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Abstract

We investigate the dynamics of an overdamped Brownian particle moving in a washboard po-

tential with space dependent friction coefficient. Analytical expressions have been obtained for

current and diffusion coefficient. We show that the effective diffusion coefficient can be enhanced

or suppressed compared to that of the uniform friction case. The diffusion coefficient is maximum

near the critical threshold (Fc), which is sensitive to temperature and the frictional profile. In some

parameter regime we observe that increase in noise (temperature) decreases the diffusion, which

is counter-intuitive. This leads to coherent transport with large mean velocity accompanied by

small diffusion. This is shown explicitly by analysis of Péclet number, which has been introduced

to study coherent or optimal transport. This phenomena is complementary to giant diffusion.
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I. INTRODUCTION

In recent times there has been a renewed interest in the study of transport properties

of Brownian particles moving in periodic potential [1], with special emphasis on coherent

transport and giant diffusion [2, 3]. The phenomenon of coherent or optimal transport is

complimentary to the enhanced diffusion, wherein one is mainly concerned with transport

currents with minimal dispersion or diffusion [4]. Compared to free diffusion coefficient(DC,

D = kBT/γ), DC is suppressed in the presence of periodic potential. However, in a nonequi-

librium case i.e., in the presence of bias, it has been recently shown that DC can be made

arbitrarily large (giant diffusion) compared to the bare diffusion, in the presence of periodic

potential [2]. This enhancement at low temperature takes place near the critical threshold

( at which deterministically running solution sets in). The reason for this enhancement has

been attributed to the existence of instability between locked to running solution. In some

cases enhancement by fourteen order of magnitude has been predicted, so that diffusion can

be observed on a macroscopic scale at room temperature [2]. This enhancement decreases

as we move away from the critical field in either direction. Exact result for DC in arbitrary

potentials has been obtained in term of quadratures. In special cases an elegant simplifica-

tion of quadrature have been carried out. Near the critical tilt, scaling behavior of DC for

weak thermal noise has been obtained and different universality classes have been identified

[2]. Approximate expression for DC in terms of mobility has been obtained earlier which

deviates from the exact results near the critical threshold [3].

In a related development, study of coherent or optimal transport has been reported re-

cently [4]. Coherent or optimal transport of Brownian particles refer to the case of large

mean velocity accompanied with minimal diffusion. This can be quantified by dimension-

less Péclet number (ratio of mean velocity to DC). The transport is most coherent when

this number is maximum. The particle motion is mainly determined by two time scales;

noise driven escape from potential minima over the barrier along the bias, followed by the

relaxation into the next minima. The former depends strongly on temperature and the later

weakly on the noise strength and has a small variance. It is possible to obtain coherent

transport in the parameter regime at which the traversal time across the two consecutive

minima in a washboard potential is dominated by the relaxational time. At optimal noise

intensity certain regularity of the particle motion is expected which accounts for the maxi-
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mum of Péclet number. In some cases (molecular separation devices) for higher reliability,

one requires higher currents but with less dispersion (or DC) [5]. This effect of coherent

transport is related to the phenomenon of coherence resonance [6] observed in excitable

systems [4].

In the present work we study both the mentioned phenomena in a space dependent

frictional medium. For this we have considered a simple minimal model where the potential

is sinusoidal and the friction coefficient is also periodic (sinusoidal) with the same period,

but shifted in phase. Frictional inhomogeneities are not uncommon in nature. Here we

mention a few. Brownian motion in confined geometries, porous media experience space

dependent friction [7]. Particles diffusing close to surface have space dependent friction

coefficient [7, 8]. It is believed that molecular motor proteins move close along the periodic

structure of microtubules and will therefore experience a position dependent friction [9].

Inhomogeneities in mobility ( or friction) occurs naturally in super lattice structures and

Josephson junctions [10].

