin-flip scattering which causes
dephasing of electronic motion12,16.

The current enhancement effect leads to an enhanced
magnetic response (orbital magnetic moment) of a loop
carrying current in the absence of magnetic flux3. It is
to be noted that these circulating currents arise in the
absence of magnetic flux, however, in presence of trans-
port currents (i.e., in a non-equilibrium system). In the
present work our thrust is whether we can observe the
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aforesaid current enhancement effect and the resulting
circulating currents in equilibrium. For this we consider
the system as depicted in figure 1. The static localised
flux piercing the loop is necessary to break the time re-
versal symmetry and induce a persistent current in the
system. The geometry we consider is a one-dimensional
ring with an attached bubble and a lead connected to a
reservoir at chemical potential µ, for simplicity we have
ignored the electron-electron interaction. The reservoir
acts as an inelastic scatterer and as a source of energy
dissipation. All the scattering processes in the leads
including the loop are assumed to be elastic. Hence
there is a complete spatial separation between the elas-
tic and inelastic processes. The loops J1J2aJ3J1 and
J1J2bJ3J1 enclose the localised flux Φ. However, the
bubble J2aJ3bJ2 does not enclose the flux Φ. We have
considered this special topology in order to verify the ex-
istence of circulating currents at equilibrium. We show
that circulating currents (due to current enhancement)
arise in a bubble which does not enclose a magnetic flux.
We would like to mention here that the current enhance-
ment effect and the associated circulating currents arise
even when the magnetic field extends over the entire sam-
ple. However, for this the treatment is involved as one
has to study separately persistent as well as circulating
currents in the bubble as they have different symmetry
properties. This has been studied in a simple loop in the
presence of both transport currents and magnetic flux13.
Just for the sake of simplicity and to show the existence
of current enhancement in equilibrium we have taken a
system in which bubble does not enclose a magnetic flux,
which may not be an ideal system. However, it clarifies
our contention.

In the local coordinate system the wave-functions in
the various regions of our system are given as follows17-

ψ0 = eikx0 + re−ikx0 ,

ψj = aje
i(k+

αj

lj
)xj

+ bje
−ikxj+i

αj

lj
(xj−lj)

. (1)

Here xj , j = 0, 1..4 are coordinates along the con-
necting lead to the reservoir, the segments J1J2, J2aJ3,
J2bJ3, and J3J1, while αj ’s are the phases picked up by
the electron as it traverses the various regions of the sys-
tem and lj ’s are the lengths of the segments J1J2, J2aJ3,
J2bJ3, and J3J1 respectively. The wave-vector is defined

as k =
√

2mE/h̄2. To solve for the unknown coefficients

in eqn. (1) we use Griffith18,19,20 boundary condition at
the junctions J1, J2 and J3. These boundary conditions
(given in eqn. 2 below) are due to the single-valuedness
of wavefunction and conservation of current (Kirchoff’s
law).

ψ0(x0 = 0) = ψ1(x1 = 0) = ψ4(x4 = l4),

ψ′
0(x0 = 0) + ψ′

4(x4 = l4) = ψ′
1(x1 = 0),

ψ1(x1 = l1) = ψ2(x2 = 0) = ψ3(x3 = 0),

h

l2

J1 J2

l

��
��
��
��

,

,

,

,

µ2

I 2

1I

µ 1

1

I

µ J1

J2

J3

r

1

l1

l4

l

lϕ

1I

4I

Ia b

2

3

I

3

2

FIG. 1: The hybrid ring system connected to a reservoir at
chemical potential µ. The bubble is denoted by the structure
J2bJ3aJ2.The localised flux Φ penetrates the ring. The cur-
rent densities in various parts of the structure are denoted by
I ’s while the lengths of the various regions are denoted by l’s.
In the inset we have shown the non-equilibrium case, a one
dimensional mesoscopic ring with leads is connected to two
reservoirs at chemical potentials µ1 and µ2.

