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I. INTRODUCTION

One of the striking phenomena exhibited by a wide vari-
ety of complex adaptive systems is that individual agents
or components of the system evolve to perform highly

specialized tasks, and at the same time the system as a whole
evolves toward a greater diversity in terms of the kinds of in-
dividual agents or components it contains or the tasks that
are performed in it. Some examples of this include living sys-
tems that have evolved increasingly specialized and diverse
kinds of interacting protein molecules, ecologies that develop
diverse species with specialized traits, early human societies
that evolve from a state where everyone shares in a small num-

ber of chores to a state with many more activities performed
largely by specialists, and firms in an economic web that ex-
plore and occupy increasingly specialized and diverse niches.

In this article, we study a mathematical model of economic
communities that exhibits these twin evolutionary phenom-
ena of specialization and diversity. The system is a commu-
nity of N (say, human) agents. There are s strategies or activi-
ties each agent can perform labeled by i ∈ S ≡ {1, 2, . . . , s}, and
at the time t the agent α (α = 1, . . . , N) performs the activity i
with a probability   pi

α(t) (thus,     Σi
s

ip=1
α (t) = 1 ∀ α, t). The vector

pα(t) = (    p1
α (t), . . . ,   ps

α (t)) is called the mixed strategy profile of
agent α at time t. If   pi

α (t) = δ
ij
 for some j ∈ S, then the agent α
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is said to pursue the pure strategy j or to have “specialized” in
the strategy j at time t. The set of vectors pα, α = 1, . . . , N con-
stitutes the basic degrees of freedom of the model. The dy-
namics are dermed by the equation

    

˙ ( ) ( ) ( )– ( ) ( ) ,

, ,

,

p t p t a p t p t a p t

N i s

i i ij j k kj j
k jj
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which determines the rate of change of an individual pα in
terms of the current mixed strategy profiles of all the agents
and the payoff matrix A = [[a

ij
]].

We motivate this model as follows: Agents interact with
each other on a short time scale, receive payoffs based on each
other’s activity, and update their individual strategy profiles
on a longer time scale so as to increase their payoffs. As is usual
in game theory, a

ij
 denotes the payoff received by an agent

pursuing a pure strategy i in a single interaction with an agent
pursuing the pure strategy j. Then the average payoff received
by the agent α from the rest of the community in the period t
to t + ∆t is proportional to 

    
∆ Σ Σt p t a p tk j k kj jβ α

α β
≠ , ( ) ( ). This as-

sumes that every agent interacts equally often with all other
agents and that there is a separation of time scales: ∆t can be
chosen long enough for there to be a statistically sufficient
number of interactions during the period, yet short enough
that the change in the strategy profiles during this period can
be ignored in the computation of the average payoff.

If α had played the pure strategy i in this period, she
would have received an average payoff proportional
to 

    
∆ ≠t a p tj ij jΣ Σβ α

β( ) . The agent α increments   pi
α  by an

amount proportional to   pi
α  as well as to the difference

between the average payoff she would have gotten in this
interval if she had pursued a pure strategy i and the
average payoff she actually received:

    
∆ ∆ Σ Σ Σ Σp c tp a p t p t a p ti i j ij j k j k kj j

α α
β α

β
β α

α β= −[ ]≠ ≠( ) ( ) ( ), , where c
is a constant. Equation (1.1) follows upon dividing by ∆t, tak-
ing the limit, and rescaling time by a factor c. By construction,
each agent makes a positive change in the weight of strategy i
in her own strategy profile if she perceives that the pure strat-
egy i would give a higher payoff in the current environment
than her current strategy profile, and a negative change if it
were to give a lower payoff.

