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ABSTRACT

We formulate and solve the hydrodynamic equations describing an azimuthally symmetric galactic disk as
a two-fluid system. The stars and the gas are treated as two different isothermal fluids of different velocity
dispersions (C, > C,), which interact gravitationally with each other. The disk is supported by rotation and
random motion. The formulation of the equations closely follows the one-fluid treatment by Toomre. We
solve the linearized perturbation equations by the method of modes, and study the stability of the galactic
disk against the growth of axisymmetric two-fluid gravitational instabilities.

We find that even when both the fluids in a two-fluid system are separately stable, the joint two-fluid
system, because of the gravitational interaction between the two fluids, may be unstable. The ratio of the
gas contribution to the stellar contribution toward the formation of two-fluid instabilities is substantially
greater than pu,/u,, the ratio of their respective surface densities; this is due to the lower gas velocity
dispersion as compared to the stellar velocity dispersion (C, < C,). The two contributions are comparable
when the gas fraction (u,/y) is only ~0.10-0.25. Therefore, a galactic disk is a meaningful two-fluid system
even when the gas constitutes only 10 %,-209; of the total surface density. The ratio of the amplitude in the gas
to the amplitude in the stars is an increasing function of the wavenumber of the two-fluid perturbation.

The wavelength and the time of growth of a typical two-fluid instability in the inner galaxy, for
y/tts = 0.1-0.2, and ~2-3 kpc and ~2-4 x 107 years, respectively, and each of these contains gas of mass

4 x 107-10% M.

The two-fluid analysis presented here is applicable to any general disk galaxy consisting of stars and gas.
Subject headings: galaxies: internal motions — galaxies: structure — instabilities — interstellar: matter

I. INTRODUCTION

a) Observations and Motivation for the Two-Fluid Analysis

In the past seven years there has been a substantial
revision in the determination of the spatial distribution,
mean density, and mass of interstellar matter in the Galaxy.
This is primarily due to millimeter wave observations of CO
emission throughout the galactic plane which have shown that
molecular clouds (clouds in which the hydrogen is primarily
H,) contain a substantial portion of the total interstellar
matter (Scoville and Solomon 1975; Gordon and Burton
1976); these clouds are concentrated in the inner Galaxy with
a peak at a galactocentric radius, R, of 6 kpc (declining by a
factor of 4 out to the solar radius of 10 kpc, completely
unlike atomic hydrogen which varies only slightly from R = 5
to R =10 kpc). The molecular cloud distribution also has
an inner edge between 3 and 4 kpc with a minimum between
1.5 and 3 kpc. (We exclude the galactic center from discussion
here.)

The average gas density in the inner Galaxy is much higher
than previously believed based on H 1 data alone which
showed only ~0.4-0.5 H atoms cm ~ 3. The average H, density
based on *CO observations has been estimated at the peak
of the distribution to be 2.5 cm™ 2 by Solomon, Scoville, and
Sanders (1979) and by Liszt and Burton (1981). A recent
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determination of the density and scale height of the H,
distribution (Sanders, Solomon, and Scoville 1984) shows that
the surface density of molecular clouds is about 22 M, pc™?
at the peak of the distribution, or between 109 and 15%
of the total surface density estimated from dynamical models;
this is to be compared with 5 M pc™2 or 2-3% that was
previously found from H 1 alone. The scale height of the H,
is about half that of H 1. The recent CO observations of
external galaxies such as NGC 6936, IC342, M101, and NGC
891 (Young and Scoville 1981, 1982; Solomon 1981; Solomon
et al. 1983) show that the inner 5-7 kpc region has a very
high surface density of H,, with H, exceeding H 1 by as much
as an order of magnitude. Thus the quantity and the form of
interstellar matter in many galaxies are substantially different
from those expected based on H 1 data alone.

The chief characteristic of interstellar molecular matter, in
addition to its galactic distribution, is the confinement of most
of the mass to giant molecular clouds with individual masses
in the range 10°-3 x 10° M, sizes between 20 and 80 pc,
and H, density of 300 cm ™3 (Solomon, Sanders, and Scoville
1979; Solomon and Sanders 1980). Stark (1979), and Liszt
and Burton (1981) find a similar distribution of cloud masses
with slight differences at the low end. However, the main
characteristic—namely, that most of the mass is in the very
massive clouds—is agreed upon by all observers. These objects
are themselves held together by gravity rather than by pressure
equilibrium with an external intercloud medium. There is in
addition a-tendency of even these giant clouds to cluster in
regions of several hundred parsecs (Sanders and Solomon
1984), although a full analysis is not available.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


https://core.ac.uk/display/291507264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://adsabs.harvard.edu/abs/1984ApJ...276..114J

NN

3 IIZeI T

o

F1T9B2A

TWO-FLUID GRAVITATIONAL INSTABILITIES 115

In the past, nongravitational agglomeration models for the
buildup of gas clouds have been studied by Kwan (1979),
Scoville and Hersh (1979), and Cowie (1980). Cowie’s model
depends crucially on the existence of an underlying large-scale
spiral potential in the disk. These authors were interested
in the buildup of individual gas clouds (Mg ~ 10° Mg
and 1 < 50-60 pc). Elmegreen has developed gravitational
models that also employ a large-scale spiral potential
(Elmegreen 1979) and magnetic fields (Elmegreen 1982a, b)
for obtaining cloud clusters. Technically, both these models
have restricted spatial applicability in the disk.

The large average gas densities and segregation into
massive, dense objects suggest that self-gravitational forces
in the interstellar gas itself may be responsible for the
formation of these clouds and consequent star formation.
Yet when one applies the necessary criterion for the growth
of gravitational instabilities in a fluid (Goldreich and Lynden-
Bell 1965; Toomre 1964), one finds that the gas, at the
average spread-out density and observed velocity dispersion,
would be stable (see Appendix A for the details). The average
gas density, however, needs to be increased by only a small
factor (~2)—the actual value depends on the gas velocity
dispersion—before the gas becomes susceptible to the
formation of instabilities in it.

Now, the stars constitute the largest mass component of the
galactic disk, and therefore it is compelling to study the
effect on gas of the (stellar) gravitational potential associated
with the azimuthally symmetric distribution of stars in the
disk. Conversely, the existence of a significant mass fraction
in a cold fluid (the molecular ISM or the total ISM) will
influence the stability of the entire galactic disk including
the stars. The gravitational interaction of these two fluids
may play a determining role in the structure and evolution of
galactic disks. This is the primary motivation for this study.

In this paper we formulate the two-fluid scheme and obtain
the characteristics of two-fluid gravitational instabilities in a
galactic disk. In a subsequent paper (Jog and Solomon 1984,
Paper I1), we investigate the critical stellar velocity dispersions
and the formation of condensations in the gas in a two-fluid
galactic disk.

b) Contents

We approximate a galactic disk as a two-fluid system
wherein the stars are represented as an isothermal fluid and
the interstellar gas is represented as another isothermal fluid;
the two fluids interact gravitationally with each other. The
disk is supported by rotation and random motion.

In§ II, we formulate the hydrodynamic equations describing
the above two-fluid system for the local, axisymmetric (m = 0)
case. We solve the linearized perturbation equations by the
method of modes and obtain the dispersion relation for the
two-fluid system. We thus obtain the instability criterion for
two-fluid gravitational instabilities. The main result from these
calculations is that even when neither fluid is unstable by
itself, the two-fluid system—because of the additional
gravitational self-energy in the system resulting from the
gravitational interaction between the two fluids—may be
unstable.