ψ′
1(x1 = l1) = ψ′

2(x2 = 0) + ψ′
3(x3 = 0),

ψ2(x2 = l2) = ψ3(x3 = l3) = ψ4(x4 = 0),

ψ′
2(x2 = l2) + ψ′

3(x3 = l3) = ψ′
4(x4 = 0). (2)

Herein ψ′
j(xj = lj) denotes [( ∂

∂xj
−

iαj

lj
)ψj ]xj=lj . Using

the above mentioned boundary conditions we get-

1 + r = a1 + b1e
−iα1 = a4e

ikl4+iα4 + b4e
−ikl4 ,

1 − r − a1 + b1e
−iα1 + a4e

ikl4+iα4 − b4e
−ikl4 = 0,

a1e
ikl1+iα1 + b1e

ikl1 = a2 + b2e
iα2 = a3 + b3e

iα3,

a1e
ikl1+iα1 − b1e

−ikl1 − a2 + b2e
−iα2 − a3 + b3e

−iα3 = 0,

a2e
ikl2+iα2 + b2e

−ikl2 = a3e
ikl3+iα3 + b3e

−ikl3 = a4 + b4e
−iα4 ,

a2e
ikl2+iα2 − b2e

−ikl2 + a3e
ikl3+iα3 − b3e

−ikl3 − a4 + b4e
−iα4 = 0.(3)

Here α1, α2, α3 and α4 are phases picked up by the
wave-functions in the segments J1J2, J2aJ3, J2bJ3 and
J3J1 respectively and we have α1 + α2 + α4 = 2πΦ/Φ0,
and α1+α3+α4 = 2πΦ/Φ0 such that α2 = α3 as required
by definition. Using eqn. (3) we have solved for all the
unknown coefficients in eqn. (1).

In the lead connecting the reservoir to our circuit there
is no current flow as |r|2 = 1. The current densities (Ij ,
in a dimensionless form)21 in the small interval dk around
the Fermi energy k in the various segments of the circuit
are given by- Ij = |aj |

2 − |bj |
2. The current densities are

calculated from the usual formula of current density in
presence of magnetic flux-
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Jj =
eh̄

2mi
(ψ∗

j∇ψj − ψj∇ψ
∗
j −

2iαj

lj
ψ∗

jψj), (4)

which implies Ij =
Jj

eh̄k/m .

The persistent current densities in various parts of the
circuit show cyclic variation with flux and Φ0 periodic-
ity, and oscillate between positive and negative values
as a function of energy or the wavevector k as expected.
Since the analytical expressions for these currents are too
lengthy we confine ourselves to a graphical interpretation
of the results. It should be noted that in all these expres-
sions for current densities flux enters only through the
combinations α1+α2+α4 and α1+α3+α4 the magnitude
of these combinations is given by 2πΦ/Φ0 as expected.
For us the current densities in the bubble, i.e., J2bJ3aJ2
are of special importance as in this region there is a pos-
sibility of current enhancement which will be analysed
below. The currents flowing in segment J3J1 and J1J2
are equal, i.e., I1 = I4. These currents may have positive
(clockwise) or negative (anti-clockwise) values depending
on the flux Φ and value of wavevector k. For a fixed k this
current oscillates between positive and negative values as
a function of Φ with a period Φ0 and are asymmetric in
Φ. Similarly for fixed value of Φ currents oscillate as one
varies k. The magnitude of current shows a maximum or
minimum near the corresponding eigen-states of the sys-
tem. We have calculated these eigen states for two dif-
ferent cases. For open system as depicted in figure 1 one
can calculate the energies (or wave-vector) of these states
by looking at the complex poles of the S-Matrix. In our
case S-Matrix is simply a complex reflection amplitude
r. We have also analysed the eigen states of a closed sys-
tem (without coupling lead to reservoir) by wave-function
matching in various segments using waveguide theory.

