Reduction of 1,4-dichlorobut-2-yne by titanocene to a 1,2,3-butatriene. Formation of a 1-titanacyclopent-3-yne and a 2,5-dititanabicyclo[2.2.0]hex-1(4)-ene

Vladimir V. Burlakov, ${ }^{a}$ Perdita Arndt, ${ }^{b}$ Wolfgang Baumann, ${ }^{b}$ Anke Spannenberg, ${ }^{b}$ Uwe Rosenthal, ${ }^{\text {, }}{ }^{b}$ Pattiyil Parameswaran ${ }^{c}$ and Eluvathingal D. Jemmis* ${ }^{c}$
${ }^{\text {a }}$ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 117813, Moscow, Russia. Fax: + 7 0951355085; Tel: + 70951359252 ; E-mail: vvburl@ineos.ac.ru
${ }^{b}$ Leibniz-Institut für Organische Katalyse an der Universität Rostock e.V., Buchbinderstr. 5-6,
D-18055 Rostock, Germany. Fax: +49 3814669376; Tel: (int.+49)3814669376;
E-mail: uwe.rosenthal@ifok.uni-rostock.de
c School of Chemistry, University of Hyderabad, Hyderabad 500 046, India. Fax: +91 4023010917; Tel: +914023010221; E-mail: edjsc@uohyd.ernet.in

Received (in Cambridge, UK) 4th May 2004, Accepted 2nd July 2004
First published as an Advance Article on the web 11th August 2004

The 2,5-dititanabicyclo[2.2.0]hex-1(4)-ene (bis-titanocene- μ-(Z)-1,2,3-butatriene complex) (3) is formed starting from $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3}\right)\right]$ by in situ generated titanocene and 1,4-dichlorobut-2-yne via the 1-titanacyclobut-3-yne (2).

The complexation of titanocene with butatriene was described by Maercker, but the suggested structures resulting from $\mathrm{Me}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CMe}_{2}$ and " $\mathrm{Cp}_{2} \mathrm{Ti}$ " gave further reactions with CH -activation to yield more stable complexes. ${ }^{1}$ Suzuki and coworkers recently reported 1 -zirconacyclopent-3-ynes, formed from a divalent zirconocene-equivalent " $\mathrm{Cp}_{2} \mathrm{Zr}^{\prime}$ (generated by the Negishi reagent, $\left[\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}\right]$ and 2 equivalents of n - BuLi) with 1,4-disubstituted (Z)-butatrienes $\mathrm{RHC}=\mathrm{C}=\mathrm{C}=\mathrm{CHR}\left(\mathrm{R}=\mathrm{Me}_{3} \mathrm{Si}\right.$, t - Bu). ${ }^{2}$ In the reaction mixture of $\left[\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}\right], 1,4$-dichlorobut-2-yne and 2 equivalents of magnesium, even the coordination of an unsubstituted butatriene $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ with the " $\mathrm{Cp}_{2} \mathrm{Zr}$ " formed, to give 1 -zirconacyclopent-3-yne was realized. ${ }^{3}$ Closely related 1-metallacyclopenta-2,3,4-trienes (five-membered metallacyclocumulenes) ${ }^{4}$ were obtained in reactions of 1,3-butadiynes $\mathrm{RC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CR}$ by using the excellent metallocene sources $\left[\mathrm{Cp}_{2} \mathrm{M}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3}\right)\right] .{ }^{5}$ Both types of rather exotic metallacycles were discussed and compared by calculations ${ }^{6}$ and prompted us to report here on the first results of reactions of $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\eta^{2}-\right.\right.$ $\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3}$] with $\mathrm{ClCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$.
Compound $\mathbf{2}$ is formed by the reaction of two equivalents of $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3}\right)\right]$ (1) with $\mathrm{ClCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}$ together with the liberation of $\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3}$ and $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ (Scheme 1). \dagger.
The composition of the diamagnetic complex 2 was verified by analytical and spectral data and by reaction with a second " $\mathrm{Cp}_{2} \mathrm{Ti}$ ". The ${ }^{1} \mathrm{H}$ NMR $\left(\delta\left(\mathrm{CH}_{2}\right) 3.03\right)$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals $\left(\delta\left(\mathrm{CH}_{2}\right)\right.$: 51.2; $(\mathrm{C} \equiv \mathrm{C}) 106.9 \mathrm{ppm}$ and the IR data $\left(v(\mathrm{C} \equiv \mathrm{C}) 2029 \mathrm{~cm}^{-1}\right)$ of complex 2 correspond very well to those of the analogous zirconium complex (${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CH}_{2}\right) 2.73 ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ $\left(\mathrm{CH}_{2}\right): 38.64$; $(\mathrm{C}=\mathrm{C}) 102.45 \mathrm{ppm}$ and $\mathrm{IR}\left(v(\mathrm{C}=\mathrm{C}) 2018 \mathrm{~cm}^{-1}\right) .{ }^{3}$