In § III we study the characteristics of the two-fluid
gravitational instabilities, and obtain the growth rate and the
wavelength for the fastest growing perturbation at a particular

region in the Galaxy. We show that both the growth rate and
A4, the range of unstable wavelengths, are sharply increasing
functions of the fractional gas content in the disk. We also
compare a galactic disk treated first as a two-fluid system
with a disk consisting of two separate one-fluid systems.
Next, we study the relative contribution of the two fluids
toward the formation of the two-fluid gravitational instabilities.
We find that the ratio of the gas contribution to the stellar
contribution is much higher than the ratio of their surface
densities. Finally, we study the ratio of the amplitudes in the
two fluids as a function of the wavenumber of the two-fluid
perturbation.

Section IV contains a summary of the conclusions from
this paper.

Although the main motivation for this work was provided
by the observation of a widespread, clumpy gas distribution
(giant molecular clouds) in the Galaxy, the analysis presented
here deals with the entire two-fluid disk, and we treat both
the stars and the gas on an equal basis.

II. DERIVATION OF THE INSTABILITY CRITERION FOR
TWO-FLUID GRAVITATIONAL INSTABILITIES IN
A GALACTIC DISK

In this section we formulate the equations describing a
system consisting of two fluids which interact gravitationally
with each other. Next, we solve these equations in order to
study the gravitational stability of such a system.

a) Physical Parameters of the Disk

We assume that the stars in the galactic disk form an
isothermal fluid characterized by the following three param-
eters: g, the stellar surface density; C;, the isothermal sound
speed in the stellar fluid; and 2k, the z-scale height of the
stellar mass distribution. Similarly, the gas is assumed to be
another isothermal fluid characterized by the corresponding
parameters y,, C,, and 2h,.

We assume that hydrodynamic equations describe the
collective stellar dynamic behavior. The use of the hydro-
dynamic equations, and in particular the use of an isotropic
planar pressure term to describe the random motion of particles
in a collisionless system, is justified by the excellent qualitative
agreement and the substantial quantitative agreement between
a hydrodynamic approach and a distribution function
approach for treating the collective particle dynamical
behavior (Berman and Mark 1977 and references therein).
The main motivation for using the hydrodynamic approach
for the stellar fluid is the inherent simplicity involved since
one then has to deal only with the first two moments of
the Boltzmann equation.

We assume that the two fluids are distributed geometrically
in an infinitesimally thin disk which features both differential
rotation and random motion. The two fluids corotate with
each other. We do the local, linear axisymmetric perturbation
analysis for such a system.

We use the nonrotating cylindrical polar coordinates, r, 6,
z such that the z = 0 plane coincides with the central plane
of the disk, » = 0 coincides with the rotation axis, and 0 is
taken to be increasing along the direction of rotation. The
unperturbed angular velocity, surface density, and gravita-
tional potential are denoted by Qu(r), po(r), and ¢o(r),
respectively. We consider the perturbations which involve
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no motion in the z-direction. The perturbed quantities will
be denoted by ou(r, 0, t), d¢(r, 6, t), u(r, 6, t), and v(r, 6, ¢),
where v and v respectively denote the radial and the
circumferential disturbance velocity components. The above
perturbed quantities, with the exception of J¢, when
accompanied by the subscripts g and s, respectively represent
the parameters describing the gas and the stellar fluid. The
unperturbed surface densities for the gas and the stellar fluid
are given as y o and p, respectively.

The constituents of both the fluids undergo the elliptic-
epicyclic orbits under the general galactic rotation law. The
epicyclic frequency, «, is defined as:

k*=4B(B — A), (1)
where A and B are the Oort constants, derived locally at
each r, and are defined as:

A(r) = 3[Qo(r) — dV (r)/dr] ,

B(r) = 4Qq(r) + dV(r)/dr], (2)
where V(r) is the linear velocity of revolution and equals
r[Qo(r)]:

The following seven equations (3)-(9)—where i =s and g
yield equations (3), (5), (7) and (4), (6), (8), respectively—are
the linearized hydrodynamic equations for the two-fluid

gravitationally interacting system and govern the small
perturbation to the same:

0y u; + Qo(r)de u; — 2Q0(r)v; + (Ci20, 614;)/pio(r)

+ [0,(0¢s + 6¢,)).-0 =0, (3),(4)
0y 0; — 2B(r)u; + Qo(r)0y v; + {[06(0 + 6,)].=0}/r =
(5). (6)
0 0; + Qo(r)0g Opt; + O, pio(r)us] + [pio(r)us]/r
+ [tio(r)dpv]/r =0, (7),(8)

13,10, (50, + 66,))r} + 0.2(56, + 56)
= 4nG(Su, + o1)o(z) . (9)

Here, §(z) is the Dirac delta-function; the gravitational
force per unit mass is given by the positive gradient of ¢.

Equations (3) and (5) are the radial and the azimuthal
force equations, respectively, for the stellar fluid; and
equations (4) and (6) are the same for the gas. Note that each
fluid experiences the joint gravitational perturbation potential
(605 + 6¢,) due to both the fluids.

The continuity equations for the stellar fluid and the gas
are given respectively by equations (7) and (8); these are
taken to be independent since we expect little interconversion
of the material in the two fluids on a dynamical time scale.
Equation (9) is the joint Poisson equation for this
gravitationally interacting two-fluid system.

b) Solution of the Local, Linearized Perturbation Equations:
Derivation of the Dispersion Relation

Equations (3)-(9) are linear and homogeneous; therefore,
linear superpositions of solutions is allowed and these
equations can be solved by the method of modes.

We consider the axisymmetric (m = 0) case, hence the terms
involving derivatives with respect to 6, in equations (3)-(9),
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are set equal to zero. The trial solution for the perturbed
surface densities and the velocity dispersions is taken to be
their respective magnitudes, u,/, v,, ou,’, u/, vy, ou/—which
are small complex constants—multiplied by {exp [i(kr + wt)]},
where o is the angular frequency and k (=2m/A) is the
wavenumber, which is so chosen that kry > 27, in accordance
with the local nature of the perturbation scheme. This choice
of identical wavenumber k and identical angular frequency w,
in the trial solution for the perturbed parameters of each
fluid, enables us to consider the perturbations to the joint
two-fluid system.