Frictional inhomogeneity changes the dynamics of the diffusing particle non-trivially,

thereby affecting the passage times in different regions of the potential. However, it does not

effect the equilibrium distribution. Thus thermally activated escape rates and relaxational

rates within a given spatial period are affected significantly. This in turn has been shown

to give rise to several counter-intuitive phenomena. Some of them are stochastic resonance

in absence of external periodic drive [11], noise induced stability in washboard potential

[12]. Single and multiple current reversals in adiabatic [13] and nonadiabatic rocked system

(thermal ratchets [14]) respectively have also been reported [15]. In these ratchet systems

the magnitude of efficiency of energy transduction in finite frequency regime may be more

than the efficiency in the adiabatic regime, i.e, quasistatic operation may not be efficient for

conversion of input energy into mechanical work [16]. All these above features are absent in

the corresponding homogeneous case for the same simple potential.

In our present work we show that frictional inhomogeneities can give rise to additional

new features in a tilted periodic potential. The observed giant enhancement of DC near

the critical tilt can be controlled (enhanced or suppressed) in a space dependent frictional

medium by suitably choosing the phase difference between the potential and the frictional

profile. The most surprising feature is the noise induced suppression of diffusion, leading to

coherent transport. Our results are based on analytical expressions for Péclet number and
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DC in term of moments of first passage times.

In Section II we present our model and derive the expression for moments of first passage

times. Using these, DC and Péclet number have been defined. In section IIIA we analyze

the nature of DC as function of system parameters, such as the applied external force and

temperature. Section IIIB is devoted to the study of coherent or optimal transport in

different regimes of parameter space. Finally in section IV we present the summary of our

findings.

II. MODEL

We consider an overdamped Brownian particle moving in a symmetric one dimen-

sional periodic potential V0(x) with space dependent friction coefficient η(x) under the

influence of constant external tilt F at temperature T . For simplicity we take V0(x) =

− sin(x) and η(x) = η0(1 − λ sin(x + 2πφ)), where |λ| < 1. φ determines the relative phase

shift between friction coefficient and potential. The correct Langevin equation for such

systems has been derived earlier from microscopic considerations [17] and is given by

ẋ = −
(V ′

0(x) − F )

η(x)
− kBT

η′(x)

(η(x))2
+

√

kBT

η(x)
ξ(t), (1)

where ξ(t) is a zero mean Gaussian white noise with correlation 〈ξ(t)ξ(t′)〉 = 2δ(t − t′). It

should be noted that the above equation involves a multiplicative noise with an additional

temperature dependent drift term which turns out to be essential for the system to approach

correct thermal equilibrium state in absence of nonequilibrium forces [18]. The quantity of

central interest in this work is the effective diffusion coefficient D given by

D = lim
t−>∞

〈x2(t)〉 − 〈x(t)〉2

2t
. (2)

In the absence of potential, D = kBT

η
(uniform η), is the usual Einstein relation. An exact

analytical expression for D and average current J in terms of the moments of first passage

time have been recently given [2, 4]. If the n-th moment of the first passage time from an

arbitrary point x0 to b is given by Tn(x0 → b) = 〈tn(x0 → b)〉, then

D =
L2

2

T2(x0 → x0 + L) − [T1(x0 → x0 + L)]2

[T1(x0 → x0 + L)]3
(3)
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For our problem (1), the moments of first passage time follow closed recursion relation

[2, 19].

Tn(x0 → b) =
n

D0

∫ b

x0

dxη̂(x)e
V (x)
kBT

∫ x

∞

dye
−V (y)
kBT Tn−1(y → b), (4)

with T0(y → b) = 1. Here V (x) = V0(x) − Fx, D0 = kBT/η0 and η̂ = η(x)/η0. η0 also

happens to be the average value of friction coefficient over a period.