We analyse the case of a bubble with unequal lengths,
of its two arms, i.e., the length of J2bJ3 6= J2aJ3. This
asymmetry implies that currents in the two arms of the
bubble are unequal, i.e., I2 6= I3. This asymmetry is very
much essential for current enhancement. In figure 2 we
plot the persistent current densities in various parts of the
circuit, for this we have chosen a small interval of dimen-
sionless wavevector kl and other physical parameters are
indicated in the figure captions. It should be noted that
the absolute value of the persistent current densities I2
and I3 in this interval are individually much larger than
the input current density I1 into the bubble and thus the
current enhancement effect is evident (without violating
the basic Kirchoff’s law). The input current arises due to
the presence of flux Φ as it breaks the time reversal sym-
metry. In the interval 5.2 < kL < 7.4 current I1 changes
from positive to negative and exhibits extremum around
the real part of the poles of the S-Matrix. When I1 is
positive, negative current density of magnitude I2 flows
in the arm J2aJ3 of the bubble. Thus, when I1 is posi-
tive circulating current flows in the clockwise direction in
the bubble. In the range where I1 is negative, i.e., input
current into the bubble is in an anti-clockwise direction,
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FIG. 2: Current enhancement shown with lengths l1/l =
l4/l = 0.75, l2/l = 0.45, l3/l = 0.55. Herein the persistent
current densities in the various parts of the circuit are plot-
ted. The persistent current density in J1J2 is denoted by
the solid line while those in J2aJ3 and J2bJ3 are denoted by
dotted and dashed line. Flux α = 2πΦ/Φ0=0.1 .
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FIG. 3: Persistent current density I1 and circulating current
density Ic is plotted as function of kl. The parameters are
same as used in fig. 2. The inset shows the behavior of Ic and
I1 around their zero values.

then positive current flows in arm J2bJ3. According, to
our convention as mentioned earlier, circulating current
flows in the clockwise direction. The magnitude of this
circulating current Ic (negative current), is taken to be
the value of current in one of the arms of the bubble mov-
ing against the input current into the bubble as explained
in detail in the introduction. In all the figures drawn the
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FIG. 4: Current enhancement shown with lengths l1/l =
l4/l = 0.25, l2/l = 0.45, l3/l = 0.55. Herein the persis-
tent currents in the various parts of the circuit are plotted
as function of flux. The Fermi wavevector here is kf = 4π.

length of the bubble l = l2 + l3 is taken as unity, and the
current densities along with the Fermi wave-vectors are
in their dimensionless form. This current enhancement
effect is extremely sensitive to the lengths of the arms
of the bubble. In figure 3 we have plotted the persis-
tent current density I1 = I4 and the circulating current
density Ic in the bubble for the same parameters used
in figure 2. For figure 3 we have used a smaller scale of
kl for clarity. Even though persistent current density I1
changes the sign as we cross the real part of the pole the
circulating current remains clockwise only. Moreover, Ic
around either side of the poles has a magnitude larger
than the absolute magnitude of I1. It should be noted
that if we interchange the values of l2 and l3 keeping other
parameters unchanged circulating current will flow in an
anti-clockwise direction. This is obvious from the geom-
etry of the problem. Alongwith the current densities the
total persistent currents in various parts of the ring can
also be plotted, to do that we integrate the current den-
sities Jj in various regions of the circuit over the Fermi
wave vector. The persistent currents Pj at temperature
T = 0 is given by

Pj = −

∫ kf

0

Jjdk (5)

In figure 4 we have plotted the persistent currents (in
dimensionless units) as a function of flux for a fixed value
of kf and the system parameters are indicated in the
figure caption as expected persistent currents in various
arms are flux periodic and asymmetric in flux. Here also
we can see the persistent current enhancement effect in
some range of flux Φ.