Eq. (1.1) is nothing but the “multipopulation replicator
equation” discussed in [1] (and references therein). There each
α represents a population, and   pi

α  represents the fraction of
individuals in the population α pursuing the strategy i. Since
for us each α represents an individual and not a population,
we refer to dynamics specified by (1.1) as simply the general-
ized replicator dynamic (GRD). By contrast the replicator dy-
namics (which we hereafter refer to as the pure replicator dy-
namics (PRD)) are given by (see [2])

      

˙ ( ) ( ) ( ) ( ) ( ) , , , .
,

x t x t a x t x t a x t i si i ij j
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This is a standard model in evolutionary biology describing
the growth and decay of s species under selection pressure
with x

i
 representing the fraction of the ith species in the popu-

lation. PRD and its variants are also extensively studied in eco-
nomics in game theory as models for dynamical selection of
equilibria (see, e.g., [3, 4]). Its generalizations have also been
studied in the context of the emergence of organizations in
complex adaptive systems (see [5] and references therein). For
extensive accounts of more recent contributions to PRD and
further references, see the recent books [6, 7].

We view GRD as a model of learning in a community of N
interacting agents. The agents are identical in that each is ca-
pable of pursuing the same set of strategies with the same
payoffs. This is a noncooperative game in which the agents
act selfishly (each is concerned with increasing her own pay-
off without consideration of impact on others or the commu-
nity) and exhibit bounded rationality (no anticipation of oth-
ers’ strategy, merely a response to the current aggregate
behavior of others). There is no global organizing agency at
work; individual actions alone are responsible for the evolu-
tion of the system.

N evertheless, we shall argue that the community as a
whole seems to exhibit a kind of global organization
under certain circumstances. Individual agents tend to

specialize, while the community as a whole retains its diver-
sity (i.e., each pure strategy is pursued by some agent or the
other). We attempt to find conditions on the parameters of
the model (the size N of the community and the s x s payoff
matrix A) such that this behaviour occurs. While most of the
time we work with a strategy space of a fixed size (and refer to
diversity as the maintenance of all strategies in this fixed size
space), the results also have bearing on the conditions under
which new strategies can enter the community.

Section II sets the notation and discusses some relation-
ships between PRD and GRD. Section III identifies conditions
under which attractors of GRD can exhibit simultaneously
specialization and diversity, and characterize these attractors
quantitatively. Section IV summarizes the results, discusses
their possible significance, and outlines some open questions.
Due to space constraints, proofs for some of the results have
not been included in this article.

II. RELATIONSHIPS BETWEEN GRD AND PRD

Notation, Definition of Specialization, and Diversity
Let J denote the simplex of s-dimensional probability vectors:

        
J x x x xs

T
i i

i

s

= = ∈ = ≥
=
∑{ ( , ..., ) , }.x R1

1

1 0s
(2.1)

J is the full configuration space of PRD and is invariant under
it.

The configuration space of GRD will be denoted JN =

    Πα
α

=1
N J ( ) where J(α) is a copy of J for the αth agent. A point
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of JN  will be denoted p = (p1,p2, ... ,pN), where pα =

    ( , , ... , ) ( )p p p Js1 2
α α α α∈ . JN is invariant under GRD, as the norm

of every pα is preserved under (1.1).
A point of JN at which every agent has specialized to some

strategy or the other will be referred to as a corner of JN, and at
such a point we say the community is “fully specialized.” It is
evident that a corner is an equilibrium point of (1.1) since     ṗi

α

vanishes if   pi
α  does and (1.1) preserves norm; hence, we of-

ten refer to a corner as a corner equilibrium point (CEP). A
CEP can be characterized by an s-vector of non-negative in-
tegers n = (n

1
, . . . , n

s
) where n

i
 is the number of agents pursu-

ing the pure strategy i at the CEP, 1 ≤ i ≤ s (thus Σ
i
 n

i
 = N). Two

CEPs with the same associated n vector are interchangeable,
since they differ only in the identity of the agents, irrelevant
for our purposes.

The set 
    
F p J pk

N
k≡ ∈ = ∀{ }α α0  for any k ∈S is the subset of

the boundary of JN where all agents have opted out of strategy
k. At the “face” F

k
, strategy k becomes extinct from the popula-

tion and the full diversity of strategies is lost. The community
will be said to exhibit “diversity” at all points that do not belong
to some F

k
. Note that we use the word “diversity” not to signify

the variation between individual agents, but to indicate that all
strategies are supported. Indeed we can have no variation but
full diversity if all agents pursue the same mixed strategy: For
all α, pα = c ∈ J°. (The superscript ° for any set denotes its rela-
tive interior.) When pα is independent of α, the community is
completely “homogeneous” since all agents are doing the same
thing. The community can be fully specialized and diversified
at the same time: Each agent chooses a pure strategy and every
strategy is chosen by some agent or the other. This corresponds
to CEP with n such that each n

i
 is nonzero, which will be called

a fully diversified CEP or FDCEP. By contrast, CEP where one or
more strategies becomes extinct (some components of n are
zero) will be called non-FDCEP.