With the above choice of trial solution, the Poisson
equation (eq. [9]) reduces (see Toomre 1964) to the following
form:

[0.(66s + 66,)).=0 = [—i2nG(Op, + Ops,)] - (10)

With the above choice of trial solution and the form of

Poisson equation given by equation (10), equations (3)-(8)
reduce to:

iou; — 2Qo(r)v;’ — i2nG (o, + ouy') + (lkC o) o =0,

( 1), (12)
iowv] —2Bu; =0, 13), (14)
iwdp; + ikuou =0, ( 5), (16)

where i = s and g give equations (11), (13), (15) and (12), (14),
(16), respectively. Solving equations (11)-(16) simultaneously,
we obtain the dispersion relation for the two-fluid system,
which is given next:

(0* — k? — kK*C;* + 2nGkpgo)(w? — k* — k*C,% + 2nGkpo)
— (2nGkpg)2nGkpy) =0 . (17)

The first set of parentheses in the first term in equation (17)
is clearly recognized as the dispersion relation for the stellar
fluid by itself (see Toomre 1964 for the dispersion relation
obtained for C;=0 case). Similarly, the second set of
parentheses contains the dispersion relation for the gas alone
(Lynden-Bell 1967; Hunter 1972; these authors assume
uniform rotation, hence they get 4Q? instead of x? in the
dispersion relation).

c) The Two-Fluid Instability Criterion

When w? > 0, the perturbations are oscillatory; conversely,
when w? < 0, the perturbations are unstable, in that they have
an unlimited growth. We next solve equation (17) to obtain
w? and thus find the unstable modes for the two-fluid system.
Let

k2 + k*C? — 2nGkug = o ,
k* + k*C,2 — 2nGkpyo = 0, ,
27[le'ls0 = ﬁs >
2nGkpy = B, - (18)

W1th the above definitions, o and a, are the solutions for
? in the star-alone and gas-alone cases Thus a, < 0 implies
that instabilities can exist in the stellar ﬂlIId by itself;
similarly, o, < 0 implies that instabilities can exist in the gas
by itself.
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On substituting equation (18) into equation (17), the two-
fluid dispersion relation reduces to:

(wZ - as)(wz - ag) - ﬂs ﬂg =0 )
that is,
o* — (o, + 0,) + (a0 — B By) =0 .
This is a quadratic equation in w?, and on solving it we get:
w? = w?(k)
= 2{(s + o) £ [(os + 0)* — Al — B By)1V2 . (19)

The additive root for w?(k) always leads to a positive
quantity, hence it indicates oscillatory perturbations under all
conditions; this can be clearly seen if we check the extreme
case when both fluids are unstable separately. In this case,
a; <0 and a, <0, which (on substituting for o, o,, B, B,
from eq. [18]3 means that

a0ty — By By = [(k* + K*C?ay, — (k% + kK*C,2)B] <O .

Equation (19) then gives a positive value for the additive
root of w?. In order to study the stability of the two-fluid
system, we therefore only consider the other solution for w?(k),
which is:

wz(k) = %{(as + o‘g) - [(’xs + “g)z - 4(°‘s Gy — Bs ﬁg)]llz} . (20)

This solution clearly shows a most interesting result for the
instability criterion. The perturbation to the joint two-fluid
system will be unstable, that is, w?(k) < 0, when

(as0ty — Bs By) <O (21)

From equation (21) it is clear that even when neither
fluid is unstable by itself to the growth of the perturbation
(k, w) so that a;, >0 and o, > 0, the joint two-fluid system
could still be unstable to the same perturbation. Clearly, the
gravitational interaction between the two fluids is responsible
for this additional help in establishing the two-fluid instabilities.
When either of the two fluids is in neutral equilibrium, so
that «; = 0 or a, = 0, the two-fluid system is unstable. This
can be easily verified by substituting, say, o, = 0 in equation
(20). Also, note that equation (21) gives the correct single-
fluid instability criterion in the limit of very low surface
density for the second fluid. For example, consider the case
of very low gas density, that is, u, —0, giving f,—0. On
substituting this value of f, into equation (21), the instability
criterion becomes a;a, < 0. From the definitions in equation
(18), a, = k* + k*C,* > 0. Therefore equation (21) reduces to
os <0, which is the one-fluid instability criterion for a
stellar disk. On doing further algebraic manipulations, the
two-fluid condition represented by equation (21) reduces to
a physically more transparent form:

2nGkpug, 2nGkpyo
K>+ k*C T Kk +k*C,?

>1. (22)

The relative contribution of each fluid to the instability is
clearly seen to be proportional to the surface density weighted
with the inverse of the effective velocity dispersion. Thus a
substantial contribution to the instability may be achieved by
a gaseous component with a low velocity dispersion or even
by a low velocity dispersion stellar component. The form of
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equation (22) clearly demonstrates that the combined two fluids
in a two-fluid system may be unstable even when both fluids
are separately stable.

d) The Effects of a Finite Disk Height

The perturbation analysis in § IIb needs modification
when account is taken of the height of the disk, which,
although finite, is still much smaller than the wavelength of
the perturbation.

The rotation and the random motion limited to the plane
of the disk are not affected by the finite height of the disk,
since the z-motion is unrelated to the motion in the plane
of the disk. The finite disk height, however, does result in
a reduction of the gravitational potential at z = 0, which is
equivalent to an effective reduction in y (Toomre 1964) by a
factor {[1 — exp (—Fkh)]/kh}, where 2h and k are respectively
the total scale height of the fluid and the wavenumber of
the perturbation.

It is a simple matter to see that even for the two-fluid
case, finite scale heights 2h; and 2h, for the stellar fluid and
the gas, respectively, lead to an effective decrease in the
surface density of the respective fluid by a factor
{[1 — exp (—kh,)]/khs}and {[1 — exp (—kh,)]/kh,}, respectively.

The modified form of equation (20) that takes account of
the reduction in the effective surface densities of the fluids due
to their finite scale heights is

w?(k) = 3{(o" + ) = [0 + ) — 4(o'e, — BBV

3)
where

a =Kk + k*C? — 2nGkpgo{[1 — exp (—khy))/khy} ,

a, = k> + k*C,? — 2nGkpuyof{[1 — exp (—kh,))/kh,} ,

By’ = 2mnGkuso{[1 — exp (—kh,))/khs}

By = 2nGkugo{[1 — exp (—khy))/kh,} . (24)
When 0 =0,

(k)= a | (25)

which is the one-fluid dispersion relation for the stellar
system (finite height case). Similarly, when p, = 0,

w’k)=ao, . (26)

which is the one-fluid dispersion relation for the gas (finite
height case).
With the finite height correction, equation (22) becomes

2nGk g ][1 — exp (—khy)]|

K2+ k2C,2 | kh,
2nGkpy, [[1 — exp (—khy)]|
s A1 (27
K2+ k2C7 | kh, >1.27)

The effect of the different scale heights on the validity of the
two-fluid perturbation analysis is discussed in Appendix B.

III. CHARACTERISTICS OF THE TWO-FLUID
GRAVITATIONAL INSTABILITIES

We first describe the values assigned to the various input
parameters (§ Illa). In § I11b, we plot the function w?(k) (as
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given in eq. [23], § 1Id) versus k [or, equivalently, w?(k)
vs. 47 1] to investigate its general behavior and to study the
characteristics of the resulting two-fluid instabilities. We also
compare the differences between a galactic disk treated first
as a two-fluid system and then as consisting of two separate
(noninteracting) one-fluid systems. In § IIlc we discuss the
relative contribution from the two fluids as a function of
1,/1t; and k. In § 11ld, we plot w® versus 2~ for a two-fluid
case which has four real k roots. In § Ille we study the
ratio of the amplitudes in the two fluids as a function of k.

While we adopt the rotation curve for the Galaxy, we
vary the values assigned to some parameters (in particular
the ratio of the gas surface density to the stellar surface
density) beyond their observed values. Hence the general
results derived in this section are applicable to any disk
galaxy.

a) Description of the Parameters in the Galaxy

The input parameters are: the epicyclic frequency x, and the
surface densities and velocity dispersions and scale heights for
the stars and the gas—that is, p,, Cq, 2h, u,, C,, 2h,.

The values of k, the epicyclic frequency, and p, (= u, + 4,),
the total disk surface density, as functions of R, the galacto-
centric radius, are adapted from the model of Caldwell and
Ostriker (1981). The actual value of y,(R) may be uncertain
at R~ 5 kpc by as much as 40-509 as shown by the
difference between the above model and those of Innanen
(1973).

