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Autocatalytic Sets and the Growth of Complexity in an Evolutionary Model

Sanjay Jaih and Sandeep Krishha
'Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India
2Department of Physics, Indian Institute of Science, Bangalore 560 012, India
(Received 16 September 1998

A model of s interacting species is considered with two types of dynamical variables. The fast
variables are the populations of the species and slow variables the links of a directed graph that defines
the catalytic interactions among them. The graph evolves via mutations of the least fit species. Starting
from a sparse random graph, we find that an autocatalytic set inevitably appears and triggers a cascade
of exponentially increasing connectivity until it spans the whole graph. The connectivity subsequently
saturates in a statistical steady state. The time scales for the appearance of an autocatalytic set in the
graph and its growth have a power law dependence and the catalytic probability. At the end of
the growth period the network is highly nonrandom, being localized on an exponentially small region
of graph space for large [S0031-9007(98)07953-8]

PACS numbers: 87.10.+¢, 05.40.+j, 64.60.Lx, 82.40.Bj

A characteristic feature of chemical, biological, eco-i,j = 1,...,s. ¢;; equals unity if there is a link from
nomic, and social evolution is that it produces a complex; to i, and zero otherwise. A link from a node to
network of interactions among the component species dtself is prohibited (diagonal entries @ are zero); this
agents involved in it. Understanding the mechanisms reeorresponds to the exclusion of self-replicating species.
sponsible for the origin of such networks and their move- At the initial time (z = 0), the graph is random. That
ment towards greater complexity is an important issueis, ¢;; (for i # j) is unity with probability p and zero
One mechanism, based on quasispecies and hypercychgh probability 1 — p. Thus on average every row
[1], proposed in the context of prebiotic chemical evolu-and column ofC has m = p(s — 1) nonzero entries,
tion has self-replicating entities as its components. An+epresenting the average number of links to and from a
other proposed mechanism starts from simpler component®de. p is the probability that a given species will be a
that are not individually self-replicating but can collec- catalyst for another given species.
tively form an autocatalytic set (ACS) [2—4]. The present The graph is updated at discrete time steps=(
work attempts to explore the latter mechanism quantitai,2,...) as follows: One selects the “mutating node”
tively through a mathematical model. of the existing graph by a rule to be specified below,

The model has two main sources of inspiration. One isemoves all the existing incoming and outgoing links
the set of models studied by Farmer, Kauffman, Packardp and from that node, and replaces them by randomly
and others [3,5] and by Fontana and Buss [6] (see alsohosen links with the same catalytic probabilgy That
[7,8]). Like these models the present one employs ais, if the selected node i5 the ith row and column of
artificial chemistry of catalyzed reactions, albeit a muchC are reconstituted according to the same rule as in the
simpler one, in which populations of species evolve oveiprevious paragraph. This changes the graph into a new
time. To this we add the feature, inspired by the modebne. A mutating node is selected afresh, and this process
of Bak and Sneppen [9], that the least fit species mutatess iterated over many time steps.

Unlike the Bak-Sneppen model, however, the mutation of The mutating node at any is taken to be the one with

a species also changes its links to other species. Thibke “least fitness” at that time step. Associated with every
allows us to investigate how the network of interactionsnode i is a populationy; = 0, or a relative population
among the species evolves over a longer time scale; = y;/Y, Y = Z‘;:lyj. The population depends upon
We find that for a fixed total number of species, thea continuous timer, and its evolution between two
network inevitably evolves towards a higher complexity successive graph updates (i.e., while the gr@plemains

as measured by the degree of interaction among speciéiged) is given by

and their interdependence. The increase is triggered by )

the chance appearance of an ACS, is exponential in time, yi = Z Cijyj — Pyi- (1)
and leads to a highly nonrandom organization. j=1

The system is described by a directed graph with From this it follows thatx; has the dynamics

nodes. The nodes represent the components or species, s
and the directed links represent catalytic interactions Zc,jx, Xi Z ChjXj - (2)
among them. A link from nodg to i means that species k.j=1

j catalyzes the production éf The graph is completely The x; dynamics depends only ofi and not on¢. The
described by specifying the adjacency maiflx= (c;;), time between two successive graph updates is assumed
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long enough to allow the fast variables to reach their p (or m). We have studied the parameter ramgdrom
attractor configuration, denoteXi;. X; is a measure of 0.05 to 2.0 and s = 50, 100, and150. For fixed m, s
the fitness of the specigsin the environment defined by we have conducted several runs with different random
the graph. The set of nodes with the smallest valu¥;,of number seeds. The runs shown in Fig. 1 are typical of
is called the set of least fit nodes. The mutating node ishe runs with the same parameter values.
picked randomly from the set of least fit nodes. For the The curves have three distinct regions. Initially the
cases that have arisen in our simulations, the set of least fiumber of links hovers around the value expected for
nodes depends only on the graph and not upon the initiad random graph] ~ ms. The second region is one of
values ofyx;. rapid increase, in which rises several fold. The third is