We generally observe enhanced currents at those Fermi
energy wave-vector intervals which are around the poles
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FIG. 5: Absence of current enhancement shown with lengths
l1/l = l4/l = 0.75, l2/l = 0.25, l3/l = 0.75. Herein the
persistent current densities in the various parts of the circuit
are plotted. The persistent current density in J1J2 is denoted
by the solid line while those in J2aJ3 and J2bJ3 are denoted
by dotted and dashed line. The kl value 11.28 is an eigen
wavevector of the closed system. Flux =0.1 .

of the open system10,11,13. However, there are some ex-
ceptions. In figures 5 and 6 we plot a few of those excep-
tions. We consider the lengths l1/l = l4/l = 0.75, l2/l =
0.35 and l3/l = 0.65 and flux α = 2πΦ

Φ0

= 0.1. In figures 5
and 6 we show that current enhancement effect does not
occur at places which are eigen values of the aforesaid sys-
tem. Here the eigen wave-vector kL corresponds to 11.28
in figure 5 and 13.85 in figure 6. One can readily notice
that the magnitude of persistent current density (i.e., in-
put current density I1) shows extrema around this value.
Around this region the current densities in the bubble I2
and I3 are individually smaller than I1 and they flow in
the same direction as the input current. Hence we do
not observe current enhancement effect around the quasi
bound states for these parameters of the open system.
The exact conditions for current enhancement cannot of
course be readily predicted a priori. If system exhibits
current enhancement one should be able to detect it ex-
perimentally by observing the enhanced response of the
magnetic moment.

As mentioned in the paragraphs above, current en-
hancement directly corresponds to resonances of our sys-
tem. These resonances occur at or near the quasi bound
states of the open system. Thus it is important to study
the closed system analog to see where these bound states
occur and how are they linked to the quasi bound states.
More than that the study of bound states of the closed
system will give us the eigen energy spectra from which
many important parameters like magnetic moment and
persistent currents can be evaluated. In figures 7,8 and
9 we have plotted the first few eigen energies E = k2

n of
our isolated system (with the connecting lead to reservoir
removed). The parameters are mentioned in the figure
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FIG. 6: Absence of current enhancement shown with lengths
l1/l = l4/l = 0.75, l2/l = 0.25, l3/l = 0.75. Herein the
persistent current densities in the various parts of the circuit
are plotted. The persistent current density in J1J2 is denoted
by the solid line while those in J2aJ3 and J2bJ3 are denoted
by dotted and dashed line. The kl value 13.85 is an eigen
wavevector of the closed system. Flux =0.1 .

captions. These eigen energies are calculated with the
help of quantum waveguide approach from the condition
that the determinant of the coefficient matrix must van-
ish. The coefficient matrix is built from first principles
using quantum waveguide theory with the second wave-
function of equation 1. The condition for bound states
of the system, i.e., the closed ring with bubble is given
by

cos(α) =
1

cos(kl−)
(cos k(l1 + l+) −

1

4

sin(kl1) sin(kl2) sin(kl3)

sin(kl+)
) (6)

where α = 2πΦ/Φ0, l+ = (l2 + l3)/2 and l− =
(l2 − l3)/2. The eigen energies are flux periodic. The
persistent current carried by a electron in the eigen state
En is given by In = − 1

c
∂En

∂Φ . In a closed single loop per-
sistent current changes its sign as we go from one level
to the next successive level. Thus for spinless electrons
the persistent current is diamagnetic or paramagnetic de-
pending on total number electrons being odd or even(at
T = 0). This is called parity effect. Supposing we open
up the ring and find its transmission amplitude t then we
can easily see that

cos(α) = Re(1/t) (7)

In our system with the help of eqn. 7 we can calculate
the persistent current carried by an electron in the eigen

state En. This is given by- In = − e
h̄

sin(α)
dRe(1/t)/dEn

. From

h

FIG. 7: Breakdown of parity effects in a closed one dimen-
sional mesoscopic ring coupled to a bubble. The lengths are
l1/l = 0.75, l2/l = 0.35, l3/l = 0.65. The energies are nor-
malised by π2.