Between R ~ 5 and 10 kpc, the observed average gas surface
densities in the galaxy (Sanders 1982; Sanders, Solomon,
and Scoville 1984), including both H, and H 1 corrected for
helium, fall in the range of 12-159 of the adopted total
disk surface density. This includes about two hydrogen
molecules per cm® as the average density at the midplane
between R = 5 and 8 kpc, a HWHM in z of 60 pc, yielding
{uy(H,)> =14 M pc™? and 3.5 M, pc™? for H1. At R =
6+ 0.5 kpc, p,(Hy) =22 Mg pc~ 2. These densities are un-
certain by about 509, primarily because of uncertain con-
version factors for translating '2CO and !3CO observations
to molecular hydrogen densities. However, the range of
conversion factors measured by various techniques restricts
the mean H, surface density to within a factor of 2 of the
value quoted above (Sanders, Solomon, and Scoville 1984;
Liszt and Burton 1981). For the purpose of this paper, we
simply consider gas surface densities ranging between 109
and 209, of the stellar surface density (u,/u, = 0.1-0.2).
Table 1 shows the actual densities used in our calculations.

We assume that the entire stellar component, with stellar
surface density containing all of the nongaseous disk density,
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e (=p — 1,), can be characterized by a single velocity
dispersion, C,. While the actual stars in the disk have a range
of velocity dispersions, we approximate the stars as one
component in order to demonstrate the effect of the very low
velocity dispersion gas.

The values of C, and 2h, are known observationally only
for the solar neighborhood. One can, however, theoretically
obtain C; as a function of h, or vice versa by noting that
the disk has to be in pressure equilibrium. We adopt the
disk pressure equilibrium criterion (DPEC) (see, e.g., Talbot
and Arnett 1975). For a system consisting of n-fluids, the
DPEC is given as

Ci Hn
Y (C) ' *3)

This criterion is applicable to a system of two or more
fluids whether or not the two (or more) fluids interact
with each other. Equation (28) is valid for the z-component
of velocity dispersion, whereas we need to use the planar
stellar velocity dispersion in the perturbation calculations for
the two-fluid system. In the solar neighborhood, the typical
value for (Cg)pianar/(Cs). ~ 1.75 (Mihalas and Binney 1981),
where (C)pianar is taken to be the average of the stellar
dispersion along the 7 and 0 directions. We adopt this
conversion ratio at all R.

C,, the sound speed in gas, is equal to the one-dimensional
cloud-cloud velocity dispersion. From H 1 observations, C, is
typically ~8 kms ™! (Spitzer 1978); and from H, observations,
a whole range of values from 4 km s~! (Stark 1979; Liszt
and Burton 1981) to 8 km s~! (Stark 1979) have been
suggested for C, in the plane. From the gaseous H, scale
height, Sanders, Solomon, and Scoville (1984) have found
C,=49 km s~ . It turns out that the actual value chosen
for C, (from the above suggested range) is immaterial for
most of the two-fluid cases considered here because k*C,* < k>
for the values of k of interest. We have set C; = 5 km s~ 1.

Solomon, Sanders, and Scoville (1979) find the H, gas
scale height (HWHM) to be approximately constant or slowly
increasing with R for 4.5 < R < 8.5 kpc with a mean value of
(60+9) pc. In our calculations, we set 2h,, the total
scale height, to be equal to the total scale height corre-
sponding to an 1/e falloff in the gas surface density and hence
2h, = 2(HWHM)/0.83 ~ 150 pc.

b) w? vs. A~ Plots: Comparison of Two-Fluid and
One-Fluid Cases

Each curve labeled S + G in Figures 1-2 represents a
plot of w? versus A~ ! for a two-fluid system, calculated

TABLE 1
ADOPTED PARAMETERS OF THE DIsk

Bg/uy =01 Hg/uy = 0.15 Hglts = 0.2
R ‘if » =y + A B b Hs Hy Hs Hg
(kpc) (kms~'kpc™')  (MgpcT?)  (MgpeT?) (MgpeT?) (MgpeT?) (Mgpe?) (MgpeT?) (Mgpe?)
6 e, 65 209 190.0 19.0 1817 273 1742 348
10 oo 39 82 745 75 713 10.7 68.3 137

* The values for x and y, are from Caldwell and Ostriker 1981.
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FIG. 1.—w? versus A™', for the stars-alone (S), the gas-alone (G) and the two-fluid (S + G) systems, when stars-alone system is in neutral equilibrium,
g/t =0.1. (@) k =39 km s™*, 4, =82 M pc™ % C,=228 km s™'. (b) k=65 km s~ kpc™ ', 4, =209 M pc™2, C,=347 km s~'. These parameters
correspond approximately to conditions at R ~ 10 kpc and 6 kpc, respectively. C, = 5 km s~ 1. Even when one component fluid is neutrally stable and the
other is stable, the joint two-fluid system is unstable. The growth rate of the most unstable mode, w,,., is higher at R =6 kpc (Fig. 1b) than at
R =10 kpc (Fig. 1a). ’

using equation (23). Each curve labeled S or G in these
figures represents the one-fluid dispersion relation for the
stellar fluid alone or the gas alone (eq. [25] or [26]),
respectively. For each curve, the perturbation mode (k, )
is unstable when w?(k) < O (see § IIc). The subcases a and b
in Figures 1-3 refer to galactic parameters at R ~ 10 kpc
and 6 kpc, respectively.

Figures 1 and 2 assume p,/u;=0.1. The curve labeled
S + G representing the interacting two-fluid case is drawn
at a total surface density, u,, equal to the sum of the surface

densities used for curve S and curve G (g, = p, + ). In
Figure 1, C, is determined, for both curves S and S + G,
by requiring that the stellar system by itself be in neutral
equilibrium. Figure 2 is similar to Figure 1, but both curves
S and S + G are determined by requiring that the two-fluid
system (curve S+ G) be in neutral equilibrium. Thus,
Figures 1 and 2 represent the same systems, but with
different stellar velocity dispersions. (C, is determined
numerically by plotting eq. [25] for Fig. 1 and eq. [23] for
Fig. 2 and ensuring that the two real k roots are nearly

2500 5000 [TT T T[T IrT T T 17T T 17T TT T T[T 11T
C S ]
2000 — — 4000 .
o C i o ]
'Q 1500 | 3 'S 3000 ]
3 b x C ]
T : o - 5
E 1000 — E 2000 — —_
o~ C k=39km s kpc™ ] N C ]
3 r = 82 Mgpc™2 5 3 r .
500 — e oP ] 1000 — k =65 kms™ kpc™t |
C pg/ps =0.10 : C 1= 209 Mopc™@ ]
] Hg/ps =010 ]
0 1 11t 1 LL i1 I L1 11 | | | 1 11 1 O 11 1 11 1 I L1 1 1 ] ! 11 gI FLI 1.1 1 I 111 1
0.00 0.25 0.50 0.75 1.00 125 1.50 0.00 0.25 0.50 0.7 1.00 1.25 1.50
A1 (kpe™) X! (kpc™)
FiG. 2a Fi1G. 2b

FIG. 2.—w? vs. A7, for the stars-alone (S), the gas-alone (G), and the two-fluid (S + G) systems, when the two-fluid system is in neutral equilibrium.
t/y =0.1. In (a) k=39 km s~ kpc™ !, 4, =82 Mg pc™?, C;=278 km s™". (b) k=65 km s™" kpc™!, y, =209 My, pc™?, C, =426 km s~ '. These
parameters correspond approximately to conditions at R ~ 10 kpc and 6 kpc, respectively. C, = 5 km s~ '. Even when both the fluids are separately stable,
the joint two-fluid system is in neutral equilibrium.
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coincident. A detailed discussion of neutral equilibrium is
given in Paper II [Jog and Solomon 1984].)