The dynamics (1) is an approximation of the rate equaa statistical steady state with many fluctuations where the
tions in a well stirred chemical reactor with a nonequi-average connectivity is much higher than the initial one.
librium dilution flux ¢ when the reactants necessary for The increase inl over time is a consequence of
the production of the molecular species in the graph arselection. In a “random run” in which the mutating node
fixed and in abundance, and spontaneous reaction rateschosen at random from among all thenodes instead
are much smaller than catalyzed reaction rates. Then r@f from the set of least fit nodes keeps fluctuating about
action rate is limited by and proportional to catalyst con-its initial average valuens. Note that under selectioh
centration. Theth species grows via the catalytic action rises even though the average connectivity of the species
of all species;j that catalyze its production and declinesthat replace the mutating species is the same as in the
via a common death rat¢. That all catalytic strengths initial random graph. One may be tempted to give the
are equal is an idealization of the model. This dynam{ollowing naive explanation of the increase: From (1) it
ics might also be relevant for economics (e.g., positivds clear that the larger the number of species that have
feedback networks) as well as certain kinds of ecologilinks to the species, the greater is the rate of increase of
cal webs. A justification for selecting the least fit nodey;. Therefore the species that do well (population wise)
to be mutated in a molecular context is that the specieare those that have more links coming in, and conversely
with the least population is the most likely to be lost inthose that do not do so well are deficient in incoming
a fluctuation in a hostile environment. Alternatively, in links. Hence selecting the least fit species amounts to
an ecological context, certain fitness landscapes might beelecting the species that have lower connectivity than
such that a low fitness is correlated with a smaller baraverage. If these are replaced by species that have the
rier to mutation (see the arguments in [9]). In economicld average connectivity, it is no surprise that the number
a correlation between fitness and survival is at the headf links increases.
of evolutionary game theoretic models like the replicator This explanation is not correct. First, this argument
equation; the elimination of the least fit is an extreme ideis unable to explain the observed fact that there is a
alized case of this correlation. Keeping the total numbetong region of almost constaritin the graphs before it
of species constant in the simulation is another idealizastarts to increase. Second, in this region the mutating
tion of the model. nodes tend to have a larger proportion of outgoing links

In Fig. 1 we plot the total number of link&n) in the  than average, which more or less balances out their
graph versus the graph update time step Three runs deficiency in incoming links. The real explanation, which
with s = 100 are exhibited, each with a different value of we substantiate in detail below, is the chance appearance
of an ACS in the graph.

Since (2) does not depend @h we can setp = 0 in
(1) without loss of generality for studying the attractors
of (2). For fixedC the general solution of (1) ig(z) =
e“'y(0), wherey denotes the dimensional column vector

2001

1507 of populations. It is evident that if* = (y{,...,y%)
I viewed as a column vector is a right eigenvecto€aofith
£ eigenvalue), thenx! = y*/ Y7y} is a fixed point of (2).
5100 Let A; denote the eigenvalue @ which has the largest
2 real part; it is clear that’ is an attractor of (2). By the

theorem of Perron-Frobenius for non-negative matrices

[10] A, is real and=0 and there exists an eigenvectoy
m=0.12 with x; = 0. If A; is nondegeneratex”' is the unique

WM asymptotically stable attractor of (R} = (Xi,...,X,).

0 : ‘ ‘ ‘ ‘ ‘ In practice, we found in our simulations thay was

0 1000 2000 3000 4000 5000 6000 7000  ysually nondegenerate, except for very sparse graphs.

n This is not surprising in view of the well known level
FIG. 1. Total links versus for three runs withs = 100. repulsion in random matrix theory, which implies that
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repeated eigenvalues are very improbable for a generiongest chain, after mutation the latter node can become a
matrix. singleton and join the ranks of the least fit.

An ACS is defined as a subgraph whose every node has The picture changes qualitatively when an ACS appears
at least one incoming link from a node that belongs to théoy chance in a mutation. Then; jumps from zero
same subgraph. This definition is meant to capture théo one (atn = n;). For concreteness let us say the
property that an ACS has “catalytic closure” [3]; i.e., it ACS atn = n; is a 2-cycle between species 1 and 2.
contains the catalysts for all its members. The simplesThenx* = (1/2,1/2,0,0,...,0). The key point is that
ACS is a 2-cycle. The following hold: (i) An ACS both species 1 and 2 are absent from the set of least fit
always contains a cycle. (i) If a graph has no ACS, themodes and will not be mutated at the next time step. By
Ay = 0 for the graph. (iii) If a graph has an ACS, then definition the nodes which are not part of the dominant
Ap = 1. (V) If Ap = 1, then the)\subgraph corresponding ACS of a graph with\; = 1 havex]" = 0 from property
to the set of nodes for which x;' > 0 is an ACS. We (jv) above, and hence constitute the set of least fit nodes.
will call this subgraph the “dominant ACS” of the graph. Therefore, as long as the dominant ACS does not include
These properties, which we first observed numericallythe whole graph, the mutating node will be outside it,
can be proven analytically from graph theory [11]. Itand hence a mutation cannot destroy the links that make
follows from (iv) that members of the dominant ACS up the dominant ACS just before the mutatiomhus
completely overshadow all other species population wisethe autocatalytic property is guaranteed to be preserved