h

FIG. 8: Breakdown of parity effects in a closed one dimen-
sional mesoscopic ring coupled to a bubble. The lengths are
l1/l = 0.75,l2/l = 0.15, l3/l = 0.85. The energies are nor-
malised by π2.

the above formula we get for the persistent currents in
our closed system the following expression-

h̄In
e

=
−8knsin(α)cos2(knl−)sin2(knl+)

D
(8)

where D = sin(knl3+(16l2+ + 2l3+) + sin(knl2+(16l3+ +
2l2+) + sin(knl3−)(−6l3 − 10l1 + 2l3−cos(2knl2)) +
sin(knl2−)(−6l2 − 10l1 + 2l2−cos(2knl3)) −
l3+(sin(knl3+ − 2knl2) + 9sin(knl3+ + 2knl2) −
l2+(sin(knl2+ − 2knl3) + 9sin(knl2+ + 2knl3)) and
li± = (l1 ± li), herein i = 2, 3 and kn are the eigen wave
vectors.
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FIG. 9: Breakdown of parity effects in a closed one dimen-
sional mesoscopic ring coupled to a bubble. The lengths are
l1/l = 0.75,l2/l = 0.05, l3/l = 0.95. The energies are nor-
malised by π2.

With the help of kn one can easily evaluate the persis-
tent currents from eqn. 8 for some representative values
as in figures 7, 8 or 9. The eigen energies are flux peri-
odic with period Φ0. It can be noted from figure 7 that
3rd and 4th eigen states carry diamagnetic current while
5th and 6th carry paramagnetic current for small values
of flux (which is obvious from their slopes). Thus break-
ing the well known parity effect. For details we refer to
Ref.[22]. Similarly, in figures 8 and 9 this violation of par-
ity effects is also seen but of course the eigen spectra is
modified, although the length of the bubble l = l2+l3 = 1
still holds as well as the fact that the length of the outer
arm is also same as in figure 7, what have been altered are
the arm lengths of the bubble, within the restriction that
the length of the bubble is unity. This goes on to show
that the eigen energies are sensitive to the arm lengths
of the bubble. We have later on tabulated some of the
eigen k vectors for all these three cases as in the three
figures.

A comparison of the eigenenergy spectra and the per-
sistent currents in the open system is herein called for so
as to assess for ourselves whether the persistent currents
(global) calculated from the eigenenergy spectra and in-
herently linked to the slope of the energy versus flux dia-
gram are same as the the persistent currents (local) in the
various arms of the system calculated from the eqn. (3).
Figures 10, 11 and 12 depict the persistent current den-
sities in the open system for the same parameters as in
figures 7, 8 and 9 respectively. These persistent current
densities are continuous functions of the dimensionless
wavevector kl. We have chosen a smaller scale for the
magnitude of the current densities for better visibility of
the detailed features. An important conclusion which can
be drawn from the comparisons is that resonances, in the
persistent current densities versus energy graph, arise at
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FIG. 10: Current densities in the open system for length pa-
rameters as in figure 7. Flux = 0.1 .
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FIG. 11: Current densities in the open system for length pa-
rameters as in figure 8. Flux = 0.1 .
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FIG. 12: Current densities in the open system for length pa-
rameters as in figure 9. Flux = 0.1 .



7

h

0.0 6.3 12.6
kl

−1.0

0.0

1.0

µ1
µ2

FIG. 13: Plot of µ1 and µ2 = IgAr/2 for length parameters
as in figures 7 and 10. Flux = 0.1 .

