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Abstract

We model the shape and density profile of the dark matter halo of the low surface
brightness, superthin galaxy UGC 7321, using the observed rotation curve and the
H i scale height data as simultaneous constraints. We treat the galaxy as a gravita-
tionally coupled system of stars and gas, responding to the gravitational potential
of the dark matter halo. An isothermal halo of spherical shape with a core density
in the range of 0.039 - 0.057 M⊙ pc−3 and a core radius between 2.5 - 2.9 kpc, gives
the best fit to the observations for a range of realistic gas parameters assumed. We
find that the best-fit core radius is only slightly higher than the stellar disc scale
length (2.1 kpc), unlike the case of the high surface brightness galaxies where the
halo core radius is typically 3-4 times the disc scale length of the stars. Thus our
model shows that the dark matter halo dominates the dynamics of the low surface
brightness, superthin galaxy UGC 7321 at all radii, including the inner parts of the
galaxy.
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1 Introduction

Since spiral galaxies are rotationally supported systems, disc rotation curves
generally serve as valuable tracers of the gravitational potential in the galactic
plane. Through traditional mass-modelling, the observed curve is routinely
used to infer the mass distribution of galaxies and hence their dark matter
contents (e.g. Begeman 1987; Kent 1987; Geehan et al. 2006). In contrast, the
thickness of the gas layer depends on the vertical gravitational force and thus
traces the potential perpendicular to the plane e.g.,(Narayan & Jog 2002a).

Recently, the rotation curve and the outer galactic H i flaring data have been
used together to probe the dark matter halos of a few galaxies. The rotation
curve mainly determines the mass enclosed within a given radius, and therefore
the power-law index of the density profile of the halo. The flaring curve, on
the other hand, determines its shape uniquely. So, both the constraints have
to be used on an equal footing to correctly determine the parameters of the
dark matter halo of any galaxy.

The H i scale height data coupled with the rotation curve has been used to
study the dark matter halos of NGC 4244 (Olling 1996) , NGC 891 (Becquaert
& Combes 1997) and the Galaxy (Olling & Merrifield 2000, 2001) in the past.
Narayan et al. (2005) studied the Galactic dark matter halo by rigorously
incorporating the self-gravity of the gas into their model for the Galaxy unlike
some of the previous studies given in the literature. They concluded that a
steeper-than-isothermal, spherical halo best fits the observations, the scale
height data at that time being available up to galactocentric distances of 24
kpc. These results were confirmed by Kalberla et al. (2007), who, however,
included a dark matter ring in their model to explain their extended H i scale
height data available till 40 kpc. In our previous work (Banerjee & Jog 2008),
we studied the dark matter halo of M31, where we developed a model similar
to the Galaxy (Narayan et al. 2005) . However, in addition, we included the
bulge into the model, and also varied the shape of the halo as a free parameter,
unlike the Galaxy case. Further, we fitted the rotation curve over the entire
radial range instead of pinning it at a single point like the Galaxy case. We
scanned the four dimensional grid of the four free parameters characterizing
the halo, in a systematic manner, and found that an isothermal halo of an
oblate shape of axis ratio q = 0.4 gives the best fit to the available data.

In this paper, we apply for the first time a similar approach to study the dark
matter halo properties of a low surface brightness (LSB) “superthin” galaxy:
UGC 7321. UGC 7321 is a bulgeless, pure disc galaxy of Hubble Type Sd, and
has a highly flattened stellar disc with a planar-to-vertical axis ratio of 10.3.
A few of its key properties are summarized in Table 1. The galaxy has an
extended H i disc, and the scale height data are available up to 6-7 disc scale
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Table 1
UGC 7321 Paramaters
a

Parameters Value

Aopt(kpc) 16.3 b

LB(L⊙) 1.0 × 109 c

MH i
(M⊙) 1.1 × 109 d

hR(kpc) 2.1 e

z0(pc) 150 f

µB,i(0)(mag arcsec−2) 23.5 g

vrot(kms−1) 105

Star formation rate (M⊙ per year for massive stars ≥ 5M⊙ ∼ 0.02

a All quantities are taken from Matthews et al. (1999) and Uson & Matthews (2003)
which assume d = 10 Mpc
b Linear diameter at limiting observed B-band isophote of 25.5 mag arcsec−2

c Blue luminosity
d H i mass
e disc scale length measured from R-band image
f stellar scale height obtained from an exponential fit
g Deprojected (face-on) central disc surface brightness in the B band, corrected for
internal and Galactic extinction

lengths (Matthews & Wood 2003). So it is highly suitable for the application
of the above method to probe its dark matter halo properties.