In this article, we are primarily interested in studying the
circumstances in which FDCEPs are the preferred attractors
of the dynamics, since in that case individual specializa-

tion and global diversity will arise dynamically in the com-
munity.

Differences Between PRD and GRD
If the initial point of a trajectory in GRD is homogeneous, the
trajectory remains homogeneous for all time and evolves ac-
cording to (1.2) except that the time is speeded up by a factor
of N – 1. The sum     x N pi

N
i≡ =( / )1 1Σα
α  equals the probability that

strategy i is being played in the entire community and is there-
fore the analogue of  x

i
 in PRD. We can ask how   xi  evolves in

GRD. It is easy to see that

    

˙ [ –
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,
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where 
    
x N p p x N p p pik i k ikj i k j≡ ≡∑ ∑( / ) ( / )1 1α

α α
α

α α αand .
The r.h.s. of (2.2) is not proportional to the r.h.s. of (1.2), ex-
cept for homogeneous trajectories in which case

    
x x x x x x xik i k ikj i k j= =, . Thus in general   xi  does not follow

the PRD. One might have hoped that when the number of
agents N is large   xi  follows PRD, but even that is not the case
due to variation among the agents. For example, at the corner
n, the difference between x

ik
 and   x xi k is n

i
(Nδ

ij
 – n

j
)/N2, which

is comparable to the former two even for large N (except for
homogeneous corners).

One of our results in this article is that even though varia-
tion among agents, which is generic in GRD, causes the evo-
lution of   xi  to be different from PRD, under suitable condi-
tions   xi  nevertheless converges to the interior equilibrium
point of PRD.

The Interior Equilibria of GRD

Consider an interior equilibrium point (IEP) p of (1.1). By
definition, no   pi

α  is zero in the interior of JN. Therefore
the bracket [ ] on the r.h.s. of (1.1) must vanish for all

α,i. Define 
    
x p a pi j i ij j0

α
β α

α β≡ ≠Σ Σ , ,  and 
  
v pi i

α
β α

β≡ ≠Σ . Then

    Σi
s

iv N= = − ∀1 1α α , and the interior equilibrium condition can
be written as

      B NX Eα α= − ∀( ) ,1 0 (2.3)

where Xα ≡ 
      ( , , , , )x v v vs

T
0 1 2
α α α αK , B is the s + 1-dimensional ma-

trix
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−
−
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











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1

1

1

L

M

,
(2.4)

and E
0
 is the s + 1-dimensional unit vector (1, 0, 0, ̇ ˙˙ , 0)T.

   It is not difficult to see that (2.3) has an isolated solution if
and only if the following condition holds:

A1: u
i
 ≠ 0 ∀ i, and all u

i
 have the same sign, where u

i
 denotes

the co-factor of B
0i

.

For the sake of notational simplicity, we have denoted the co-
factor of B

0i
 by u

i
 instead of u

0i
 thereby suppressing the fixed

first index. Under the above condition (A1) det B =     Σi
s

iu= ≠1 0 ,
and the solution is unique and given by     v N xi i

α α= − ∀( )1 .
Here,

x
i 
= u

i
/detB (2.5)

is nothing but the ith coordinate of the unique isolated inte-
rior equilibrium point of PRD. (Note that A1 is also the neces-
sary and sufficient condition for PRD to have an isolated IEP,
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which, if it exists, is unique.) Since     p p v vi i i i
α β β α− = − = 0, it fol-

lows that the equilibrium point is homogeneous and given by

  p xi i
α = . Thus we have proved

Theorem 2.1 There exists at most one isolated equilibrium in
the interior of JN. It exists if and only if A1 is satisfied and then
it is homogeneous (all agents pursue the same mixed strat-
egy), and coincides with the isolated interior equilibrium point
of PRD,     p x ii i

α α= ∀ , .

