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A model of s interacting species is considered with two types of dynamical variables. The
variables are the populations of the species and slow variables the links of a directed graph that
the catalytic interactions among them. The graph evolves via mutations of the least fit species. S
from a sparse random graph, we find that an autocatalytic set inevitably appears and triggers a
of exponentially increasing connectivity until it spans the whole graph. The connectivity subsequ
saturates in a statistical steady state. The time scales for the appearance of an autocatalytic s
graph and its growth have a power law dependence ons and the catalytic probability. At the end o
the growth period the network is highly nonrandom, being localized on an exponentially small r
of graph space for larges. [S0031-9007(98)07953-8]

PACS numbers: 87.10.+e, 05.40.+ j, 64.60.Lx, 82.40.Bj
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A characteristic feature of chemical, biological, ec
nomic, and social evolution is that it produces a comp
network of interactions among the component specie
agents involved in it. Understanding the mechanisms
sponsible for the origin of such networks and their mov
ment towards greater complexity is an important iss
One mechanism, based on quasispecies and hyperc
[1], proposed in the context of prebiotic chemical evo
tion has self-replicating entities as its components. A
other proposed mechanism starts from simpler compon
that are not individually self-replicating but can colle
tively form an autocatalytic set (ACS) [2–4]. The prese
work attempts to explore the latter mechanism quant
tively through a mathematical model.

The model has two main sources of inspiration. One
the set of models studied by Farmer, Kauffman, Packa
and others [3,5] and by Fontana and Buss [6] (see a
[7,8]). Like these models the present one employs
artificial chemistry of catalyzed reactions, albeit a mu
simpler one, in which populations of species evolve o
time. To this we add the feature, inspired by the mo
of Bak and Sneppen [9], that the least fit species muta
Unlike the Bak-Sneppen model, however, the mutation
a species also changes its links to other species.
allows us to investigate how the network of interactio
among the species evolves over a longer time sc
We find that for a fixed total number of species, t
network inevitably evolves towards a higher complex
as measured by the degree of interaction among spe
and their interdependence. The increase is triggered
the chance appearance of an ACS, is exponential in ti
and leads to a highly nonrandom organization.

The system is described by a directed graph withs
nodes. The nodes represent the components or spe
and the directed links represent catalytic interactio
among them. A link from nodej to i means that specie
j catalyzes the production ofi. The graph is completely
described by specifying the adjacency matrixC ; scijd,
0031-9007y98y81(25)y5684(4)$15.00
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i, j ­ 1, . . . , s. cij equals unity if there is a link from
j to i, and zero otherwise. A link from a node t
itself is prohibited (diagonal entries ofC are zero); this
corresponds to the exclusion of self-replicating species

At the initial time (n ­ 0), the graph is random. Tha
is, cij (for i fi j) is unity with probability p and zero
with probability 1 2 p. Thus on average every row
and column ofC has m ; pss 2 1d nonzero entries,
representing the average number of links to and from
node. p is the probability that a given species will be
catalyst for another given species.

The graph is updated at discrete time steps (n ­
1, 2, . . .) as follows: One selects the “mutating nod
of the existing graph by a rule to be specified belo
removes all the existing incoming and outgoing lin
to and from that node, and replaces them by rando
chosen links with the same catalytic probabilityp. That
is, if the selected node isi, the ith row and column of
C are reconstituted according to the same rule as in
previous paragraph. This changes the graph into a
one. A mutating node is selected afresh, and this proc
is iterated over many time steps.

The mutating node at anyn is taken to be the one with
the “least fitness” at that time step. Associated with ev
node i is a populationyi $ 0, or a relative population
xi ; yiyY , Y ;

Ps
j­1 yj . The population depends upo

a continuous timet, and its evolution between two
successive graph updates (i.e., while the graphC remains
fixed) is given by

Ùyi ­
sX

j­1

cijyj 2 fyi . (1)

From this it follows thatxi has the dynamics

Ùxi ­
sX

j­1

cijxj 2 xi

sX
k,j­1

ckjxj . (2)

The xi dynamics depends only onC and not onf. The
time between two successive graph updates is assu
© 1998 The American Physical Society
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long enough to allow the fast variablesxi to reach thei
attractor configuration, denotedXi. Xi is a measure o
the fitness of the speciesi in the environment defined b
the graph. The set of nodes with the smallest value oXi

is called the set of least fit nodes. The mutating nod
picked randomly from the set of least fit nodes. For
cases that have arisen in our simulations, the set of lea
nodes depends only on the graph and not upon the i
values ofxi .