Based on traditional mass-modelling which only uses the observed rotation
curve as the constraint, it has been found that the late-type, low surface
brightness galaxies are generally dark matter dominated, often within the
inner portions of their stellar discs (de Blok & McGaugh 1997) . In the case
of UGC 7321, other lines of evidence have already suggested that it, too, is
a highly dark matter-dominated galaxy. It has large ratios of its dynamical
mass to its H i mass and blue luminosity, (Mdyn/MHI = 31 and Mdyn/LB = 29,
respectively; (cf. Roberts & Haynes 1994) , and an extraordinarily small stellar
disc scale height (∼150 pc for a distance of 10 Mpc based on an exponential
fit; Matthews 2000). These properties suggest the need for a massive dark halo
to stabilize the disc against vertical bending instabilities (Zasov et al. 1991) .

UGC 7321 is devoid of a central bulge component (Matthews et al. 1999) and
its molecular gas content appears to be dynamically insignificant (Matthews
& Gao 2001; Matthews & Wood 2001). We, therefore, model the galaxy as a
gravitationally coupled, two-component system of stars and atomic hydrogen
gas with the dark matter halo acting as a source of external force to this
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system. We use a four-parameter density profile for the dark matter halo (de
Zeeuw & Pfenniger 1988; Bequaert & Combes 1997): the core density, the core
radius, the power-law density index and the axis ratio of the halo being the four
free parameters characterizing it. We methodically vary the four parameters
within their respective feasible ranges, and try to obtain an optimum fit to
both the observed rotation curve and the vertical scale height data at the same
time. As we shall see, this method predicts a spherical, isothermal halo with
a core density of about 0.039- 0.057 M⊙ pc−3 and core radius of 2.5 - 2.9 kpc
for this galaxy.

The layout of the present paper is as follows. We briefly discuss the model in
§2, and in §3 the method of solving the equations and the input parameters
used is discussed. In §4, we present the results, followed by the discussion and
conclusions in §§5 and 6, respectively.

2 Description of the model used

2.1 Gravitationally coupled, two-component, galactic disc model

The galaxy is modelled as a gravitationally-coupled, two-component system of
stars and atomic hydrogen gas embedded in the dark matter halo, which ex-
erts an external force on the system while remaining rigid and non-responsive
itself. This is a simplified version of the Galaxy case (Narayan & Jog 2002b) ,
where a gravitationally-coupled, three-component system of stars, atomic and
molecular hydrogen was considered. Here, the two components, present in the
form of discs, are assumed to be axisymmetric and coplanar with each other
for the sake of simplicity. Also, it is assumed that the components are in a
hydrostatic equilibrium in the vertical direction. Therefore, the density distri-
bution of each component will be jointly determined by the Poisson equation,
and the corresponding equation for pressure equilibrium perpendicular to the
midplane.

In terms of the galactic cylindrical co-ordinates (R, φ, z), the Poisson equation
for an azimuthally symmetric system is given by

∂2Φtotal

∂z2
+

1

R

∂

∂R
(R

∂Φtotal

∂R
) = 4πG(

2∑
i=1

ρi + ρh) (1)

where ρi with i = 1 to 2 denotes the mass density for each disc component
while ρh denotes the mass density of the halo. Φtotal denotes the total po-
tential due to the disc and the halo. For a nearly constant rotation curve
as is the case here, the radial term can be neglected as its contribution to
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the determination of the H i scale height is less than ten percent as was noted
by earlier calculations Narayan et al. (2005). So, the above equation reduces to

∂2Φtotal

∂z2
= 4πG(

2∑
i=1

ρi + ρh) (2)

The equation for hydrostatic equilibrium in the z direction is given by Rohlfs
(1977)

∂

∂z
(ρi〈(v

2
z)i〉) + ρi

∂Φtotal

∂z
= 0 (3)

where 〈(v2
z)i〉 is the mean square random velocity along the z direction for the

ith component. Further we assume that each component is isothermal i.e., the
random velocity vz remains constant with z.