III. DIVERSIFICATION WITH SPECIALIZATION

Stability of corner equilibria

The IEP of GRD is always unstable to small perturbations.
This is a consequence of the following theorem proved
in [1]: Theorem 3.1 An equilibrium point of (1.1) is as-

ymptotically stable if and only if it is a strict Nash equilibrium.
Further, any compact set in the relative interior of a face can-
not be asymptotically stable.

Note that strict Nash equilibria are perforce pure strategy
Nash equilibria and therefore correspond to CEP. As a conse-
quence of this theorem, a trajectory either eternally moves
around in the relative interior of some face or the interior of
JN coming arbitrarily close to its boundaries and corners (the
case of noncompact attractor), or it converges to a corner of
JN. It is possible to construct payoff matrices for which there
are no asymptotically stable corners in JN, whereupon the
former situation obtains.

However, our numerical work with 3 x 3 payoff matrices
suggests that this happens rarely (i.e., in a relatively small re-
gion of R3X3) for most payoff matrices, asymptotically stable
corners do exist for most values of N. Further, we randomly
generated ten 3 x 3 payoff matrices and numerically integrated
the GRD equations for long times for each payoff matrix with
ten randomly chosen initial conditions. When this was done
with N = 5, in 90 out of the 100 cases the dynamics converged
to a corner. With N = 10, all 100 cases converged to a corner.

This suggests that typically, at large N, not only do asymp-
totically stable corners exist, but also their basins of attrac-
tion cover most of JN. Thus, corners seem to be the most com-
mon attractors in GRD. These are numerical indications and
need to be made more precise. In our interpretation of the
model, a corner corresponds to a fully specialized commu-
nity. The above theorem and numerical evidence, therefore,
suggest that specialization of all the agents is the most com-
mon outcome in GRD.

At the CEP n, the payoff to an agent playing the jth pure
strategy from the other N –1 agents is

      

Pj jk k
k j

s

j jj jk k jj j jj
k

s

a n n a a n a P a= + − = − = −
≠ =

∑ ∑( ) ,1
1

(3.1)

where 
    
P a nj k

s
jk k≡ =Σ 1 . If this agent were to suddenly switch to

the ith pure strategy (i ≠ j), all other agents remaining at their
respective pure strategies, then for this agent the payoff would

change to 
    
Σk j

s
ik k ij j i ija n a n P a≠ − − = −( )1 . Thus, the increase in

payoff for an agent playing the jth pure strategy at the FDCEP
n (and this assumes n

j 
 ≠  0) in switching to the ith pure strategy

is

    
λij i j ij ij ij jjP P h h a a= − − ≡ −, . (3.2)

Therefore, n is a strict Nash equilibrium if for every j such that
n

j
 ≠ 0, the conditions

λ
ij
 < 0 (3.3)

are satisfied for all i ≠ j. At a FDCEP, all n
j
 are nonzero and this

is a set of s(s—1) conditions. At a non-FDCEP where only s´< s
components of n are nonzero, the number of conditions is
smaller, s´(s—1).

From Theorem 3.1, these are identical to the conditions
for the asymptotic stability of the FDCEPs associated with n.
In fact, one can show that λ

ij
 given by (3.2) are precisely the

eigenvalues of the Jacobian matrix of (1.1) linearized around
a corner of JN characterized by n.

Stability of fully diversified corners
Theorem 3.2: Let PRD admit an isolated IEP x. That is, condi-
tion A1 holds [cf. Section II]. Let n, n´ be any pair of asymp-
totically stable FDCEPs of GRD with N ≥ s. Then (1) all com-
ponents of the difference n´ – n are bounded by a function of
A alone, not of N, and (2) 

    
limN

n
N i

i x→∞ = . The proof is given in
Appendix A.

The significance of this theorem is that it characterizes
the FDCEP that are attractors of the dynamics. If the
community is going to end up in a fully specialized and

diversified configuration, the theorem quantifies the relative
weights of all strategies that will obtain in that configuration:
These relative weights are forced to be “close” to the IEP con-
figuration given by (2.5). The theorem does not guarantee the
existence of a stable FDCEP. One can prove the existence of
an infinite set of values of N at which stable FDCEP are guar-
anteed to exist under the conditions of the theorem. One can
also identify sufficient conditions for the existence of stable
FDCEP for any N ≥ s.