The molecular structure of 2 represents a resonance structure between a 1-titanacyclopent-3-yne $\quad\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\eta^{2}-1,2,3,4-\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2}\right)$] and a titanocene- η^{4} - (E)-butatriene complex $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\eta^{4}-(E)-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right)\right]$ as discussed before for the analogous zirconium complex, ${ }^{3,6}$ containing chelating σ-propargyl or π-allenyl structural elements. ${ }^{7}$
Complex 2 reacts with $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3}\right)\right]^{5}$ to form

Scheme 1 Preparation of complexes.
complex $\mathbf{3}$ which can also be obtained by a $3: 1$ reaction of $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC}_{2} \mathrm{SiMe}_{3}\right)\right]$ with $\mathrm{ClCH}_{2} \mathrm{C}=\mathrm{CCH}_{2} \mathrm{Cl}$ (Scheme 1). $\$ \boldsymbol{\square}$ The X-ray crystal structure analysis of 3T((Fig. 1) revealed two bent titanocenes which are bridged symmetrically by a "zig-zag" C4-ligand. The four carbon and two titanium atoms are in a plane with a mean deviation of $0.0017 \AA$. The central bond of the C_{4}-ligand is coordinated to both titanium centers, unsymmetrically for each titanium atom [C1-C(1A) 1.325(5); C1-Til 2.152(3); $\mathrm{C}(1 \mathrm{~A})$-Til $2.268(3) \AA$], whereas each of the methylene groups is coordinated to only one Ti atom [C2-Til 2.167(3); $\mathrm{C} 1-\mathrm{C}(2 \mathrm{~A})$ $1.443(4) \AA$. . By this coordination a bonding mode is formed with a $\mathrm{C} 1-\mathrm{C}(1 \mathrm{~A})-\mathrm{C} 2$ angle of $135.1(3)^{\circ}$.

The molecular structure of $\mathbf{3}$ is represented by the resonance structures of a butynediyl-bridged σ-propargylic complex (A) and a butatriene-bridged π-complex (B), but in contrast to complex 2 here in a bridging mode (Scheme 2). ${ }^{6}$ Despite that, the structure of 3 as a μ-trans-butatriene complex is best described as a dititanabicycle (C) in analogy with μ-trans-butadiyne complexes (D), formed by analogous titanocene complexation of 1-titanacyclopenta-2,3,4trienes (five-membered titanacyclocumulenes) ${ }^{4}$ (Scheme 3). ${ }^{5} \mathbf{3}$ is not a σ-propargyl or a π-allenyl complex ${ }^{6,7}$ and is also different from the "bridged allylic" structures found in μ-butatrienebis(tricarbonyliron) complexes ${ }^{8 a}$ or substituted butatriene dianion dilithium, ${ }^{8 b} \mu$-butyne-1,4-diyl ${ }^{8 b}$ structures as well as μ-butadiyne complexes with $\mu-\left(\eta^{2}, \eta^{2}\right)-(\mathrm{PhC}=\mathrm{C}=\mathrm{C}=\mathrm{CPh})$ units. ${ }^{8 c}$

Fig. 1 Molecular structure of complex 3. Hydrogen atoms except the H -atoms of the C_{4}-ligand are omitted for clarity. The thermal ellipsoids correspond to 30% probability.

Scheme 2 Resonance structures of complex 3.