Combining eq. (2) and eq. (3), we get

〈(v2
z)i〉

∂

∂z
[
1

ρi

∂ρi

∂z
] = −4πG(

2∑
i=1

ρi + ρh) (4)

This represents a set of two coupled, second-order, ordinary differential equa-
tions which needs to be solved to obtain the vertical density distribution of
each of the two components. Although the net gravitational potential act-
ing on each component is the same, the response will be different due to the
different velocity dispersions of the two components.

2.2 Dark Matter Halo

We use the four-parameter dark matter halo model (de Zeeuw & Pfenniger
1988; Bequaert & Combes 1997) with the density profile given by

ρ(R, z) =
ρ0

[1 + m2

Rc

2 ]p
(5)

where m2=R2 + (z2/q2), ρ0 is the central core density of the halo, Rc is the
core radius, p is the power-law density index, and q is the vertical-to-planar
axis ratio of the halo (spherical: q = 1; oblate: q < 1; prolate: q > 1).
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3 Numerical Solution of the Equations & Input Parameters

3.1 Solution of equations

For a given halo density profile, eq. (4) is solved in an iterative fashion, as an
initial value problem, using the fourth-order, Runge-Kutta method of integra-
tion, with the following two initial conditions at the mid-plane (i.e., z = 0)
for each component:

ρi = (ρ0)i,
dρi

dz
= 0 (6)

As the modified mid-plane density (ρ0)i for each component is not known
a priori, the net surface density Σi(R), given by twice the area under the
curve of ρi(z) versus z, is used as the secondary boundary condition, as this
quantity is known from observations (see §3.2). The required value of (ρi)0

is thus determined by a trial and error method, which gives the required
ρi(z) distribution after four iterations with an accuracy to the second decimal
place. Existing theoretical models suggest a sech2 profile for an isothermal
density distribution. But for a three-component disc, the vertical distribution
is shown to be steeper than a sech2 function close to the mid-plane (Banerjee
& Jog 2007).However, at large z values, it is close to a sech2 distribution.
Hence we use the half-width-at-half-maximum of the resulting model vertical
distribution to define the scale height as was done in Narayan & Jog (2002a,b).

3.2 Input Parameters

We require the vertical velocity dispersion and the surface density of each of
the two galactic disc components to solve the coupled set of equations at a
given radius. The central stellar surface density is derived directly from the
optical surface photometry (Matthews et al. 1999) by assuming a reasonable
stellar mass-to-light ratio. The deprojected B-band central surface brightness
of UGC 7321 (corrected for extinction) translates to a central luminosity den-
sity of 26.4 M⊙ pc−2. Using the B − R color of the central regions (∼1.2;
Matthews et al. (1999) ) and the “formation epoch: bursts” models from Bell
& de Jong (2001) predicts (M/L)⋆ = 1.9, which we adopt here. (Other models
by Bell & de Jong give values of (M/L)⋆ ranging from 1.7 to 2.1). This in turn
yields a central stellar surface density of 50.2 M⊙ pc−2 for UGC 7321.