By using Eq. (3) and Eq. (4), and some straight forward algebra, we get

D = D0

∫ x0+L

x0
dxI±(x)I+(x)I−(x)

[
∫ x0+L

x0
dxI±(x)]3

, (5)

where,

I+(x) =
1

D0

η̂(x)e
V (x)
kBT

∫ x

x−L

dye
−V (y)
kBT , (6a)

I−(x) =
1

D0

e
−V (x)
kBT

∫ x+L

x

dyη̂(y)e
V (y)
kBT . (6b)

The average current density J for this system has been derived earlier [12] which in term of

Eqs. (6) is given by

J = L
1 − exp(−LF/kT )

∫ x0+L

x0

dx
L

I±(x)
. (7)

The above expressions go over to the results obtained earlier for the case of space independent

friction (η(x) = η0, λ = 0) [2]. It should be noted that Eqs. (6) are applicable when

η(x) and V (x) have the same periodicity. Otherwise they have to be modified appropriately.

We obtain results for DC by numerically integrating Eqs. (6) using a globally adaptive

scheme based on Gauss-Kronrod rules. For the special case of V0(x) = 0 we get

D = D0(1 +
λ2

2

1

[(kBT

F
)2 + 1]

). (8)

We would like to mention here that in the absence of potential, DC explicitly depends on

system inhomogeneities ( via λ), however, steady current is independent of λ for the same

case [12]. F = 0 is the equilibrium situation and as expected D = D0, which corroborates

with the fact that frictional inhomogeneities cannot affect the equilibrium properties of the

system. In the high temperature regime, D = D0 as anticipated. For asymptotically large
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field, DC saturates to a λ dependent value. This is solely attributed to space dependent

friction. This somewhat surprising result also appears in the dependence of current on λ in

the presence of potential and high field limit [13, 15].

In our subsequent analysis all the physical quantities are expressed in term of dimension-

less units, DC is scaled with respect to D0 or V0/η0 and T is scaled with respect to V0, where

V0 is half the potential barrier height (which is one). Period of the potential, L = 2π.

III. RESULTS AND DISCUSSIONS

A. Diffusion Coefficient

Though the system response to the applied field is generally given by the stationary

current density J = L < v >, but this directed motion (or average position of the particle)

is accompanied by dispersion due to the inherent stochastic nature of the transport. It has

been shown previously that in a homogeneous medium this dispersion or diffusion becomes

very large (giant enhancement of DC) near the critical tilt. This enhancement in DC can

be order of magnitude larger than the bare DC in the absence of potential. We make a

systematic study of this phenomena in the presence of system inhomogeneities. Though our

parameter space is large, we restrict to a narrow relevant domain where we observe effects

which are surprising, and arise due to system inhomogeneities.
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FIG. 1: Diffusion coefficient (5) vs F for φ = 1.6π. Inset shows the suppression of DC for

inhomogeneous systems(λ = 0.9, φ = 0.5π, lower curve) as compared to the homogeneous systems.
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In fig. 1 we plot DC as function of external tilt F for different values of temperature

T (λ = 0.9 and φ = 1.6π). It can be seen from the figure that DC exhibits a maxima

as function of F . However, quantitative details depend sensitively on system parameters

such as φ, T and λ. It can readily noticed from the curves A and B that DC has been

enhanced by more than factor 2 as compared with the homogeneous case. On lowering the

temperature the relative enhancement of DC still increases. DC can also be suppressed by

properly tuning φ. For φ = 0.5π, DC near the critical field is suppressed by almost a factor

2 as compared to the homogeneous case ( shown in the inset). Thus one can enhance or

suppress DC near critical field by appropriately choosing the system parameters. It should

be noted that in the case of enhancement, friction coefficient is lower on the immediate left

side of the barrier and higher on the opposite side, where the relaxational motion takes

place. When the frictional profile is opposite to the above case, suppression in DC occurs.

When the phase difference between the two frictional profiles differ by π, then in one case

enhancement and in the other suppression of DC can be observed as compared with the

homogeneous case. Thus φ controls the fluctuations of first passage times, hence DC and

current.