Instability of non-fully diversified corners
We would like to define GRD as possessing diversity if all tra-
jectories in the faces F

k
 become unstable at some time or the

other with respect to perturbations that take them away from
these faces. With this in mind, we now study corners at which
one or more strategies become extinct and determine the con-
ditions under which all such corners become unstable. Then
under small perturbations, the population will dynamically
flow out of such corners, eliminating specialized configura-
tions that do not carry the full diversity of strategies.

As mentioned earlier, the number of conditions to be sat-
isfied by a non-FDCEP to be stable is less than the number to
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be satisfied by a FDCEP. Thus a priori, things seem to be loaded
against diversification. As we shall see, some further structure
will need to be imposed on A in order to make the non-FDCEP
unstable. At this point, we do not have the general conditions
for arbitrary s, but some insight gleaned from special cases s =
2, 3.

s = 2, N arbitrary
In this case conditions (3.3) can be studied exhaustively. There
are generically four cases:

Case 1: a
11

 > a
21

 and a
22

 > a
12

: Both (N, 0) and (0, N) are asymp-
totically stable, other corners are not.

Case 2: a
11

 > a
21

 and a
22

 < a
12

 (N, 0) is the only asymptotically
stable corner.

Case 3: a
11

 < a
21

 and a
22

 > a
12

: (0, N) is the only asymptotically
stable corner.

Case 4: a
11

 < a
21

 and a
22

 < a
12

: The only asymptotically stable
corners (n

1
, n

2
) (with n

1
 + n

2
 = N) are those for which n

1
 ≠ 0,

n
2
 ≠ 0, and furthermore,

    

( )
( )

n
n

h h
n

n
h2

1
12 21

2

1
12

1
1

− < <
−  if n

2
 < N–1, and 

    

( )n
n

h2

1
12

1−
 <

h
21

 if n
2
 = N–1.

Cases 2 and 3 correspond to dominated strategies. (The
cases with one or more equalities instead of inequalities have
been disregarded as nongeneric. In any case, they are not dif-
ficult to handle.) The case of interest to us is the last one, which
shows diversification. It is convenient to introduce the

Definition: A is diagonally subdominant if a
ii
 < a

ji
 ∀ j ≠ i,

{i,j}⊂ S.

That is, h
ij
 > 0 ∀ i ≠ j. From the above exhaustive list it follows

that the condition

A2: A is diagonally subdominant

is the necessary and sufficient condition for non-FDCEP to
be unstable (for generic A). If A2 is satisfied, the only asymp-
totically stable CEP are the FDCEP, for which Theorem 3.2 ap-
plies. (Note that for s = 2, A2 implies A1, the IEP is given by

pα = 
    

1

12 21
12 21h h

h h
+

( , )

for all α, and the inequalities involving n in Case 4 are equiva-
lent to the statement that (1/N)(n

l
, n

2
) must be close to this

IEP for arbitrary N and converge to it as N → ∞.)
Note that GRD remains invariant under addition of an ar-

bitrary constant to any column of the payoff matrix. Thus, we
may replace a

ij
 by h

ij
, obtaining a matrix which under A2 has

zero diagonal elements and nonnegative off-diagonal ele-
ments. It is interesting that these conditions also arise in PRD

in the context of population genetics and ecological models
[8] as well as in models of catalytic networks of chemically
reacting molecules [9].

s = 3, N arbitrary
For s = 3, A2 no longer implies A1; the latter is an independent
condition. We now state Theorem 3.3: For s = 3, if both A1 and
A2 hold, then there exists a positive number N

0
 depending on

A such that for all N > N
0
, all non-FDCEP are unstable. The

proof of this theorem can be found in Appendix B.
We remark that while N

0
 is finite, it may, depending on A,

be much larger than three. The above result can be further
generalized (with the imposition of an additional condition)
to prove that for s = 3 all points in F

k
 are unstable for suffi-

ciently large N. Note that our notion of diversity for GRD is
related to the notions of “permanence,” “persistence,” etc. in-
troduced for PRD (see [2] and references therein).