The stellar velocity dispersion of this galaxy has been indirectly estimated to
be 14.3 kms−1 at the centre of the galaxy (R = 0) (Matthews 2000). This is
very close to the value of the central (vertical) stellar velocity dispersion (16
kms−1) for the dwarf spiral galaxy UGC 4325 measured by Swaters (1999),
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Table 2
3D grid of dark halo parameters scanned

Parameter Range Resolution

ρ0(M⊙ pc−3) 0.0001 − 0.1 0.0001

0.001 − 0.5 0.001

Rc(kpc) 1.5 − 12 0.1

p 1 − 2 0.5

and to the value (20 kms−1) estimated analytically for the superthin galaxy IC
5249 by van der Kruit et al. (2001). We assume the central value of velocity
dispersion to fall off exponentially with radius with a scale length of 2 Rd

(which is equal to 4.2 kpc for UGC 7321) as is seen in the Galaxy (Lewis
& Freeman 1989). Uson & Matthews (2003) give the deprojected H i surface
density for UGC 7321 as a function of radius. The velocity dispersion of H i is
obtained from the Gaussian fits to the edges of position-velocity cuts on the
observed data. This gives a value between 7-9 kms−1. The data are consistent
to the typical value of the H i dispersion in other galaxies (See §5.2 for a
detailed discussion).

The molecular hydrogen gas, H2, has not been taken into account, as it appears
to be dynamically insignificant compared to the other components of the disc.
Matthews & Gao (2001) detected a weak CO signal from the central ∼2.7 kpc
of UGC 7321, which translates to a total molecular hydrogen mass of H2 ≈
2.3× 107 M⊙ (although this value is uncertain by at least a factor of 2-3 as a
result of uncertainties in optical depth effects and the appropriate value of the
CO-to-H2 conversion factor). This corresponds to a mean H2 surface density
of ΣH2 ≈ 1 M⊙ in the inner galaxy, which agrees fairly well with independent
estimates from the dust models of Matthews & Wood (2001) and from a study
of the distribution of dark clouds from Hubble Space Telescope images (J. S.
Gallagher & L. D. Matthews, unpublished). Therefore, the presence of H2 has
been ignored in subsequent calculations.

4 Results and analysis

We perform an exhaustive scanning of the grid of parameters characterizing
the dark matter density profile to obtain an optimum fit to both the observed
rotation curve and the scale height data. To start with, we consider a spherical
halo (q = 1) for simplicity.

We vary the remaining three free parameters characterizing the density profile
of the halo (see eq. (5)) within their respective feasible ranges (as summarized
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in Table 2), and obtain the contribution of the halo to the rotation curve for
each such grid point in this three-dimensional grid. The power-law density
index p is allowed to take the values 1, 1.5 and 2 successively. Here, a value of
p = 1 corresponds to the standard isothermal case used routinely for simplicity
and also because it corresponds to the flat rotation curve. The value of p =
1.5 refers to the NFW profile Navarro et al. (1996) at large radii, whereas p =
2 gives an even steeper dark-matter halo profile, as was found for the Galaxy
case Narayan et al. (2005). For each value of p, the core density ρ0 and the
core radius Rc are varied as given in Table 2 to ensure an exhaustive scanning
for the dark matter halo parameters since we have little prior knowledge of
the plausible values these parameters can take in a superthin galaxy.

4.1 The rotation curve constraint

The total rotational velocity at each radius is obtained by adding the contri-
bution from the stars, the gas and halo in quadrature as

v2(R) = v2
star(R) + v2

gas(R) + v2
halo(R) (7)

Here the way to obtain the different terms is discussed below. This result is
matched with the observed rotational velocity at all radii.

The deprojected gas surface density versus radius data for UGC 7321 (Uson
& Matthews 2003) can be modelled as one which remains constant at 5 M⊙

pc−2 at galactocentric radii less than 4 kpc, and which then falls off exponen-
tially with a scale length of 2.8 kpc. The gas surface density does not include
a correction for He. For this radial distribution, we calculated the contribu-
tion of the gas to the rotation curve (using eq. (2-158) & (2-160) of Binney
& Tremaine (1987)), and found it to be negligible compared to that of the
stellar component. However, it was included in the calculations for the sake
of completeness.