Unlike the behavior in the homogeneous case (λ = 0) where for small values of T this

peak value occur exactly at F = 1 (critical field), here the peak position is very sensitive to

φ and can be shifted to either side of the bare critical field. Higher the temperature larger is

the deviation from the critical threshold. Fig. 2 shows this behavior, where we have plotted
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F
p

φ

T = 0.1
T = 0.01

FIG. 2: The value of F at which D/D0 peaks (Fp) versus φ at λ = 0.9.

the force at which diffusion peaks (Fp) as function of φ at λ = 0.9 for T = 0.1 and 0.01. For

7



T = 0.1 the peak can occur at as low as F = 0.8. The fact that F = 0.8 is away from critical

threshold, hence enhancement in DC in this regime has to be attributed to space dependent

friction. This is a clear example of system inhomogeneity affecting the dynamical evolution

of the particle nontrivially. This will be discussed at the end of this section to explain many

of our observations. We would also like to emphasize that critical threshold is not altered

at temperature T = 0 for our present case as shown earlier [12].

Since with increasing tilt the barrier to forward motion decreases (thereby reducing the

effect of exponential suppression of DC in the presence of periodic potential), therefore it is

natural to expect that D/D0 will increase with increasing F (for F < barrier height ). This

is amply reflected in ref. [2], which corresponds to our λ = 0 case. In the presence of space

dependent friction (λ 6= 0), D/D0 can show a minimum (as shown in fig. 3) with increasing

force ( for F < critical field ). This is surprising given the fact that current increases

monotonically with increasing field (which we have checked separately) as expected. To

observe this phenomena one has to properly choose the parameters. This is akin to the

phenomena of coherent transport, wherein, increase in current is accompanied by decrease

in DC. This we have discussed in detail in the later section as function of T , however, it is

observed here as function of F also.

 0.55

 0.8

 0  0.1  0.2  0.3  0.4  0.5

D
/D

0

F

T = 1.0
T = 0.88
T = 0.6

FIG. 3: D/D0 vs F for λ = 0.9 and φ = 0.84π. The figure highlights the minima in DC with F .

Next we proceed to present the most interesting consequence of space dependent fric-

tion coefficient in our simple model. Unlike the expected result where the diffusion

coefficient increases with temperature, here the diffusion can be suppressed by increas-

ing the temperature. Fig. 4 highlights this. Here we have plotted D as function of
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FIG. 4: D vs kBT for λ = 0.9 and φ = 1.4π and various values of F. The inset compares the

variation of D with kBT for λ = 0.9 with λ = 0.0. F = 0.98 in the inset.

T . D is scaled with V0/η0 as mentioned in the Sec. II. For the inset we have taken

φ = 1.36π and 1.44π at F = 0.98 and λ = 0.9. For homogeneous case (λ = 0), the minima

is absent and D increases monotonically with T . However, minima is clearly seen for the

case λ 6= 0. The observed suppression occurs when F is close to the critical field. In can be

clearly seen from the figure that as we go away from the critical field the minima in DC shifts

to higher values of temperature and importantly it becomes shallower. Below certain value

of F , minima and hence the suppression of DC disappears. The existence of the suppression

in DC is attributed to the competition between two time scales. First, noise driven escape

over potential barrier from the minima along the bias and the second time scale being the

relaxation into the next potential well from the barrier top [4]. It has been argued before

that the second time scale is weakly dependent on noise strength and has a small variance

as opposed to the first one. It is obvious that in transport processes when the second time

scale dominates over the first it is expected to result in suppression of DC as function of

noise strength (see for details ref. [4]). In the high temperature regime large thermal noise

leads to large variance in the second time scale as the random motion of the particle both

along and against the bias becomes equally important. Thus the DC increases as expected

for higher temperatures, hence minima in DC. It is to be noted that for the case where

φ = 1.4π, the friction coefficient η(x) is smaller near the barrier heights and moreover F
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being close to critical threshold makes Arrhenius barrier crossing time scale (first time scale)

smaller. As opposed to this, η(x) is higher between the barrier height and the next potential

minima along the bias thus slowing down the relaxation motion to the next minima. This

naturally enhances the dominance of the relaxation time scale over the barrier crossing rate.