In each figure, the value of hy used in drawing curves S
and S + G is evaluated self-consistently using DPEC for a
system of one fluid (n =1, eq. [28]) and a system of two
fluids (n = 2, eq. [28]).

For the sake of convenience, we assume constant 2h,
(=0.15 kpc) and C, (=5 km s™') for all cases. This is
justified because kh, is small (~0.2) for the values of k of
interest and hence the finite height reduction factor for gas
(eq. [24], § 11d) is ~1.

The effect of the gravitational interaction between the two
fluids is substantial, as can be readily seen in Figures 1
and 2. From Figure 1, we see that even when the stellar
fluid is neutrally stable and the gas is stable, the joint two-
fluid system—because of the gravitational interaction between
the two fluids—does exhibit instabilities. From Figure 2, we
can see that when the two-fluid system is just neutrally
stable, both the fluids would be stable when considered
separately. These two results confirm the similar results
(namely, that eq. [21] may be satisfied even when o, >0
and/or o, > 0) derived analytically in § Ilc for a thin disk
case. Thus, the two-fluid system is more unstable (or tends
to be more unstable) than either of its component fluids.

The two-fluid instabilities in Figure 1 are limited to a certain
range over k; the range is rotation-limited at the lower k end
and pressure-limited at the larger k end. This behavior is also
seen in the case of one-fluid instabilities (Toomre 1964;
Goldreich and Lynden-Bell 1965).

The rate of growth for a given unstable mode (k, w) is
equal to [—w?(k)]'/?; call this |w|. T,, the e-folding time,
that is, the time required for growth by a factor e in the
density, is given by T, = [(10°/1.0227) x 1/|w|] years, where
 is given in units of km s~ ! kpc™!. For a given set of

2000 L DL A BN L R B A B

N
~— 1000 _
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a
x @
'n N
£ _
=
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3 - 4
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—-1000 1 1 1 1 l L1 11 I § I | l 11 1 1 | | I - I 1 1
0.00 0.25 0.s0 0.75 1.00 1.25 1.50
X' (kpc)
FIG. 3a

Vol. 276

values for the input parameters, let wpe, and kpe,y specify
the growth rate and the wavenumber, respectively, for the
fastest growing mode; clearly, this is the mode of interest
in the local, linear, axisymmetric perturbation analysis such
as the one considered in this paper.

From Figure la we obtain kye, = 2.5 kpc™! and wpe, =
249 km s ! kpc™! so that T,=39 x 107 yr. From
Figure 1b, we obtain k., = 3.1 kpc™' and wp., = 42.0 km
s™! kpc™! so that T, =2.5 x 107 yr. Note that wpe., the
rate of fastest growth, is greater at R = 6 kpc than it is at
R = 10 kpc; this is because the growth rate depends on the
absolute values of the surface densities of the gas and the
stellar fluid, both of which increase at lower R values.

A better demonstration of the effect of the gas on the
gravitational stability is obtained by comparing a one-fluid
stellar system with a two-fluid system which has the identical
total surface density. In Figure 3, the stellar density
(t4s)1-5 used in calculating the stellar fluid dispersion relation
is equal to the total surface density (u),., used in plotting
each of the two-fluid curves. The ratio p,/u; is set equal to
0.1, 0.15, and 0.2, respectively in the three two-fluid curves.
The curve with p,/u; =0 is drawn for the case when the
stellar system [with (u);.; = (4)2-s] is in neutral equilibrium.
The same value of C, is used in drawing each of the two-
fluid curves. The curve with p,/u; = 0 here can be thought of
as an extreme case of a two-fluid system where y,/u; = 0.

From Figure 3, we can see that even when a small fraction
(~0.10) of the density of a neutrally stable stellar system is
put in a cold fluid (that is, gas), the resulting two-fluid system
is unstable to the growth of perturbations over a wide range
of wavelengths.

The ratio p,/u; is a very important parameter in this
scheme. The maximum growth rate of the resulting two-fluid
instability is an increasing function of p,/u,, Also, A4, the
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F1G. 3a.—Influence of the gas content on the instabilities in a two-fluid disk. w? vs. A~ ! for the stars-alone system [(u,/u,) = 0] which has the same total
density as the two-fluid curves, the latter drawn for p,/u, = 0.10,0.15,and 0.20. k = 39 kms™ ' kpc™ "' and y, = 82 M, pc™ 2, giving pu,/ic = 2.1 M pc?/kms™ ' kpe ™!,
C, =252 km s~ '. Even when only a small fraction of the density is put in a cold fluid, that is, gas (u,/u = 0.1-0.2), an initially stable stars-alone system
becomes unstable. As a result of increasing gas fraction (u,/y,); the most unstable mode grows faster, the most unstable wavenumber shifts to higher k values,

and AA—the range over which two-fluid instabilities can occur—increases.

FIG. 3b.—Same as Fig. 3a but with higher u,/x = 32 Mo pc™2/kms™ ' kpc™ !, with x = 65km's™ ' kpc™ " and y, = 209 M pc™?, C; = 39.0 km s~ '. All the effects
of the gas on the instabilities are stronger than in Fig. 3a. The dramatic increase in A4 for p,/u, =02 in Fig. 3b is due to gas-alone approaching neutral
equilibrium. Also, for this curve, the growth rate of the most unstable mode is nearly constant between 7' = 0.3 kpc™' to 1.3 kpc™".
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range of wavelengths over which two-fluid instabilities can
occur, increases dramatically as p,/u is increased from 0.1
to 0.2; this fact is probably very important in the evolution
of the nonaxisymmetric perturbations. Note that the peak for
w? is nearly flat over a large range of wavelengths. This
means that although technically one can still define a unique
kpear; in reality, some other (nonlinear) mechanism may
indicate another neighboring wavenumber as the most
unstable mode. Indeed, the system may become unstable
over a whole range of wavelengths simultaneously. Therefore,
we expect gas-rich galaxies to show irregular features covering
a large range of characteristic wavelengths, all due to
gravitational instabilities.

Over moderate to high k values, most of the contribution
to the formation of two-fluid instabilities comes from gas and
this contribution is nearly independent of k (since kC, < x)
as we will show in § IIlc. This causes the nearly flat nature
of w?(k) over a large range covering intermediate to high k
values for high p,/u; as seen here.

On comparing Figures 3a and 3b, we find that both the
maximum growth rate of the two-fluid instability and AA
depend not only on pu,/u, but also on p,/k. In fact, the
nearer the gas-alone system is toward becoming unstable by
itself (as it is for p,/u; = 0.15 and 0.2 in Fig. 3b), the larger
are wpe, and AA. We illustrate this in Figure 4, where the
curves S and G represent the stars-alone and the gas-alone
dispersion relations for the parameters corresponding to the
curve S + G in Figure 3b. The curves S + G in Figure 4 are
identical with the curves S + G in Figure 3b. For the sake
of completeness we also include the case u,/u, = 0.25 (Fig. 4d).