The rotational velocity at any radius R for a thin exponential stellar disc is
given by Binney & Tremaine (1987)

v2
star(R) = 4πGΣ0Rdy

2[I0(y)K0(y) − I1(y)K1(y)] (8)

where Σ0 is the disc central surface density, Rd the disc scale length and y =
R/2Rd, R being the galactocentric radius. The functions In and Kn (where
n=0 and 1) are the modified Bessel functions of the first and second kind,
respectively.
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For the spherical halo, the rotational velocity, vhalo(R), is given by

v2
halo(R) =

GMhalo(R)

R
(9)

where Mhalo(R), the mass enclosed within a sphere of radius R for a the
given halo density profile, and is obtained from the density as given by the
right-hand side of eq. (5).

For an oblate halo of axis ratio q and density index p, the circular speed
vhalo(R) is obtained by differentiating the expression for the potential from
Sackett & Sparke (1990), and Becquaert & Combes (1997) to be:

v2
halo(R) = 4πGρ0q

1/q∫

0

R2x2[1 + R2x2

R2
c
(1+ǫ2x2)

]−p

(1 + ǫ2x2)2
dx (10)

where ǫ = (1− q2)1/2. We obtain the value of the integral numerically in each
case.

Thus upon obtaining the rotation curve corresponding to each grid point, we
perform the χ2 analysis comparing computed to the observed H i rotation
curve. The observed rotation curve is taken from Uson & Matthews (2003)
and has 30 data points with very small error-bars (typically a few percent
of the observed velocity amplitudes even after accounting for systematic un-
certainties). It was derived by implicitly assuming a constant (Gaussian) H i

velocity dispersion of 7 kms−1. Ideally, we should have considered only those
grid points which give χ2 values of the order of 30 (i.e., the number of data
points) as those giving appreciably good fits to the observed curve Bevington
(1969). But we relax this criterion and choose a larger range of grid points
around the minimum i.e grid points which give χ2 values less than 300 for
applying the next constraint i.e the vertical H i scale height data. This allows
us to impose the simulataneous constraints (planar + vertical) on our model.
(See §4.3 for a discussion). So finally we get 36 grid points for p = 1, 80 for
p = 1.5 and 69 for p = 2 case. As we shall see later, the final set of best-fit
parameters obtained give reasonably good fits to both the observed rotation
curve and the scale height data.

4.2 The H i scale height constraint

For each value of p, we obtain the H i scale height distribution beyond 3 disc
scale lengths, for each of the grid points filtered out by the first constraint
as discussed in the previous section. Next we perform the χ2 analysis of our
model H i scale height versus radius curves with respect to the observed one
and try to fit our model to the observed data only beyond 3 disc scale lengths
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in keeping with the earlier studies in the literature (Narayan & Jog 2005;
Banerjee & Jog 2008). For M31, the surface-density and therefore the vertical
gravitational force due to the dark matter halo exceeds that of the disc only
in the outer regions (See Fig.6 of Banerjee & Jog 2008). As the disc dynamics
in this region are controlled by the halo alone, the above method helps us in
studying the effect of the halo on the scale height distribution, decoupled from
that of the other components. For the case of UGC 7321, at first we take the
gas velocity dispersion to be equal to 7 kms−1 . However it fails to give a good
fit to the observed data. Next we try both 8 kms−1 and 9 kms−1 successively,
but choose the latter for subsequent calculations as it gives much better fit to
the observed data as compared to the 8 kms−1 case.

For the choice of vz = 9 kms−1, the best-fit core density is 0.041 M⊙pc−3

and a core radius is 2.9 kpc, as indicated by the smallest χ2 value. The small
value of the best-fit halo core radius thus obtained indicates that the halo
becomes important already at small radii. This suggests that the fitting of
the theoretical curve with the observed one should not be restricted only to
regions beyond 3 Rd for an LSB galaxy like UGC 7321 as the halo is already
important at small radii. Hence, we next fit the scale height data over entire
radial range (i.e., 2-12 kpc) with the same constant vz value of 9 kms−1.
The best-fit values change by less than a few percent compared to the above
case where the fit was done only beyond 3 Rd. The best-fit core density now
becomes 0.039 M⊙pc−3 wheras the best-fit core radius continues to be 2.9 kpc.