The dynamics (1) is an approximation of the rate eq
tions in a well stirred chemical reactor with a noneq
librium dilution flux f when the reactants necessary
the production of the molecular species in the graph
fixed and in abundance, and spontaneous reaction
are much smaller than catalyzed reaction rates. The
action rate is limited by and proportional to catalyst c
centration. Theith species grows via the catalytic act
of all speciesj that catalyze its production and declin
via a common death ratef. That all catalytic strength
are equal is an idealization of the model. This dyn
ics might also be relevant for economics (e.g., pos
feedback networks) as well as certain kinds of ecol
cal webs. A justification for selecting the least fit no
to be mutated in a molecular context is that the spe
with the least population is the most likely to be lost
a fluctuation in a hostile environment. Alternatively,
an ecological context, certain fitness landscapes mig
such that a low fitness is correlated with a smaller
rier to mutation (see the arguments in [9]). In econom
a correlation between fitness and survival is at the h
of evolutionary game theoretic models like the replica
equation; the elimination of the least fit is an extreme
alized case of this correlation. Keeping the total num
of species constant in the simulation is another idea
tion of the model.

In Fig. 1 we plot the total number of linkslsnd in the
graph versus the graph update time stepn. Three runs
with s ­ 100 are exhibited, each with a different value
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FIG. 1. Total links versusn for three runs withs ­ 100.
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p (or m). We have studied the parameter rangem from
0.05 to 2.0 and s ­ 50, 100, and150. For fixed m, s
we have conducted several runs with different rand
number seeds. The runs shown in Fig. 1 are typical
the runs with the same parameter values.

The curves have three distinct regions. Initially th
number of links hovers around the value expected
a random graph,l , ms. The second region is one o
rapid increase, in whichl rises several fold. The third is
a statistical steady state with many fluctuations where
average connectivity is much higher than the initial one

The increase inl over time is a consequence o
selection. In a “random run” in which the mutating nod
is chosen at random from among all thes nodes instead
of from the set of least fit nodes,l keeps fluctuating abou
its initial average valuems. Note that under selectionl
rises even though the average connectivity of the spe
that replace the mutating species is the same as in
initial random graph. One may be tempted to give t
following naive explanation of the increase: From (1)
is clear that the larger the number of species that h
links to the speciesi, the greater is the rate of increase
yi. Therefore the species that do well (population wis
are those that have more links coming in, and convers
those that do not do so well are deficient in incomi
links. Hence selecting the least fit species amounts
selecting the species that have lower connectivity th
average. If these are replaced by species that have
old average connectivity, it is no surprise that the num
of links increases.

This explanation is not correct. First, this argume
is unable to explain the observed fact that there is
long region of almost constantl in the graphs before it
starts to increase. Second, in this region the mutat
nodes tend to have a larger proportion of outgoing lin
than average, which more or less balances out th
deficiency in incoming links. The real explanation, whic
we substantiate in detail below, is the chance appeara
of an ACS in the graph.

Since (2) does not depend onf, we can setf ­ 0 in
(1) without loss of generality for studying the attracto
of (2). For fixedC the general solution of (1) isystd ­
eCtys0d, wherey denotes thes dimensional column vector
of populations. It is evident that ifyl ; s yl

1 , . . . , yl
s d

viewed as a column vector is a right eigenvector ofC with
eigenvaluel, thenxl ; yly

Ps
i yl

i is a fixed point of (2).
Let l1 denote the eigenvalue ofC which has the larges
real part; it is clear thatxl1 is an attractor of (2). By the
theorem of Perron-Frobenius for non-negative matric
[10] l1 is real and$0 and there exists an eigenvectorxl1

with xi $ 0. If l1 is nondegenerate,xl1 is the unique
asymptotically stable attractor of (2),xl1 ­ sX1, . . . , Xsd.
In practice, we found in our simulations thatl1 was
usually nondegenerate, except for very sparse gra
This is not surprising in view of the well known leve
repulsion in random matrix theory, which implies th
5685
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repeated eigenvalues are very improbable for a gen
matrix.