Figures 4c and 4d respectively include the cases of gas-alone
very slightly stable and gas-alone moderately unstable. In
Figure 4d, AA, the range of unstable wavelengths for the
two-fluid system, extends from A ~ 0.4 kpc to about 5.0 kpc.
The most unstable wavelength is near the most unstable
gas-alone wavelength (at 4 ~ 0.7 kpc), and the rate of growth
is nearly constant between ~0.5 kpc and 3.0 kpc. In
Figure 4c, A extends from ~0.45 kpc to 5.00 kpc. The
maximum rate of growth is again constant over a large
wavelength region (between 0.8 kpc and 3.0 kpc); however,
the most unstable wavelength (4 ~ 2.0 kpc) lies near the most
unstable stars-alone wavelength in this case. In Figure 4b,
although the gas is having a strong influence on the two-
fluid instabilities in terms of the peak growth rates and A4,
the wavenumber for the two-fluid peak mode is well defined
and is essentially stellar. This is because the joint contri-
bution in this case peaks at low k as discussed in § IIlc.

The above results illustrating the importance of gas still hold
good even if one were to draw Figure 3 for an initially quite
stable stellar system. For example, if C; used were 1.5 times the
value necessary for neutral equilibrium for the stellar system
[(#s)1-r = ()25, the two-fluid system would become unstable
when u,/u; is only ~0.25. In this case, AL (for p,/u, ~ 0.30)
extends from ~0.6 to 3.0 kpc.

From Figures 1-4, we can see that a typical wavelength
(27/kpear) for a likely two-fluid instability is ~2-3 kpc, and
with p, as in Table 1, this yields the mass of gas in a
typical two-fluid instability: ~4 x 107 M 5-10% M.

From Figures 1-4, we can see that

(kpeak)s < (kpeak)l-f < (kpeak)g 5

TWO-FLUID GRAVITATIONAL INSTABILITIES 121

that is,
(K/Cs) $ (kpeak)Z-f S (K/Cg) . (29)

From these figures, especially Figure 4, we also see that for
higher p,/p; values, (kpeax)s-y shifts more toward higher k
values, thus approaching x/C,. The typical “low” and “high”
values of k (given respectively by x/C; and k/C,) in the galaxy
are ~(2-3) kpc™' and (8-16) kpc™!, respectively, which
correspond to wavelengths of 2-3 kpc and 400-800 pc.

As we will show in § Illc, the shift to high k in (Kea)s-s
occurs at high y,/u, and specifically when the gas contribution
dominates at all k so that the gas is primarily responsible
for determining the most unstable wavenumber; hence in this
case, (Kyeax):-y falls near x/C,. Note that such features
would be evident in both the gas and the stellar system. This
is a completely new range of wavenumbers for stellar system
features that is opened up for investigation solely due to the
two-fluid gravitational interaction inherent in the two-fluid
analysis. Such small-scale features (4 ~ 400-800 pc) are most
likely to be seen in gas-rich galaxies and irregular galaxies.
These features are also expected to occur at an early epoch
in all galaxies, when galaxies are expected to be gas-rich.
(See Paper II for a brief discussion of the connection between
general two-fluid instabilities and galactic spiral structure.)
Because of their large mass content, two-fluid instabilities will
have a significant effect on heating up the stellar fluid in a
galactic disk.

¢) Relative Contribution of the Two Fluids as a
Function of p,/us and k

Recall from § IId that the two terms on the left-hand side
of the criterion for the onset of two-fluid instabilities (eq. [27])
represent respectively the gaseous and stellar contributions to
the formation of two-fluid instabilities. Hence, the relative
contribution, y, from the gas compared to that from the stars
is given by:

y= .uy(Kz + kzcsz) ’hs[1 — €Xp ("khq)]l
u(2 + K2C,2) \h,[1 = exp (—khy)]| -

At any k, k* + k*C® > k* + k*C,? for C, > C,. Also, since
hs > h,, the ratio of the finite height reduction factors (given
by the term in braces in eq. [30]) is greater than 1. Hence, y is
greater than p /u at any k. In other words, the contribution
per unit surface density, y, is larger for the gas than it is for the
stars. Qualitatively, this point was noted earlier by Lynden-
Bell (1967).

For the two-fluid case shown in Figure la [with p,/u, = 0.1
and (kpear)z-y & 2.5 kpc™'], 7 (from eq. [30]) is ~0.33. Thus
the contribution to the formation of instabilities is dominated
by the stars in this case. Note, however, that the gas
contribution is as high as 339 of the stellar contribution,
even when the gas surface density is only about 109, of the
stellar surface density.

This effect is attributed mainly to the lower gas velocity
dispersion and to a much lesser degree to the lower scale-height
of the gas as compared respectively to the velocity dispersion
and the scale height of the stellar fluid. For low k(x/C; < k <
k/C,) the gas pressure term has a negligible effect on the total

(30)
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F1G. 4—Comparison of separate one-fluid systems with the joint two-fluid system, as a function of the gas fraction (u,/y,) for u,/u, = (a) 0.10, (b) 0.15,
(¢) 0.20, and (d) 0.25. For Figs. 4a-4d, x = 65 km s™"' kpc™!, y, =209 M, pc™?, C;=39.0 km s™', and C, = 5 km s~ '. The interaction of the two fluids is
an increasing function of the gas fraction, u,/u,. Note that even though the stars-alone curve is very similar in Figs. 4a and 4c, the two-fluid curve has
changed drastically—in the growth rate of the most unstable mode and in Ai—as a result of ~ 109 shift of matter from stars to gas.

gas contribution since k*C,* < k*. Hence, for this range of k,
equation (30) reduces to:

_ Hy(k* + K*C) [hy[1 — exp (—kh,)]|
V=T hfi—exp (<kh) 0 GV

The lower scale height for the gas (h, < h,) further helps
increase (though by less than ~109) the relative gas
contribution at each k.

On increasing the gas fraction by a factor of 2.5 to 0.25,
while keeping u,, Cs, and k constant, we find that the gas
contribution is increased by a factor of 2.5 while the stellar
contribution is lowered by a small factor (~15%), thus
yielding equal contributions from each fluid (y ~ 1). Thus,

the gas contribution dominates (y > 1), even at low k, for all
Uy/us > 0.25, for the above input parameters. This results
because the stars form a nondissipative (hence an in-
compressible) fluid while the gas is a compressible fluid. Hence
kC, < x at low k regardless of u,, and the relative contri-
bution y as given by equation (31) is correct even at
moderately large u,/u; (<1) because of the effective near-
independence of the velocity dispersion C, on the surface
density u,. The gas contribution dominates at the high k
values since C; > C, and since C,, is nearly independent of p,.
At the high k value of k = k/C,, y reduces to:

1y G2 [l — exp (—khy)]
T u 2C2 h )

(

(32)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1984ApJ...276..114J

L o128 13T

pJ

F1T9B2A

No. 1, 1984

The strong contribution from the gas to the two-fluid
instabilities in the “stellar k regime” (small k ~ k/C;) that
was seen above does not have its mirror equivalént in the
stellar contribution in the “gaseous k regime” (large k ~ x/C,).
Even neglecting the finite height correction (the braces in
eq. [32]), equation (32) gives y > 1 for u,/u, > 2C,*/C*. For
the set of parameters considered here, C, ~ 0.1-0.2C, giving
y > 1 for p,/u; > 0.08-0.025. Only when p/u, is extremely
large (>1/0.08-1/0.025 [>10]) can y be less than 1. Under
these restrictions, the two-fluid system is effectively reduced to
a one-fluid stars-alone system.