the bound states of the closed system of course they are
shifted a bit as a result of coupling to an external reser-
voir. The shifted k values are also later on tabulated.
Another important fact to be noted is that the energies
wherein current enhancement occurs at these, the local
current densities can be either diamagnetic or paramag-
netic and therefore are not same as the global persistent
currents but at those energies wherein current enhance-
ment is not observed therein it is observed that there is no
discrepancy between local and global currents, i.e., if the
eigenenergy spectra reveals diamagnetic currents the lo-
cal currents are also seen to be diamagnetic. For example
if we compare figures 7 and 10 we note that the closed sys-
tem eigen k’s are at 0.1526, 4.4535, 5.4574, 6.627, 8.912,
and 11.234. Around these eigen k’s we see from figure 10
that those k values where current enhancement does not
take place therein there is no difference between the na-
ture (being diamagnetic or paramagnetic) of global and
local current densities in different segments but wherein
current enhancement occurs therein there is a difference
between the nature of global and local current densities
(by definition current enhancement implies this, as the
current densities in the two arms of the bubble are in
opposite direction).

Extending our discussion to the magnetic moment den-
sities of our system we see that the magnetic moment
densities calculated for the open system do not seem to
agree at least qualitatively with that calculated from the
eigen energy spectra in some energy interval. Further-
more the orbital magnetic moment density defined via
currents in a loop, depends strongly on the topology of
the system, whereas eigen spectrum do not. In fact there
are infinitely many topological structures possible. If we
consider our system as depicted in figure 1 to be planar
and lying in the x-y plane then the magnetic moment
density (µ1) can be viewed as being generated by current

h

0.0 6.3 12.6
kl

−1.0

0.0

1.0

µ1
µ2

FIG. 14: Plot of µ1 and µ2 = IgAr/2 for length parameters
as in figures 8 and 11. Flux = 0.1 .

h

0.0 6.3 12.6
kl

−1.0

0.0

1.0

µ1
µ2

FIG. 15: Plot of µ1 and µ2 = IgAr/2 for length parameters
as in figures 9 and 12. Flux = 0.1 .

density I1 enclosing an area Ar and by current density
I3 enclosing area Ab, i.e., µ1 = 1

c (I1Ar + I3Ab), wherein
Ar and Ab are areas enclosed by the ring (J1J2aJ3J1)
and bubble(J2aJ3bJ2) respectively. Another orienta-
tion of the system in which the arm J2bJ3 is in the x-z
plane gives µ2 = 1

c (I1Ar + I2Ar)/2 = IgAr/2 wherein
Ig = I1 + I2 is said to be the most appropriate general-
ization of the equilibrium persistent current, see [23] for
further details, and this along with µ1 is what we plot
in figures 13, 14 and 15. In these figures, the plot of µ1

has been magnified a hundred times for better visibility.
The physical parameters in these figures, i.e., 13, 14 and
15 are same as that in figures 7, 8 and 9 respectively
(also figures 10, 11 and 12 respectively). Of course Ig
is proportional to µ2. Several other orientations also are
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possible, for example, if the bubble lies in x-y plane and
the ring lies in x-z plane, then µz = 1

c (I3Ar−I2Ar)/2 and

µy = 1
c I1Ar. Even when our system lies in the x-y plane

for fixed l1, l2, l3 and by deforming their shapes we can
have different values of magnetic moment density along
the z direction. The energy eigen values remain intact in-
spite of the deformation. All the above examples buttress
the fact that the orbital magnetic moment is inherently
linked to the topology of the system. As we have earlier
pointed out the magnetic moment calculated herein is not
same (qualitatively), as the magnetic moment calculated
in case of the closed system from its eigenenergy spectra,
which is same for all topological situations. Some impor-
tant conclusions can be drawn from the figures 13, 14 and
15, first µ1 and µ2 are not same and also one can notice
that in some kl intervals µ1 and µ2 have opposite signs,
i.e., the nature of magnetic moment is qualitatively differ-
ent for these two cases. Thus this leads to a contradiction
as to with which of these can one associate the magnetic
moment. The magnetic moment is fixed for closed sys-
tem from the energy eigenvalue spectrum calculated from
µ = − 1