PRD is said to exhibit permanence if every interior solu-
tion has components that remain bounded away from zero
by a common constant δ > 0. Strong persistence, in turn, is
the weaker requirement where δ is trajectory dependent and
persistence the even weaker requirement that each compo-
nent of an interior trajectory not converge to zero. The bio-
logical implications are obvious: The concept is clearly related
to survival of species. The corresponding phenomenon here
is the survival of policies. The conditions, for example, for per-
manence in PRD (see [2]) may quite generally play a role in
discussions of diversity in GRD.

IV. DISCUSSION AND CONCLUSIONS

W e have considered the equation (1.1) as a model of
evolution of a community of N agents, each agent
being capable of performing any mix of a set of s strat-

egies and modifying its mix depending on the payoff received
from other agents. We have studied some properties of the
attractors of this system to gain insight into how the commu-
nity is expected to evolve.

 This model can exhibit specialization of the agents into
pure strategies. Evidence for this comes from the previously
known Theorem 3.1, supported with our numerical ob-
servations. While individual specialization seems to be the
most common outcome in this model, it would be interesting
to characterize more precisely the circumstances in which
specialization is guaranteed (i.e., when corners are the only
attractors, and when they are not.)

We have shown that under suitable conditions, while each
agent specializes to a single pure strategy, it is guaranteed that
the community as a whole preserves the full diversity of strate-
gies. These are that the community be sufficiently large (N
should be larger than a number N

0
 that depends on the payoff

matrix), and the payoff matrix itself should satisfy A1 (existence
of an isolated interior equilibrium point) and A2 (diagonal en-
tries of A be smaller than other entries in the same column).
These guarantee (for up to three strategies) that all corners
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where one or more strategy becomes extinct are unstable to
small perturbations (Theorem 3.3). To identify sufficient con-
ditions for larger s (and necessary and sufficient conditions for
s ≥ 3) is a task for the future. The appearance of a lower limit on
the size of the community in this context (which could be much
larger than the number of strategies) is interesting.

Within the set of configurations where the community
would exhibit full specialization and diversity (the FDCEP), we
have given a quantitative criterion as to which ones will be the
attractors (Theorem 3.2). n

i
/N (where n

i
 is the number of agents

pursuing the pure strategy i at the attractor) is forced to be close
to x

i
 and equal to it in the large N limit, where x

i
 is given by (2.5)

and is the relative weight of the ith strategy at the interior equi-
librium point of PRD. This constraint is a consequence of the
fine balance that exists for every agent at a strict Nash equilib-
rium; any strategy switch for any agent reduces its payoff. This
fine-tuning, caused by the interaction of the agent with other
agents, is a kind of organization exhibited by the system.

The conditions for the instability of non-FDCEP (Theo-
rem 3.3) may also be relevant to the question: When does
a society accept an innovation? Consider a community of

a large number of agents but with only two strategies, 1 and 2,
at a stable corner where n

1
 agents pursue the pure strategy 1

and n
2
 = N – n

1
 agents the pure strategy 2 (neither n

l 
nor n

2
 is

zero). Since this corner is assumed stable, the 2 x 2 matrix A
satisfies condition A2 (diagonal subdominance). Now imagine
that a new strategy 3 arises, thereby enlarging the payoff ma-
trix to a 3 x 3 matrix A´ containing A as a 2 x 2 block. In the new
context the earlier state of the community will be described by
a three vector n = (n

1
, n

2
, 0), which is in the face F

3
. Now if the

new payoff matrix satisfies A1,  A2, and N is sufficiently large,
then from Theorem 3.3, this configuration is unstable with re-
spect to perturbations in which one of the agents begins to ex-
plore the new strategy. Thus, if this agent were to explore the
new strategy ever so slightly, the payoff would increase and a
small perturbation of the community would grow until it settles
down in another attractor. The new attractor, if described by
Theorem 3.2, would have the property that a finite fraction of
the population pursues the new strategy: The innovation has
been accepted by the society. Thus, the conditions A1, A2 of
Theorem 3.3 indicate what the payoffs of a new strategy (inno-
vation) should be with respect to the existing ones, if the inno-
vation is to be guaranteed acceptance. (Conditions that are both
necessary and sufficient for diversity would considerably
strengthen the above remarks.)