Scheme 3 Formation of μ-butadiyne complexes (D).
We have studied the structure and bonding of these molecules using Density Functional Theory calculations (B3LYP/ LANL2DZ). ${ }^{9}$ The calculated geometrical parameters are in close agreement with the experimental structure. The bonding in $\mathbf{3}$ is best described by treating the bridging ligand as formally $\left[\mathrm{H}_{2} \mathrm{CCCCH}_{2}\right]^{(-4)}$ species, making $\mathrm{Ti}(+4)$. The $\mathrm{C} 1-\mathrm{C}(1 \mathrm{~A}) \pi$ bond perpendicular to the $\mathrm{TiC}_{4} \mathrm{Ti}$ plane does not interact substantially with the metals. The remaining eight valence electrons of the $\left[\mathrm{H}_{2} \mathrm{CCCCH}_{2}\right]^{(-4)}$ ligand occupy four in-plane delocalized orbitals resulting from the interaction with the $\mathrm{Cp}_{2} \mathrm{Ti}$ fragment orbitals. The bonding here is very similar to that in the μ-trans-butadiyne complex $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{HCCCCH}) \mathrm{TiCp} 2\right]$ (type \mathbf{D}) except that $\mathbf{3}$ has an ethylenic π bond in place of the trans-butadiene of the butadiyne complex. ${ }^{10}$ A $C_{2 v}$ isomer of 3 derived directly from the complexation of the middle $\mathrm{Cl}-\mathrm{C}(1 \mathrm{~A})$ bond of $\mathbf{2}$ is calculated to be higher in energy by $9.00 \mathrm{kcal} \mathrm{mol}^{-1}$. Experimental and theoretical studies on the details of this species, its conversion to 3 , and further transformations of $\mathbf{3}$ are currently in progress.
This work was supported by the SPP 1118 of the Deutsche Forschungsgemeinschaft (RO 1269/5-1) and the Russian Foundation for Basic Research (Project code 02-03-32589).

Notes and references

\dagger General procedure for the preparation of complex 2: complex $1(2.040 \mathrm{~g}$, 5.85 mmol) was dissolved in n-hexane (20 mL) under Ar. The resulting yellow-brown solution was filtered, and $\mathrm{ClCH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{Cl}(0.286 \mathrm{~mL}$, 2.93 mmol) was added to the resulting solution under stirring. The solution rapidly became brown and a dark-red precipitate of $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ was formed. The mixture was allowed to stand in an argon atmosphere at $20^{\circ} \mathrm{C}$. After 24 h the solution was filtered and evaporated to 10 ml under vacuum. Upon cooling to $-78{ }^{\circ} \mathrm{C}$ for 1 day, brown crystals were formed, which were separated from the mother liquor by decanting, and washed with a small amount of cold n-hexane and dried under vacuum. Yield of 2 was $0.454 \mathrm{~g}(65 \%), \mathrm{mp} 211-212{ }^{\circ} \mathrm{C}$ (dec. at slow heating ($3{ }^{\circ} \mathrm{C}$ per min); at fast heating ($20{ }^{\circ} \mathrm{C}$ per min) blows up at ca. $145-150{ }^{\circ} \mathrm{C}$) under Ar.
$\$$ Data for 2: elemental analysis calcd for $\mathrm{C}_{14} \mathrm{H}_{14}$ Ti: $\mathrm{C}, 73.07 ; \mathrm{H}, 6.13$. Found: C, 72.43 ; H 6.19\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 297 \mathrm{~K}$): $\delta 3.03\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$; 4.68 (s, 10H, Cp). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 297 \mathrm{~K}\right): \delta 51.2\left(\mathrm{CH}_{2}\right) ; 102.4(\mathrm{Cp})$; 106.9 (C $\equiv \mathrm{C}$). IR (Nujol mull, cm^{-1}): 2029 (weak, $v \mathrm{C} \equiv \mathrm{C}$). MS ($70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): $230[\mathrm{M}]^{+}, 178\left[\mathrm{Cp}_{2} \mathrm{Ti}\right]^{+}, 113[\mathrm{CpTi}]^{+}$.
§ General procedure for the preparation of complex 3: Complex 1 (0.486 g , 1.38 mmol) was dissolved in toluene ($7-8 \mathrm{~mL}$) under Ar. The obtained
solution was filtered and added gradually to a filtrated brown solution of $\mathbf{2}$ $(0.298 \mathrm{~g}, 1.29 \mathrm{mmol})$ in $7-8 \mathrm{~mL}$ of toluene. The resulting solution rapidly turned green and crystals of $\mathbf{3}$ appeared on the bottom and walls of the vessel. After 24 h the solution was decanted. Subsequent washing of the dark green crystals with cold toluene and drying in vacuum gave 0.485 g $\left(92 \%\right.$) of 3, mp 220-222 ${ }^{\circ} \mathrm{C}$ (dec.) under Ar.