c
∂En

∂H wherein H is the magnetic field enclosed by
the system. In the open system we expect behavior as a
function of kl to reflect the behavior in the closed system
except for the fact that we get currents for all the kl wave
vectors. This arises from the fact that in open system life
time of a particle in an eigen state is finite due to coupling
to the reservoir and hence all the energy eigenvalues as-
sociated with the closed system get broadened. Again a
comparison between the eigenenergy spectra, and hence
magnetic moment drawn in figures 7,8 and 9 and the fig-
ures for magnetic moment densities (see, figures 13, 14
and 15) shows that in some cases the range wherein suc-
cessive energy eigenvalue slopes are similar (i.e., either
paramagnetic/diamagnetic) the magnetic moment densi-
ties (calculated from currents, e.g., µ1 or µ2) can change
their nature. Some cases wherein such changes occur
have been tabulated in the tables 1, 2 and 3. In several
cases we notice that magnetic moment densities µ1 or µ2

have different nature (directions) as compared to µ which
is obtained from the slope of the energy eigenvalue spec-
trum. We would have expected the same for the magnetic
moments calculated from the currents in the isolated sys-
tem. The coupling to external reservoir does not change
the nature of the currents although it broadens and shifts
a bit the energy eigenvalue spectrum. Thus, the study of
magnetic moment densities of the open system is enough
to convey to us the picture about the magnetic moment
calculated from currents in the isolated system. Hence
clarifying our contention. Thus it is clear that the na-
ture of magnetic moment densities µ1 and µ2 need not
be related to eigenvalue spectrum in the same energy
range or equilibrium magnetic moments at temperature
T = 0. This result we attribute solely to the current en-
hancement effect which is purely a quantum mechanical
effect. In the ranges wherein there is no current enhance-
ment, the nature of magnetic moment densities obtained
by two different methods are qualitatively same, however

they may differ in magnitude. It is also worth mentioning
that the total magnetic moment (at temperature T = 0)
of a representative system is obtained by integrating the
magnetic moment densities upto the Fermi wavevector
kf .

The preceding three paragraphs have dealt with the
eigen energy spectra, persistent current densities and the
magnetic moments. To have some conclusive arrivals, we
juxtapose all of these in the tables 1, 2 and 3. In the
tables we give the detailed analysis of the eigen k of the
closed system, the poles of the open system, whether at
these poles or bound states current enhancement takes
place, what are the directions (nature) of magnetic mo-
ment densities in the open system in the small interval in
the neighborhood of the quasi bound states, and the per-
sistent currents in the closed system form calculated from
eqn. 8, whose nature is similar to that of the closed sys-
tem magnetic moments. In column (1) we give the value
of the closed system eigen k, in column (2) we give the
complex poles of the open system for the same lengths.
The real part of the pole gives the energy at which reso-
nance occurs while the imaginary part gives the width of
the same, which of course is just the inverse of the life-
time of the particle in that resonant state. Thus smaller
the imaginary part, sharper the resonance and more the
particles lifetime. In column (3) we note whether en-
hanced currents are seen at these quasi-bound states or
not. In columns (4) and (5) we mention the values of µ1

calculated from I1Ar +I3Ab and Ig in the small neighbor-
hood of the quasi bound states. In columns for µ1 and
Ig, para/dia implies that around that quasi bound state,
nature of magnetic moment changes from being param-
agnetic to the left to being diamagnetic to the right in
the immediate neighborhood of this quasi bound state (in
the same spirit one can understand dia/para in this col-
umn). The areas are calculated by deforming the circular
arms of our system to form rectangles. Finally in column
(6) we note the direction of the magnetic moment of the
closed system whose nature (direction) is same as per-
sistent currents in the closed system as calculated from
eqn. 8.

k poles is current µ1 Ig µ from

(1) (2) enhanced(3) (4) (5) eigenenergies(6)

0.1526 0.7192 − 0.044i no dia dia dia

4.4535 4.5157 − 0.883i no para para para

5.4574 5.4547 − 0.005i yes para/dia para/dia dia

6.6270 6.5448 − 0.292i yes para dia dia

8.9728 8.9728 − 0.0004i yes para/dia para/dia para

11.234 11.352 − 0.748i yes dia para para

TABLE I: A comparative analysis of eigen-energy spectra,
current densities and magnetic moment density for l1/l =
l4/l = 0.375, l2/l = 0.35, l3/l = 0.65, Refer to figures 7, 10
and 13.

