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ABSTRACT

We study the mobility of an overdamped particle in a periodic potential tilted by a constant force. The

mobility exhibits a stochastic resonance in inhomogeneous systems with space dependent friction coefficient. The

result indicates that the presence of oscillating external field is not essential for the observability of stochastic

resonance, at least in the inhomogenous medium.

I. INTRODUCTION

Stochastic Resonance( S.R) is an important phenomena with considerable implica-

tions in all branches of science [1]. The enhanced response of a nonlinear system to input

signals at the expense of and as a function of noise is termed as Stochastic Resonance. It

is generally accepted that SR can be observed provided certain essential conditions are ful-

filled. Attempts are being continually made to reduce the number and stringency of these

constraints for the realization of the phenomenon. The simplest and the minimal ( currently

accepted) conditions under which conventional SR can be observed are, the presence of a)

a bistable system, b) a tunable Gaussian white noise and c) a time varying periodic signal

(force). Recently, Hu [2] suggested that the last ingredient may hopefully be replaced by

a constant force and, by implication, SR may be observed, e.g, in the drift velocity ( mo-

bility) of an overdamped Brownian particle in a tilted periodic potential as a function of

noise strength. Unfortunately the suggestion was proved to be incorrect [3–5]. However,

Marchesoni, [5] by analyzing the work of Risken [6], observed that SR can be observed in
1
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the drift velocity of Brownian particles in a tilted periodic (washboard) potential only in the

underdamped situation where friction acts as surrogate to the external periodic drive. In

the present work we show that SR can be observed in the mobility of even an overdamped

Brownian particle in a tilted periodic potential (without the presence of oscillating field) but

in the presence of a space-dependent periodic friction coefficient( i.e., in an inhomogeneous

medium).

The space dependence of friction coefficient does not affect the equilibrium prop-

erties such as the equilibrium probability distribution. However, it does affect the dynam-

ical (nonequilibrium) properties of the system( such as the relaxation rates). The space

dependence of friction η(q) can be microscopically modeled through the nonlinear( space-

dependent) coupling between the particle degrees of freedom and the thermal bath( char-

acterized by its equilibrium temperature) [7–9]. In this work we find that the mobility of

overdamped particles in a sinusoidal potential subject to a sinusoidal friction coefficient but

with a phase difference φ shows a peak as a function of noise strength( temperature of the

bath) in the presence of only a constant force field F . By properly choosing φ we obtain

this SR behaviour in the mobility( defined as drift velocity divided by F ) even for a small

constant external force field ( when the barrier for the particle motion in the tilted periodic

potential remains finite).

The motion of an overdamped particle, in a periodic potential V (q) and subjected to

a space-dependent friction coefficient η(q) and an additional constant force F , at temperature

T , is described by the Fokker-Planck equation [7,8,10,11].

∂P

∂t
=

∂

∂q

1

η(q)
[kBT

∂P

∂q
+ (V ′(q) − F )P ] (1)

One can calculate [6,8,12] the probability current j, for the potential function V (q) with

V (q + 2π) = V (q), as
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j =
kBT (1 − exp(δ))

∫

2π
0
exp(−ψ(y))dy

∫ y+2π
y η(x)exp(ψ(x))dx

, (2)

where

ψ(q) =
∫ q V ′(x) − F

kBT
dx

=
V (q) − Fq

kBT

and δ = ψ(q)− ψ(q + 2π) = 2πF
kBT

. The mobility( defined [6] as the ratio of the drift velocity,

〈

dq

dt

〉

= 2πj divided by the applied force F ), µ =
〈 dq

dt 〉
F

= 2πj

F
. We take V (q) = − sin(q) and

η(q) = η0(1 − λ sin(q + φ)), with 0 ≤ λ < 1. Clearly, j → 0 as F → 0, but the mobility µ

remains finite as F → 0, for nonzero temperature T . However, for F ≤ 1 as T → 0, µ→ 0.

Also, as F, T → ∞, µ → 1

η0

. However, for given λ and φ, in order to find the variation of µ

at intermediate T and F , one needs to evaluate the double integral in the denominator of

eqn. (2) numerically [13].

II. THE RESULTS

The variation of mobility µ in the parameter space of (T, F, λ, φ) provides a very

rich structure where the phase lag φ plays an important role. However, in this paper we

report only the variation of µ with temperature ( noise strength) T at a few carefully selected

values of (F, λ, φ) in order to highlight the observability of S.R.