This qualitatively explains our observed behaviour.
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FIG. 5: The figure compares current, DC and Péclet number ( from top to bottom) of the inho-

mogeneous system (λ = 0.99 and φ = 1.4π, left hand side figures) with that of the homogeneous

system (λ = 0, right hand side figures).

B. Péclet number and coherent motion

By coherent motion we mean large particle current with minimal diffusion. This property

can be quantified by the dimensionless Péclet number Pe defined as [4]

Pe =
L 〈ẋ〉

D
, (9)

where L 〈ẋ〉 is the average current density J . The expression for the current density is given

in Eq. (7). We make use of expressions (5 and 7) to calculate Pe. The parameter values
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at which Pe shows maxima correspond to the most coherent motion for that particular

model. Higher the Pe more coherent is the transport. It should be noted that the Pe can

show maxima though neither J nor D may show extrema. In fig. 5, we plot the current

J , diffusion coefficient D and the Péclet number Pe (from top to bottom) for both space

dependent (left column of fig. 5)and space independent friction (right column of fig. 5) cases.

The average friction coefficient over a period in inhomogeneous case equals to the value taken

for the homogeneous case. As pointed out earlier, though in the homogeneous case J and D

is monotonic increasing function of T , the péclet number shows a maxima, the maximum

value being very small compared to the space dependent friction case. For the chosen

parameter values in the space dependent friction case, DC shows a minima with T while the

current increases monotonically. Moreover the magnitude of this current is larger than the

corresponding current in the homogeneous friction case. This is indeed the most favorable

condition of transport where increasing current is accompanied by decreasing DC. This is

aptly reflected in the Pe, which shows enhancement (coherent motion or optimal transport)

by an order of magnitude as compared with corresponding uniform friction case. The Péclet

number is sensitively dependent on the phase factor φ and it can also be suppressed (diffusion

dominates the transport) which we have not reported here. Hence we can control the degree

of coherent motion.

IV. CONCLUSIONS

We have thus shown that both giant diffusion and coherent transport in a tilted periodic

potential is sensitive to the frictional inhomogeneities of the medium. To analyze this prob-

lem we have taken a simple sinusoidal potential and periodic frictional profile with same

periodicity but with a phase difference. Depending on the system parameters the value of

DC near the critical threshold and Péclet number (indicating coherence in the transport)

can be enhanced or decreased by an order of magnitude. Both these complimentary effects

are important for practical applications [2, 5]. The regime where we observe the optimal

transport is accompanied by decrease of DC with temperature, the aspect which is absent in

the corresponding homogeneous case. We have focussed on a restricted parameter regime to

highlight the most interesting results arising due system inhomogeneities, in systems with

simple potential. It is known that in the present model depending on system parameters
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current decreases with temperature, the effect akin to noise induced stability [20]. However,

in this regime we have not observed any dramatic effect on DC as well as Péclet number. It

is not clear whether noise induced stability (NIS) can enhance the coherence in the motion.

The phenomenon of stochastic resonance (SR) in absence external ac field [11]is seen in this

model. SR is characterized by the observation of peak in the particle mobility as function

of system parameters such as T and F in certain parameter space. The analysis of Péclet

number in this parameter space does not show any surprising features, so as to correlate

with SR. This is due to the fact that SR occurs in the hight T or high F regime, where

barriers to motion are absent. To observe the peak in the Péclet number the existence of

barrier seems to be essential. To clarify the relation between SR, NIS and Péclet number

one requires further detailed analysis.
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