From the tables and graphs, one can draw some con-
clusions:
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k poles is current µ1 Ig µ from

(1) (2) enhanced(3) (4) (5) eigenenergies(6)

0.160 0.162 − 0.571i no dia dia dia

3.921 3.957 − 0.670i yes para para para

5.898 5.898 − 0.001i yes dia/para para/dia para

7.136 7.084 − 0.667i no para para para

7.948 7.940 − 0.012i no dia dia dia

11.65 11.754 − 0.438i yes para para para

TABLE II: A comparative analysis of eigen-energy spectra,
current densities and magnetic moment density for l1/l =
l4/l = 0.375, l2/l = 0.15, l3/l = 0.85. Refer to figures 8, 11
and 14.

k poles is current µ1 Ig µ from

(1) (2) enhanced(3) (4) (5) eigenenergies(6)

0.169 0.183 − 0.5660i no dia dia dia

3.693 3.706 − 0.6380i yes para para dia

6.228 6.228 − 0.0004i yes dia/para para/dia para

7.170 7.160 − 0.6530i no para para para

7.989 7.981 − 0.0154i no dia dia dia

11.00 11.019 − 0.551i yes dia dia dia

TABLE III: A comparative analysis of eigen-energy spectra,
current densities and magnetic moment density for l1/l =
l4/l = 0.375, l2/l = 0.05, l3/l = 0.95. Refer to figures 9, 12
and 15.

(1). At eigen-energies where there is no current en-
hancement, the entries of column (5) are compatible with
that of column (6) but at places where current enhance-
ment occurs the entries may or may not match.

(2). Apart from the above inconsistency, we also ob-
serve from the graphs for eigenenergy spectra and mag-
netic moment and current densities that for parameters
at which over successive energy levels, persistent currents
are paramagnetic (for example, see figure (8)), the cur-
rent (figure (11)) and magnetic moment densities (fig-
ure (14)) are not paramagnetic, i.e., in between energy
levels they do change sign.

Hence, the parameter Ig hitherto alluded to as the the

most effective generalisation of the equilibrium persistent
current is not necessarily correct. In fact we cannot think
of any other topological configuration for which magnetic
moments calculated from the current densities and that
from the eigenvalue spectra (equilibrium magnetization)
would match.

To conclude, we have shown that current enhancement
effect can occur in equilibrium mesoscopic systems in
presence of magnetic flux. Earlier, it was shown that
this effect arises in a non-equilibrium state, i.e., in pres-
ence of transport current flow and in absence of magnetic
field. This quantum effect is extremely sensitive to sys-
tem parameters. Parity effects are shown to be violated
in the isolated system. Apart from this we have anal-
ysed the global and local current densities of our system
and shown that the orbital magnetic response of the sys-
tem calculated from the current densities (and inherently
linked to the topological configuration) is qualitatively
not same as that calculated from the eigenenergy spec-
tra. This fact is related to the current enhancement effect
in these systems. To clarify our preceding contention it
is imperative for us to study a system which does not ex-
hibit current magnification effect. A suitable system to
study these local and global currents and the differences
which occur between them would be a system of coupled
rings. Herein two different rings are coupled via an ideal
lead as studied in Ref. [24]. In this system there is no
question of current enhancement. However, currents (or
magnetic moments) in the two rings may be of opposite
sign, in this case one can also obtain the global currents
(or magnetic moments) from the eigen energy spectra. It
is worthwhile to check whether the sum of magnetic mo-
ments obtained from currents of two separate rings shows
the same nature as obtained from the eigen energies of
the entire system.
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