Thus, we can see that while the gas can affect the stability
of the two-fluid system at low k significantly even when the
gas fraction in the disk is only moderate (~0.1-0.2), the
converse is not true; that is, the stars cannot affect the
stability of the two-fluid system at large k, even at high
i1, (~10). Even though we have treated both the fluids on
an equal footing in the two-fluid analysis presented here, the
two fluids do not exhibit symmetric behavior. Because of their
high pressure and scale height, the stars have a negligible
effect in the gaseous regime.

d) w?(k) with Four Real Roots

On closely examining the expression for w?(k) for the two-
fluid case (eq. [20]), we find that it is a fourth order
equation in k. Therefore, in the most general case, the above
expression has four solutions for k. In each of the two-fluid
curves plotted in Figures 1-4, only two solutions for k are
real.

When all the four solutions for k are real, the plot of
? versus A~ ! would appear as shown in Figure 5. Figure 5
depicts the behavior of a two-fluid system for the case where
the two fluids interact feebly with each other and each fluid
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FI1G. 5.—w? versus 4~ ! for the two-fluid case with four real roots. The
parameters used for Fig. 5 are: k = 65 km s~ ! kpc™!, u =275 M pc™?,
u, =35 Mg pc™?, C;=63 km s™', C,=5 km s™', 2h =040 kpc,
2h, = 0.15 kpc. The large values of u, u, and C; restrict contribution
from the stars at high k and the gas at low k to be <159% of the total
contribution. The stellar and the gas contributions dominate at low k and high k
values, respectively.
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F1G. 6.—Logarithm of the amplitude in the gas to the amplitude in the
stars versus k, for parameters corresponding to Fig. 4c (curve a) and
Fig. 5 (curve b). In each case, the ratio of the amplitudes increases
monotonically with k. The gas amplitude exceeds the stellar amplitude beyond
k ~ 4.4 kpc™! (curve a) and k ~ 2.8 kpc™! (curve b).

by itself is near its respective neutral equilibrium. The wave-
numbers corresponding to the two fastest growing two-fluid
perturbations fall close to (ko), and (ko),, the neutral
wavenumbers for stars and gas respectively. The stellar and
gas contributions are seen to dominate strongly at low and
high k values, respectively, and each fluid contributes little
($10-159%) at the k, corresponding to the other fluid. In
fact, the values of the parameters used in plotting Figure 5
were “guessed,” keeping the above criteria in mind.

In order to arrive at the plot drawn in Figure 5, we had
to use rather unrealistically large values for u,, p, (and Cj),
as can be seen by comparing the list of parameters for Figure
5 with Table 1 of Paper II. Were the observed values for
these parameters to be used, one would get a plot of w?(k)
versus k that has only two real k solutions (see the curve
S+ G in Fig. 1b). This constitutes an additional indirect
evidence (corroborating earlier direct evidence, which con-
sisted of y ~ 0.33 for (kyeax)2-5 in Fig. 1a) that leads us to the
conclusion that the galaxy is a meaningful two-fluid system,
so that the two fluids do interact substantially with each
other and have comparable contributions to the formation of
two-fluid instabilities.

e) Comparison of the Amplitudes in the Two Fluids

The amplitudes (that is, the perturbations in the surface
densities) in the two fluids, for a given two-fluid perturbation
mode, are not independent. This is because of the coupling
of the two fluids that occurs via the force equation, as shown
next. We can, therefore, obtain the ratio of the amplitude in
the gas to that in the stellar fluid, dp,/du,, for a given two-
fluid mode (k, w). Here dp,/dp; is equal to du,' /o, the ratio
of the (time-independent) magnitudes of the perturbed surface
densities (see § I1b).
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The linearized perturbation equations for the stars in a two-
fluid system (egs. [11], [13], [15], § 11b) give:
I'tsO[znGk(alus, + 6#4;/)]
' = . 33
Ops [k + k°C% — w?] (33)
Similarly, the corresponding equations for the gas (egs. [12],
[14], [16], § 11b) yield:

, _ Hgo[2nGk(Sp + dp1,')]
g [Kz T kzcgz — wz]
Thus, the velocity dispersion of either fluid dictates its

response to the joint gravitational perturbation. Combining
equations (33) and (34), we obtain du,/dp (=0du, /ou,'):

Spy _ (Hg0 K2 + k2C;% — w? (35)
Sus \po) |K2 + K2C2 — 0?|”

Curves a and b in Figure 6 represent the plot of the
logarithm of the above ratio versus k, for the parameters
[including the output for w?(k)] describing the two-fluid curves
in Figure 4c (§ IIIb) and Figure 5 (§ IIId), respectively.
The above two cases represent the opposite extreme examples
of strongly interacting two fluids (Fig. 4c) and weakly inter-
acting two fluids (Fig. 5). From Figure 6, we see that, in each
case (Ou,/0u,) is a monotonically increasing function of the
wavenumber k. The gas amplitude is greater than the stellar
amplitude at high k while the reverse is true at low k.
The gas amplitude is dominant [ie, log (du,/du,) > 0]
beyond k ~ 4.4 kpc~! and 2.8 kpc™! for the curves a and b,
respectively.

Note that, for |w?| <x®+ k*C,?, the ratio of the
amplitudes (eq. [35]) is identical to y, the ratio of the con-
tributions from the two fluids (eq. [30], § Illc), neglecting
the finite height correction (that is, the term in braces in
eq. [30]). Now, for cases a and b, the wavenumbers at which
the amplitude in the gas equals the amplitude in the stars,
do have low associated |w?| (<x?), as seen from Figures 4c
and 5, respectively. Therefore, y is expected to be ~1 at these
wavenumbers. In fact, we do obtain y ~ 1.30 (at k ~ 4.4 kpc™!,
case a) and y ~ 1.00 (at k ~ 2.8 kpc™ !, case b), thus proving
that the amplitude in the gas exceeds the amplitude in the
stars when the gas contribution exceeds the stellar contri-
bution and vice versa. This is seen clearly in Figure 5, where
the wavenumber beyond which the amplitude in the gas
dominates (k ~ 2.8 kpc™ !, case b, Fig. 6)lies in the intermediate
k-range (of stable modes) which separates the low and high k
regions to which the contributions from the stars and the
gas respectively are nearly exclusively limited.

Equation (35) is valid only as long as (Su,/dus) < 1, as
explained in § IIla, Paper II. Equation (35) is important for
comparison with the observations of the amplitudes, of features
of same wavelength in the two fluids. However, due to the
nonlinear evolution of gas, the actual comparison with
observations is tricky and we do not attempt it here.
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IV. CONCLUSIONS

We have formulated a two-fluid scheme wherein the stars
and the gas in a galactic disk are represented as two isothermal
fluids and the two fluids interact gravitationally with each other.
The disk is supported by rotation and random motion. We
have studied the characteristics of two-fluid gravitational
instabilities.

The main conclusions from this paper are:

1. Even when both the fluids (that is, the gas and the
stellar fluid) in a two-fluid system are stable when considered
separately, the resulting joint two-fluid system may be neutrally
stable (Fig. 2) or even unstable to the growth of the two-
fluid gravitational instabilities (Fig. 4a). This is due to the
additional gravitational self-energy in the (two-fluid) system
resulting from the gravitational interaction between the two
fluids. The gas in a galactic disk, even when it is only a
fraction of the total surface density, affects the stability of the
entire disk including the stars.