- Data for 3: elemental analysis calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{Ti}_{2}$: C, $70.62 ; \mathrm{H}, 5.93$. Found: C, 70.14; H 5.88\%. ${ }^{1}$ H NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 297 \mathrm{~K}$): $\delta 3.97$ (br., 4H, CH2); $5.18(\mathrm{~s}, 20 \mathrm{H}, \mathrm{Cp}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 297 \mathrm{~K}\right): \delta 85.5\left(\mathrm{CH}_{2}\right) ; 108.5(\mathrm{Cp})$; $153.4(\mathrm{C}=\mathrm{C})$. MS ($70 \mathrm{eV}, \mathrm{m} / z$): $408[\mathrm{M}]^{+}, 406[\mathrm{M}-2 \mathrm{H}]^{+}, 352[\mathrm{M}-$ $\left.\mathrm{C}_{4} \mathrm{H}_{8}\right]^{+}, 178\left[\mathrm{Cp}_{2} \mathrm{Ti}\right]^{+}$.
$\| X$-Ray crystal structure analysis of 3: STOE-IPDS diffractometer, graphite monochromated $\mathrm{MoK} \alpha$ radiation, solution of the structure by direct methods (SHELXS-86 ${ }^{11}$), refinement with full-matrix least-squares techniques against F^{2} (SHELXL-93 ${ }^{12}$). Crystal data: monoclinic, space group $P 2_{1} / n, a=8.687(2), b=7.887(2), c=13.353(3) \AA ; \beta=90.17(3)^{\circ}$; $V=914.9(4) \AA^{3}, Z=2, D_{\mathrm{c}}=1.482 \mathrm{~g} \mathrm{~cm}^{-3} ; 2621$ reflections measured, 1429 were independent of symmetry and 1221 were observed $[I>2 \sigma(I)]$, $R 1=0.036, w R^{2}($ all data $)=0.096,126$ parameters. CCDC 239591. See http://www.rsc.org/suppdata/cc/b4/b406494a/ for crystallographic data in cif or other electronic format

1 A. Maercker and A. Groos, Angew. Chem., 1996, 108, 216, Angew Chem., Int. Ed. Engl., 1996, 35, 210.
2 N. Suzuki, M. Nishiura and Y. Wakatsuki, Science, 2002, 295, 660.
3 N. Suzuki, N. Ahihara, H. Takahara, T. Watanabe, M. Iwasaki, M. Saburi, D. Hashizume and T. Chihara, J. Am. Chem. Soc., 2004, 126, 60.

4 U. Rosenthal, P.-M. Pellny, F. G. Kirchbauer and V. V. Burlakov, Acc. Chem. Res., 2000, 33, 119.
5 (a) U. Rosenthal and V. V. Burlakov, in Titanium and Zirconium in Organic Synthesis, ed. I. Marek, Wiley-VCH, Weinheim, 2002, p. 355; b) U. Rosenthal, V. V. Burlakov, P. Arndt, W. Baumann and A. Spannenberg, Organometallics, 2003, 22, 884.

6 (a) K. C. Lam and Z. Lin, Organometallics, 2003, 22, 3466; (b) E. D. Jemmis, A. K. Phukan, H. Jiao and U. Rosenthal, Organometallics, 2003, 22, 4958; (c) U. Rosenthal, Angew. Chem. 2004, 116, 3972, Angew. Chem., Int. Ed. Engl. 2004, 43, 3882.
7 (a) P. W. Blosser, J. C. Gallucci and A. Wojcicki, J. Am. Chem. Soc., 1993, 115, 2994; (b) P. W. Blosser, J. C. Gallucci and A. Wojcicki, J. Organomet. Chem., 2000, 597, 125.

8 (a) J. N. Gerlach, R. M. Wing and P. C. Ellgen, Inorg. Chem., 1976, 15, 2959; (b) T. Matsuo, M. Tanaka and A. Sekiguchi, Chem. Commun., 2001, 503 and references cited therein; (c) Y. Wang, H. Wang, H. Wang, H.-S. Chan and Z. Xie, J. Organomet. Chem., 2003, 683, 39.

9 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) A. D. Becke, Phys Rev. A., 1998, 38, 2398; (c) C. Lee, W. Yang and R. G. Parr, Phy. Rev B., 1988, 37, 785; (d) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299; (e) Gaussian 03, Revision B. 03 , M. J. Frisch, et.al., Gaussian, Inc., Pittsburgh, PA, 2003.
10 (a) E. D. Jemmis and K. T. Giju, Angew. Chem., Int. Ed. Engl., 1997, 36, 606; (b) E. D. Jemmis and K. T. Giju, J. Am. Chem. Soc., 1998, 120, 6952; (c) P. N. V. Pavan Kumar and E. D. Jemmis, J. Am. Chem. Soc., 1988, 110, 125
11 G. M. Sheldrick, Acta. Crystallogr., Sect. A, 1990, 46, 467.
12 SHELXL-93, G. M. Sheldrick, University of Göttingen, Germany, 1993.