Since the disagreement of the observed rotation curve with the predicted one
is mostly in the inner galaxy, we check if the fit can be improved by reducing
the central value of the stellar surface density by twenty percent or so, keeping
the vz value contant at 9 kms−1. This is reasonable as there are uncertainties
of at least that order in evaluating both the M/L ratio and the deprojected
surface brightness of the stellar disc. However, this variation fails to improve
the results significantly.

We then take a cue from the nature of the mismatch of our model curve with
the observed one, which clearly shows the need to use a higher value of gas
velocity dispersion in the inner parts, while a slightly lower value is required
in the outer regions. Also, the nature of the mismatch rules out an oblate halo
as a possible choice as that will lower the scale heights throughout the entire
radial range, thus making the fits worse in the inner regions. To account for
this, we then repeat the whole procedure by imposing a small gradient in the
gas velocity dispersion by letting it vary linearly between 9.5 kms−1 at R =
7 kpc and 8 kms−1 at R = 12.6 kpc. Although such a variation is ad-hoc, the
observational constraints on this value are weak enough to allow for a small
variation with galactocentric radius, with 9.5 kms−1 approaching the upper
limit allowed by the data. Using the same gradient in the inner regions, we get
a gas velocity dispersion of 10.8 kms−1 at R = 2 kpc. We may note here that
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a similar gradient in the H i velocity dispersion was obtained in the case of the
Galaxy (Narayan & Jog 2002b) and led to a better fit to the observed scale
height in the inner Galaxy (See §5 for a detailed discussion). A fit to the whole
range of observations (2 - 12 kpc) gives an isothermal halo of spherical shape
with a core density of 0.043 M⊙ pc−3 and a core radius of 2.6 kpc best fits
the observations. These values are only slightly different (within 10 percent)
from the values obtained with a constant velocity of 9kms−1.

In Fig.1, we give our best-fit for the case of constant vz = 9 kms−1, and the
case with a vz slightly falling with radius as compared to the fit to the rotation
curve alone, superimposed on the observed one. Our model curves follow the
trend of the observed data well throughout the entire radial range.
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Fig. 1. Plot of the rotational velocity (in kms1) versus radius (in kpc) for the best-t
case of a spherical isothermal halo and a constant gas velocity dispersion of vz = 9
kms1 (dashed line) and for the case of vz falling slightly with radius (dotted line)
superimposed on the best-t to the rotation curve alone. Overall, the model rotation
curves follow the trend of the observed data.

In Fig.2, we compare the best-fit scale height distributions for the above two
cases with the observed one. Clearly, the case with a gradient in gas velocity
dispersion gives a remarkably better fit (χ2 value 2.8), although as far as χ2

values are concerned, the case of constant vz = 9 kms−1 cannot be ruled out
altogether (χ2 value 14.7) (This is because basic statistics suggests that the
fit to the model is considered to be reasonably good if the χ2 value is of the
order of the number of data points in the fit as discussed earlier at the end of
§4.1. Here the total number of data points in the H i scale height data is 11.)
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Fig. 2. Plot of H i scale height (in pc) versus radius (in kpc) for the best-fit case
of a spherical isothermal halo with constant gas velocity dispersion (vz = 9 kms−1;
dotted line) and for vz declining slowly with radius (solid line). In this case, the
model curves have been fitted over the entire radial range. The model with constant
vz predicts an H i scale height distribution that does not reproduce the observed
values in the inner regions of the galaxy (R < 7 kpc). Assuming a slight gradient in
vz clearly gives a better fit

4.3 Quality of individual fits as a result of imposing two simultaneous con-

straints

We reiterate the fact that our method is aimed at obtaining an optimum fit to
both the observational constraints, namely the rotation curve and the HI scale
height data. This evidently results in a compromise in the quality of individual
fits to either of the observed curves (See Fig.1 & 2). Traditional mass modelling
techniques resort to the rotation curve constraint alone, and therefore the
fit is much better. However imposing two simultaneous constraints on the
theoretical model gives a more realistic picture than the case in which best-fit
is sought to a single constraint alone. It is noteworthy that even when the fit is
sought to the rotation curve alone, the best-fit Rc continues to be of the order
of RD which is tha main result of this work. However the ρ0 value obtained is
different in the two cases.