It is worth mentioning that conditions A1, A2 are not
equalities but inequalities. Thus, there is no fine-tuning of pa-
rameters needed; the behavior discussed above emerges
whenever parameters cross certain thresholds.

It may be interesting to consider the “economic significance”
of conditions that play an important role in preserving the full
diversity of strategies. For example, diagonal subdominance,
when translated as “each pure strategy gives more payoff to

other pure strategies than to itself,” carries a shade of an altru-
ism of sorts (at the level of strategies, not individuals). Note that
PRD with a payoff matrix in which diagonal entries are zero
and offdiagonal ones greater than or equal to zero is called a
“catalytic network” [2]. The general message might be that if
the initial set of allowed strategies is chosen with the “right vi-
sion” (read “right payoffs”), then even a community of identi-
cal and selfish individuals, if large enough, will exhibit diver-
sity and accept only the “right” innovations.

APPENDIX A

The proof of Theorem 3.2 follows:
Proof: Note that P

i
–P

j
 figures in both λ

ij
 and λ

ji
. Therefore,

the s(s – 1) conditions (3.3) can be written in terms of s(s – 1)/
2 “double-sided” inequalities

–h
ji
 < P

i
 – P

j
 < h

ij
. (4.1)

Define 
      z P P i s P Pi i i s≡ − = ≡+ +1 1 11for with, , ,K . Then

    
z c n c a ai j

s
ij j ij ij i j= ≡ −= +Σ 1 1with , , , where it is again understood

that     
a as j j+ ≡1 1, . Now, since all the n

j 
are not independent, let

us express z
i
 in terms of only n

1
, . . . , n

s–1
 by eliminating n

s
 = N

–(n
1
 + ˙˙˙  + n

s–1
). This gives z

i
 = y

i
 + c

is
N where y

i

      
≡ ≡ − = −=

−Σ j
s

ij j ij ij isd n d c c i j s1
1 1 1and , , , ,K . With this nota-

tion, consider the subset of s – 1 inequalities obtained by set-
ting j = i + 1 in (4.1), with i = 1, . . . , s – 1. These involve z

i
 and

take the form

–h
i+1,i 

– c
is

N < y
i 
< h

i,i+1 
– c

is
N, i = 1, . . . , s – 1. (4.2)

These inequalities mean that for any stable FDCEP n, the y
i
,

which are linear combinations of n
1
, . . . , n

s–1
, are constrained

to be in an open interval of the real line. While the location of
this interval is N dependent, it follows from (4.2) that the size
of this interval is finite, independent of N, and depends only
on the payoff matrix (for y

i
, the size of the interval is h

i+l,i 
+

h
i,i+l

).
   If the s – 1 dimensional matrix D = (d

ij
) has an inverse, we

can invert 
    
y d ni j

s
ij j≡ =

−Σ 1
1  to express the n

j
 in terms of y

i
. Then,

(4.2) will get converted into inequalities for n
1
, . . . , n

s–1
. Since

the vector 
        
˜ ( , , )y = −y ys1 1K  in the s – 1 dimensional cartesian

space whose axes are the y
i
 is constrained by (4.2) to lie in a

(rectangular) parallelepiped, the vector 
        
˜ ( , , )n = −n ns1 1K  in the

s –1 dimensional cartesian space whose axes are the n
i
 will

also lie in a (in general oblique) parallelepiped which is the
image, under D–1, of the rectangular parallelepiped in y-space
defined by (4.2). Again, while the location of the parallelepi-
ped in n

1
, . . . , n

s-1
 space will depend on N, its size (i.e., its

extent along any of the coordinate axes) will be independent
of N. This is because the matrix D–1, if it exists, depends only
on the payoff matrix and not on N. Therefore, if D–1 exists, the
differences in n

i
, i = 1,. . . , s – 1 for all FDCEP are bounded by
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APPENDIX B

The proof of Theorem 3.3 follows:
Proof: Any non-FDCEP n must belong to some F

k
, in this

case to F
1
, F

2
 or F

3
. For every i such that the component n

i
 of

n ∈ F
k
 is nonzero, consider the eigenvalue

                                        λ
ki 

= P
k
 – P

i
 – h

ki
. (4.3)

From the discussion of Eq. (3.2), it follows that if any one (or
the largest) of the λ

ki
 at n is greater than zero, then the CEP n

is unstable against perturbations in which an agent pursuing
the pure strategy i moves toward strategy k (i.e., the perturba-
tions which restore the extinct strategy k will then grow).