2. For any galactic disk, the contribution per unit surface
density, u, toward the formation of two-fluid instabilities is
larger for the gas than it is for the stars. This is due to the
lower velocity dispersion of the gas compared to that of the
stars. Therefore, the galaxy at the current epoch is a meaningful
two-fluid system in that the contributions from the two fluids
are comparable for the observed gas fraction (u,/p, = 0.1-0.2).
At high wavenumbers, the gas contribution always dominates.

3. The ratio of the amplitude in the gas to the amplitude
in the stars is a monotonically increasing function of the
wavenumber of the two-fluid perturbation. For marginally
unstable or stable two-fluid modes (|w?| < k* + k*C,?), the
gas amplitude exceeds the stellar amplitude when the gas
contribution exceeds the stellar contribution and vice versa.

4. The wavelength of a typical two-fluid instability in the
inner galaxy [for gas fraction (u,/u,) = 0.1-0.2] is ~2-3 kpc.
The mass of gas in a typical two-fluid instability in the disk
is ~4 x 107-10® M. The addition of gas in our two-fluid
analysis reduces the wavelength even for the stellar system from
its one-fluid Toomre value.

In general the most unstable two-fluid wavenumber increases
with increasing gas fraction and lies between the limits
K/Cs < (Kpeax)2-y < K/C,. Both the stars and the gas will have
features with characteristic wavelengths 27/(kpeay),- ;. For the
Galaxy this corresponds to between ~2.5 and ~0.5 kpc.
This “new” range of wavelengths near that of the gas-alone
case (4~ 0.5 kpc) is expected in gas-rich galaxies and also
in all galactic disks in an early stage of their evolution.

The typical growth rate for a two-fluid instability in the
Galaxy is a few times 107 years. The rate of growth of the
most unstable two-fluid perturbation mode is an increasing
function of u,/u; and p,, the total disk surface density.

Because of their large mass content, two-fluid instabilities
will have a significant effect on heating up the stellar fluid in a
galactic disk.

APPENDIX A

SELF-GRAVITATIONAL FORCE IN THE GAS

Toomre (1964) and Goldreich and Lynden-Bell (1965) find that a given fluid that is uniformly distributed in a
flattened but finite height disk and that is supported by the random motion of the particles in the fluid and by the
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TABLE 2

SELF-GRAVITATIONAL FORCE IN THE GAS

R K Ho(H,) Hg(Hy) + py(H 1) (Hgorat” 0, at Q,° at
(kpc) (kms~'kpe™!) (Mg pc?) (Mg pe™?) (Mgpc™?) C,=5kms™' C,=8kms"!

4 89 6.6 9.6 134 221 3.54
S 74 11.8 14.8 20.7 1.20 1.92
[ T 65 17.3 20.3 28.4 0.77 1.23
T 57 122 152 21.2 0.90 1.43
8 49 8.5 11.5 16.1 1.03 1.64
9 44 5.1 8.1 11.3 1.29 2.06
10 oo 39 3.6 6.6 92 1.41 2.26

* The values for «k, the epicyclic frequency, are from Caldwell and Ostriker 1981.
® (Hg)owm = 1.4[1g(H,) + ,(H 1)], for 10% He number fraction.
¢ Q, = Toomre Q-factor for the stability of a gas disk

= ch/[3'366(lug)toml]'

differential rotation in the galaxy is gravitationally unstable to the growth of cylindrically symmetric perturbations in it if

oxC
(Aug )lotal = (%)

where (1) is the total observed surface mass density of the gas in the galaxy. The parameter & depends on the equation of
state of the fluid and on the ratio of the vertical scale height to the planar length-scale of the gravitational instability; the
value of  is ~1(£50%) for the different cases. For the semiquantitative analysis proposed here, we set § = 1. Equation (A1)
then reduces to

(A1)

kC,
=—2 A
% = (33660t ha] = (A2
where Q, is the Toomre Q-factor for the stability of one-fluid gas disk.

The total gas surface density (y,)on, including H,, H 1, and He components (with He being 109 by number fraction),
is given by 1.4[4,(H,) + w,(H 1)]. The observational values for y,(H,) are taken from Sanders, Solomon, and Scoville (1984)
and Sanders (1982). For H 1, we adopt a constant midplane density of 3 M pc™? (Burton 1976). In § IIla, we describe the
observed range of values for Cq in the disk. The last two columns in Table 2 list the values for Q, (eq. [A2]), given as a
function of R, for C; =5 km s™' and 8 km s~ 1, respectively.

These results for Q, show that, by itself, the gas in the Galaxy is not unstable to the growth of gravitational perturbations
in it, except perhaps for lower C, values (<5 km s~ ') for the intermediate region (R = 5-8 kpc) in the Galaxy. Even this
range, where the gas is more prone to becoming unstable, is further reduced (to R = 6-7 kpc) when the reduction (up to ~30%)
in the effective gas density due to the finite gas scale height is taken into account, and this range could vanish completely
since the observational data for u,(H,) is uncertain by as much as a factor of 2. Hence the above results suggesting the
possible existence of gas instabilities for the intermediate R-values in the Galaxy are too close to the satisfaction of the
instability criterion for them to be definitely reliable.

APPENDIX B
FINITE AND DIFFERENT SCALE HEIGHTS OF THE TWO FLUIDS

i) A thin disk of finite height cannot be converted to a closed geometrical distribution of matter (such as, for example,
a sphere or a series of concentric ellipsoids) by any series of geometric transformations. Hence the contribution of a disk
of finite height to d, 6¢ along the z = 0 plane can be nonzero. Applying the same argument separately to each of the two fluids
in a system of two fluids (with 2k > 2h,), it is clear that even when the two fluids have different scale heights, the radial force
component at z =0 due to the stellar fluid can be nonzero and hence it can affect the gaseous fluid via the force equation
and vice versa. This point is crucial in order that the fluids do interact gravitationally in the plane of the disk even though
they have different scale heights.

ii) Although two-fluid instabilities can exist even when the two fluids have different z scale heights, the instability analysis
in § II is strictly valid only for a subset of the possible modes, because of the following technical point.

The form of the Poisson equation (eq. [9]) and the resulting radial perturbation force at z =0 (eq. [10]) are strictly
valid for a thin disk, that is, when 2h < A, where A = the length scale of the instability.

This choice clearly fails in the extreme opposite limit when A < 2h. In this case physically it is clear that one is moving
into the Jeans regime, that is, to a three-dimensional homogeneous matter distribution, at least on a length scale of ~A. That
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equation (25); see § Ild. For (2h/4) — oo, this reduces to:

of the disk.

126 JOG AND SOLOMON

this is true mathematically also, can be checked easily. The dispersion relation for a one-fluid system (h # 0) is given by

w? = k? + k*C? — (2nGku/kh) = k* + k*C* — 4nGp , (B1)

which is the familiar Jeans relation, when «? is negligible. Here p = u/2h is the volume density and 2h is the total scale height

For an intermediate finite value of (h/1), the above choice is correct; however, the effective d¢ is lower due to the nonrigorous
choice of the Poisson equation and its solution. (Note that this decrease in the gravitational potential is over and above the
reduction implied by the effective reduction in the surface density due to the finite height).

For most of the two-fluid cases considered in this study, the fastest growing modes have wavelengths much larger than
2h, (> 2h,); hence the two-fluid analysis described here is accurate for these modes in which we are primarily interested.
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