5 Discussion

The dark halo properties and overall stability of superthin galaxies like UGC 7321
are of considerable interest in the context of galaxy formation and evolution.
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In particular, such galaxies seem to pose a significant challenge to hierarchi-
cal models of galaxy formation, whereby galaxies are built-up through violent
mergers of subgalactic clumps since such mergers may result in significant disc
heating and trigger instabilities (e.g., D’Onghia & Burkert 2004, Eliche-Moral
et al. 2006, Kormendy & Fisher 2005). While theorists have predicted that the
thinnest galaxy disks must require massive dark halos for stabilization (Zasov
et al. 1991; Gerritsen & de Blok 1999), little information has been available
on the dark halo properties of individual superthin galaxies until now.

UGC 7321 is the first superthin galaxy for which both a detailed rotation
curve and the gas layer thickness were derived Uson & Matthews (2003). This
has allowed us to use both these constraints simultaneously to characterize its
dark halo properties, as well as to obtain new insight into the stability of its
disc against star formation. Below we comment further on the implications of
several of our key findings.

5.1 The small core radius of the dark matter halo

The core radii of the dark matter halos of massive high surface brightness
galaxies studied so far are usually found to be comparable to their optical
size, or equivalently, 3-4 times larger than the exponential stellar disc length
Gentile et al. (2004). The Galaxy has a core radius of 8-9.5 kpc which is equal
3Rd (Narayan et al. 2005) while M31 has a core radius equal to 21 kpc which
is almost equal to 4Rd (Banerjee & Jog 2008). For UGC 7321, we find a very
small core radius of 2.5-2.9 kpc, which is just slightly greater than its disc scale
length (Rd = 2.1 kpc). This shows that the dark matter becomes important
at small radii consistent with previous mass-modelling of LSB spirals, based
on other techniques (de Blok & McGaugh 1997; de Blok et al. 2001). This
is illustrated in another way in Fig.3, which gives a comparative plot of the
surface-density of the stars, gas and the halo with radius in this galaxy. The
halo surface density was calculated within the total gas scale height as was
done for M31 (Banerjee & Jog 2008). It clearly shows that the surface-density
and hence the gravitational potential of the halo becomes comparable to that
of the disc already at R = 2Rd. This behaviour is quite different from that
of a high surface density galaxy like M31 (cf Fig.6, Banerjee & Jog 2008),
where the halo contribution starts to dominate at much larger radii (5Rd).
Our results support the idea that superthin disks like UGC 7321 are among
the most dark matter-dominated of disc galaxies.
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Fig. 3. Plot comparing the surface-density (in M⊙ pc−2) of the stars, gas and the
dark-matter halo as a function of radius (in kpc). It clearly shows that the gravi-
tational potential of the halo dominates over that of the disc as early as two disc
scale lengths (r = 4 kpc)

5.2 Dependence on gas parameters

• Gradient in gas velocity dispersion As noted earlier, if we impose a con-
stant velocity dispersion, we require a value of 9 kms−1 to get a reasonably
good fit to the observed scale height data, while an even better fit requires a
velocity gradient implying even larger dispersion in the inner region (Fig.2).
In the earlier work for the Galaxy (Narayan et al. 2005), a slope of -0.8 kms−1

kpc−1 for the gas velocity dispersion was obtained for the inner Galaxy be-
tween 2-12 kpc (pinned at 8 kms−1 at 8.5 kpc) as it gave the best-fit to the
nearly constant H i scaleheights. Oort (1962) had tried the same idea but had
needed a higher gradient of -2 kms−1 kpc−1 since he did not include the gas
gravity and therefore needed a larger variation to account for the constant
H i scaleheight in the inner Galaxy. Narayan et al. (2005) tried to constrain
the halo properties using the outer galaxy H i data, where they had used gas
velocity gradient of -0.2 kms−1 kpc−1. This is similar to the value we have
for UGC 7321. This was based on the fact that some galaxies show a falling
velocity dispersion which then saturates to 7 kms−1 (See Narayan et al. 2005
for a discussion). Recently, Petric & Rupen (2007) have measured the H i