For concreteness consider F
3
. Corners of F

3
 are of two types:

Case 1: Only one strategy survives at the corner. Then n = (N,
0, 0) or (0, N, 0). In the former case (4.3) implies λ

31
 = (N – 1)h

31

and in the latter case λ
32

 = (N – 1)h
32

. By A2 both corners are
unstable.
Case 2: Both strategies 1 and 2 survive at the corner of F

3
. Then

n = (n
1
, n

2
, 0) with both n

1
 and n

2
 positive integers and n

1
 + n

2

= N. There are then two eigenvalues from (4.3), λ
31

 = h
31

n
1
 +

h
32

n
2
 – h

12
n

2
 – h

31
, and λ

32
 = h

31
n

1
 + h

32
n

2
 – h

21
n

1
 – h

32
. Let us

assume that this corner is stable; hence, both λ
31

, λ
32

 are nega-
tive. The condition λ

31
 < 0 (upon eliminating n

1
 = N – n

2
) re-

duces to (h
12

 + h
31

 – h
32

)n
2
 > (N – 1)h

31
. Since n

2
, N – 1, and h

31

are all positive, this means the combination h
12

 + h
31

 – h
32

 is
also positive, and

                                   
    

( )
.

N h
h h h

n
−

+ −
<1 31

12 31 32
2 (4.4)

Similarly λ
32

 < 0 implies that h
21

 + h
32

 – h
31

 is positive (as can be
seen by eliminating n

2
) and further,

                                   
    
n

N h h
h h h2

21 31

21 32 31

1
1< − −

+ −
+( )( )

. (4.5)

NOTE
* Also at Jawaharlal Nehru Centre for Advanced Scientific Research,

Bangalore 560 064, India.
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Combining the two, we get

    

( ) ( )( )
,

N h
h h h

N h h
h h h

−
+ −

< − −
+ −

+1 1
131

12 31 32

21 31

21 32 31
(4.6)

which can be rearranged into the form

(N – 1)[–h
21

h
12 

+ h
21

h
32 

+ h
31

h
12

]
< (h

12 
+ h

31 
– h

32
)(h

21 
+ h

32 
– h

31
). (4.7)

But the quantity in [ ] on the l.h.s. of this inequality is just u
3

(as evaluated from the definition given in A1), which is posi-
tive. (The positivity of det B and hence u

1
, u

2
, u

3
 also follows

from A1 and A2.) Thus, we have

                        
    
N

h h h h h h
u

< + − + − +( )( )
.12 31 32 21 32 31

3

1 (4.8)

Note that the r.h.s. is a function of A alone and is finite, say
N

0
(A). If N is chosen larger than N

0
(A), this inequality is vio-

lated. That is, for N > N
0
(A), the corner of F

3
 under consider-

ation cannot be stable. We have thus proved that under A1,
A2, all corners of F

3
 are unstable for N > N

0
(A). Similarly one

may consider F
1
, F

2
, which will yield the same result but with

different finite bounds in place of N
0
(A). We can henceforth

use N
0
 for the largest of the three. The claim follows.

some function of A alone, not of N. The same is true for n
s
,

also since     Σi
s

in N= =1 . One can show that det D = det B. The
existence of D-1 is thus guaranteed by condition A1, complet-
ing the proof of the fist part of Theorem 3.2.

To prove the second part of Theorem 3.2, divide all sides of
(4.1) by N and take the limit N → ∞. This yields

 
    

limN
i jP

N

P

N→∞ −












= 0 .

Defining     x n Ni N i
′

→∞≡ lim ( / ) along an appropriate subse-
quence independent of i, this is equivalent to the statement
that     Σk

s
ik ka x=

′
1  is independent of i, which implies that x´ is the

same as x, the IEP of PRD.