From eqn. (2) one can find that, even though j(F ) 6= −j(−F ), except for phase

lag φ = 0 or π, but yet µ(F, φ) = µ(−F,−φ). Therefore, we need to explore only F > 0.

Also in order to observe SR the choice of larger values of λ is found to be more appropriate.

So we take λ = 0.9 and explore the full range of φ[0, 2π]. We find that there is a range of

values of φ within which SR is observed. For example, for φ = 0.8π, λ = 0.9, SR is observed

but the peaks are very broad. And for this φ, SR is more prominent for F < 1 than F > 1.

3



For smaller φ it is harder to observe the peaks as they become still broader. However, as φ

is increased the peaks become sharper. Fig.1 shows the mobility µ( in dimensionless units

η0µ) as a function of T ( in dimensionless units) for φ = 0.9π and λ = 0.9. Here the peaks

are larger for F < 1 than for F > 1. Fig. 2, shows the mobility µ as a function of T for

φ = 1.44π, λ = 0.9. It can be seen that the peaks are almost flat for 0 < F < 1, but are

prominent for the intermediate temperature range. From Fig. 3, we do not observe S.R

for any F > 0. But the figure prominently shows that for F > 1 and for small T , the

mobility decreases instead of increasing with temperature. This in itself is a novel feature.

The above mentioned features result from a subtle combined effect of the periodic space

dependent friction and the periodic potential in the presence of a constant applied force.

The effect can be observed only when there is a phase difference between the potential and

the frictional profile; the phase difference makes the mobility asymmetric with respect to the

reversal of the field F . The mobility shows many other interesting features as a function of

other parameters, F, λ and φ. [14]

III. CONCLUSION

We observe the occurrence of stochastic resonance in the the mobility of an over-

damped Brownian particle in a sinusoidal potential tilted by a constant force and subjected

to a Gaussian white noise but, of course, in an inhomogeneous system with space-dependent

friction coefficient. Thus the time dependent external oscillating field, which is generally con-

sidered as an essential ingredient for the observability of SR can be replaced by a constant

force field concomitant with a space-dependent(periodic) friction coefficient of a spatially

extended periodic system. We would like to point out here that the correct high friction

Langevin equation in the space dependent frictional medium involves a multiplicative noise
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along with a temperature drift term [7,8].

IV. ACKNOWLEDGEMENT

M. C. M thanks the Institute of Physics, Bhubaneswar, for financial assistance and

hospitality. M. C. M and A. M. J acknowledge partial financial support from the

B. R. N. S project, D. A. E, India.

5



REFERENCES

a dan@iopb.res.in

b jayan@iopb.res.in

[1] L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni. Rev. Mod.phys. 70, (1997), 223

[2] G. Hu, Phys. Lett. A174, (1993), 247.

[3] M. Gitterman, I. B. Khalfin and B. Ya. Shapiro. Phys. Lett. A 184,(1994), 339.

[4] J. M. Casado, J. J. Mejias and M. Morrillo. Phys. Lett. A 197, (1994), 365.

[5] F. Marchesoni, Phys. lett. A 231, (1997), 61.

[6] H. Risken, The Fokker Planck equation (Springer Verlag, Berlin, 1984)

[7] A. M. Jayannavar and M. C. Mahato, Pramana- J. Phys 45, (1995), 369.

[8] M. C. Mahato, T. P. Pareek and A. M. Jayannavar, Int. J. Mod. PhysB 10, (1996), 3857.

[9] J. D. Bao, Y. Abe, Y. Z. Zhao, Phys. Rev. E 58, (1998), 293.

[10] N. G. van Kampen, IBM. J. Res. Develop 32, (1988), 107.

[11] N. G. van Kampen. Stochastic processes in Physics and Chemistry, North Holland,

(1992).
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FIGURE CAPTIONS.

Fig. 1. Mobility η0µ as a function of temperature T for φ = 0.9π and λ = 0.9 for

various values of F. The inset is inserted to highlight the peaks.

Fig. 2. Mobility η0µ versus T for φ = 1.44π, λ = 0.9 for various values of F. The inset

highlights the peaks.

Fig. 3. Mobility η0µ versus T for φ = 1.6π, λ = 0.9 for various values of F. The inset

highlights the minima.
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