velocity dispersion across the disc of the face-on galaxy NGC 1058. The au-
thors find the H i velocity dispersion to have a fairly complex distribution,
but nonetheless show a clear fall-off with radius (see Fig.8 of their paper).
Using this figure, one can estimate a gradient of roughly -0.1 kms−1kpc−1 in
the outer disc, which is consistent with values observed for other galaxies. A
similar fall-off has also been seen in NGC 6946 (Boomsma et al. 2008) as well
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as in several other galaxies (Bottema et al. 1986; Dickey et al. 1990; Kamphius
1993). So this gives some observational support to our assumption.

• Superposition of two HI phases

A more realistic case would be to treat the HI as consisting of two phases or
components, characterized by a warm (vz = 11 kms−1) and a cold medium
(vz= 7 kms−1) respectively. These values match the range seen in the above
fits and represent the two phases as observed in the Galaxy (Kulkarni & Heiles
1988). However,observationally the fraction of mass in these two phases as a
function of radius is not known. Assuming that this fraction is constant with
radius, we let its value vary as a free parameter.

The best-fit χ2 in this case is 13.7 as compared to 2.8 for the case with a
velocity gradient treated earlier. Although we do not get as good a fit as was
obtained in the case where there is a gradient in the velocity, the best-fit core
radius Rc still comes out to be 2.5 kpc which is again of the order of RD.
That the dark matter dominates at small radii therefore still remains a robust
result irrespective of the input gas parameters used. The best-fit case gives
the fraction of HI in the cold medium to be 0.2.

We had taken this ratio to be constant for simplicity. Interestingly, this as-
sumption is justified by the recent detailed study by Dickey et al. (2009)
involving absorption and emission spectra in 21 cm in the outer Galaxy. They
use this to map the distribution of the cold and warm phases of the HI medium,
and surprisingly find this ratio to be a robust quantity in the radial range of
Rsun to 3 Rsun. They find this ratio is ∼ 0.15 − 0.2, which agrees well with
the best-fit ratio 0.2 that we obtain. It is interesting that this ratio obtained
by two different techniques is similar in the two galaxies.

The case with a gradient with a higher velocity dispersion within the optical
radius gives the lowest χ2 value (Fig.2), which we adopt as our best case.
We note that this choice is not inconsistent with the constant phase ratio
measured by Dickey et al. (2009) which was for the outer Galaxy.

• High value of the gas velocity dispersion

The high gas velocity dispersion required to get an improved fit to the scale-
height data is surprising given the superthin nature of the galaxy, whose small
stellar scale height implies that it is among the dynamically coldest of galactic
disks (e.g., Matthews 2000).

The origin of this high gas velocity is beyond the scope of this paper. How-
ever, independent of its origin, this high value of the gas velocity dispersion can
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partly explain why star formation is inefficent in UGC 7321. This is because,
to first order, a higher gas dispersion will tend to suppress star formation since
Toomre Q criterion ( Q < 1) is less likely to be satisfied, hence the disc is less
likely to be unstable to star formation.

6 Conclusions

We have modelled the LSB superthin galaxy UGC 7321 as a gravitationally-
coupled system of stars and H i gas, responding to the gravitational potential
of the dark-matter halo, and used the observed rotation curve and the H i

vertical scale heights as simultaneous constraints to determine the dark halo
parameters. We find that the best-fit gives a spherical, isothermal halo with a
central density in the range of 0.039-0.057 M⊙ pc−3 and core radius of 2.5-2.9
kpc. The value of the best-fit core density is comparable to values obtained for
HSB galaxies. The core radius is comparable to that of the disc scale length
unlike HSB galaxies studied by this method, implying the importance of the
dark-matter halo at small radii in UGC 7321. Thus we find that UGC 7321
is dark matter dominated at all radii, and the results of our analysis support
the idea that the thinnest of the galaxies are the most dark matter dominated.
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