Form <1 the initial random graph is sparse. For ex-once an ACS appears until the dominant ACS engulfs the
ample, withs = 100, m = 0.25, there are on average whole graph. In the run of Figs. 2 and 3 this happens at
only 25 links. Most of the nodes are singletons, some; = n, = 2589, whens;(n) = s. Whenevers; < s, A;
pairs have a single link among them, and there are a fevg a nondecreasing function af An increase iry; during
chains or other trees with two or more links. The proba-n € (n;,n,) occurs whenever a mutant species gets an
bility of there being a cycle is small{O(m?)]. Fig- incoming link from the existing dominant ACS and hence
ure 2 shows how; evolves. Sincer; remains zero for becomes a part of it. (Note that itself need not be a
n < n; = 1643, it is clear that there is no cycle in the nondecreasing function of when it is <s, because the
graph in this period. When there are no cycles, therlominantACS after a mutation can be smaller than the
yi ~ t" for larget, wherer is the length of the longest one before the mutation.)
path terminating at. ThenX; = 0 for all i except the There is another qualitative change in the evolution
nodes at which the longest paths in the graph terminateat » = n,. Since the whole graph becomes an ACS,
Defines;(n) as the number of speciédor whichX; # 0  for the first time since the appearance of the ACS the
at thenth time step. This is plotted in Fig. 3. (The lower mutant must now be from the dominant ACS itself. When
curves in Figs. 2 and 3 correspond to a random run withhe mutant happens to be a species which is playing an
s = 100,m = 0.25.) Since the mutant can be any leastimportant catalytic role in the organization (a “keystone
fit node, the chains can be disrupted over time. In parspecies”), the mutation can disconnect a number of other
ticular, if the mutating node happens to be the “nearesgpecies from the main ACS, as evidenced from the
neighbor” of a node that is the terminating point of thesubstantial drop in; atn = 4910. The final steady state

in Fig. 1 is characterized by the fact that the mutating
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FIG. 2. A, versusn for s = 100,m = 0.25. The upper curve n
is for the same run as the middle curve of Fig. 1. The lower
curve is for a random run witk = 100, m = 0.25. FIG. 3. s, versusn for the same runs as in Fig. 2.
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node has, on average, the same total number of linkknown to suffer from the short-circuit instability which
(namely,2m) as its replacement. reduces its complexity [12]. It is interesting that in

The above picture holds for different values mfs, the present model ACSs provide the system with the
as long asn is small enough and large enough. For opposite kind of instability, in the direction of increasing
very smallm the fluctuations in the final steady state arecomplexity. Finally, this model provides an example of
large; the ACS can even be destroyed completely. Fonow selection for fithess at the level of individual species
sufficiently high values ofn the initial random graph is results, over a long time scale, in increased complexity
dense enough to contain an ACS, hence the initial periodf interaction of the collection of species as a whole.
with A; = 0 is absent. Note in Fig. 2 that in the random run ACSs come and go,

During the growth period: € (n1,n5), s; and! (lo-  whereas, when selection is operative, the system “cashes
cally averaged in time) grow exponentially. For ex-in" upon the novelty provided by an ACS that arises
ample, s;(n) ~ s1(n))e™™ /7 The m dependence of by chance. This is reminiscent of how ecosystems and
the “growth time scale’r, is shown in Fig. 4 and is con- economic webs capitalize on “favorable” chance events.
sistent withr, « m~!. InatimeAn, the average increase ~ We thank J. M. Berg, A. Bhaduri, V. S. Borkar, C. Das-
in s; in a large sparse graph is given By, ~ ps;An, gupta, R. Hariharan, G. Rangarajan, and B.S. Shastry
which is the average number of mutating nodes outof for discussions. S.J. acknowledges the affiliation and
which will get an incoming link from the, nodes of the support of the Jawaharlal Nehru Centre for Advanced
dominant ACS. Therefore, ~ 1/p ~ s/m. The av- Scientific Research (JNCASR), Bangalore, as well as
erage “time of arrival’r, = (n;) of an ACS in a sparse Associate membership and hospitality of the Abdus Salam
graph is given byr, ~ s/m? ~ 1/(p?s), since the proba- International Centre for Theoretical Physics, Trieste. He
bility that a graph which does not have an ACS will getalso thanks the School of Physical Sciences, Jawaharlal
a 2-cycle at the next time step (3-cycles and larger ACS8lehru University, New Delhi, for providing necessary
being much less likely for smalp) is ~p2?s. Thus for facilities while this work was in progress. S.K. thanks
any finite p, however small, the appearance and growthINCASR for a Summer Research Fellowship during 1996
of ACSs in this model is inevitable. and 1997 during which this work was begun.

The graphs generated at the end of the growth phase are
highly nonrandom. The probability of a random graph
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