An ACS is defined as a subgraph whose every node
at least one incoming link from a node that belongs to
same subgraph. This definition is meant to capture
property that an ACS has “catalytic closure” [3]; i.e.,
contains the catalysts for all its members. The simp
ACS is a 2-cycle. The following hold: (i) An ACS
always contains a cycle. (ii) If a graph has no ACS, th
l1 ­ 0 for the graph. (iii) If a graph has an ACS, the
l1 $ 1. (iv) If l1 $ 1, then the subgraph correspondi
to the set of nodesi for which x

l1
i . 0 is an ACS. We

will call this subgraph the “dominant ACS” of the grap
These properties, which we first observed numerica
can be proven analytically from graph theory [11].
follows from (iv) that members of the dominant AC
completely overshadow all other species population w

For m , 1 the initial random graph is sparse. For e
ample, with s ­ 100, m ­ 0.25, there are on averag
only 25 links. Most of the nodes are singletons, so
pairs have a single link among them, and there are a
chains or other trees with two or more links. The prob
bility of there being a cycle is small [,Osm2d]. Fig-
ure 2 shows howl1 evolves. Sincel1 remains zero for
n , n1 ­ 1643, it is clear that there is no cycle in th
graph in this period. When there are no cycles, th
yi , tr for large t, wherer is the length of the longes
path terminating ati. Then Xi ­ 0 for all i except the
nodes at which the longest paths in the graph termin
Defines1snd as the number of speciesi for which Xi fi 0
at thenth time step. This is plotted in Fig. 3. (The low
curves in Figs. 2 and 3 correspond to a random run w
s ­ 100, m ­ 0.25.) Since the mutant can be any lea
fit node, the chains can be disrupted over time. In p
ticular, if the mutating node happens to be the “nea
neighbor” of a node that is the terminating point of t
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FIG. 2. l1 versusn for s ­ 100, m ­ 0.25. The upper curve
is for the same run as the middle curve of Fig. 1. The low
curve is for a random run withs ­ 100, m ­ 0.25.
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longest chain, after mutation the latter node can becom
singleton and join the ranks of the least fit.

The picture changes qualitatively when an ACS appe
by chance in a mutation. Thenl1 jumps from zero
to one (at n ­ n1). For concreteness let us say th
ACS at n ­ n1 is a 2-cycle between species 1 and
Then xl1 ­ s1y2, 1y2, 0, 0, . . . , 0d. The key point is that
both species 1 and 2 are absent from the set of leas
nodes and will not be mutated at the next time step.
definition the nodes which are not part of the domina
ACS of a graph withl1 $ 1 havex

l1
i ­ 0 from property

(iv) above, and hence constitute the set of least fit nod
Therefore, as long as the dominant ACS does not incl
the whole graph, the mutating node will be outside
and hence a mutation cannot destroy the links that m
up the dominant ACS just before the mutation.Thus
the autocatalytic property is guaranteed to be preserv
once an ACS appears until the dominant ACS engulfs
whole graph. In the run of Figs. 2 and 3 this happens
n ­ n2 ­ 2589, whens1snd ­ s. Whenevers1 , s, l1
is a nondecreasing function ofn. An increase ins1 during
n [ sn1, n2d occurs whenever a mutant species gets
incoming link from the existing dominant ACS and hen
becomes a part of it. (Note thats1 itself need not be a
nondecreasing function ofn when it is ,s, because the
dominantACS after a mutation can be smaller than t
one before the mutation.)

There is another qualitative change in the evolut
at n ­ n2. Since the whole graph becomes an AC
for the first time since the appearance of the ACS
mutant must now be from the dominant ACS itself. Wh
the mutant happens to be a species which is playing
important catalytic role in the organization (a “keysto
species”), the mutation can disconnect a number of o
species from the main ACS, as evidenced from
substantial drop ins1 at n ­ 4910. The final steady state
in Fig. 1 is characterized by the fact that the mutati

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

n

s 1

FIG. 3. s1 versusn for the same runs as in Fig. 2.
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node has, on average, the same total number of
(namely,2m) as its replacement.

The above picture holds for different values ofm, s,
as long asm is small enough ands large enough. Fo
very smallm the fluctuations in the final steady state
large; the ACS can even be destroyed completely.
sufficiently high values ofm the initial random graph i
dense enough to contain an ACS, hence the initial pe
with l1 ­ 0 is absent.

During the growth periodn [ sn1, n2d, s1 and l (lo-
cally averaged in time) grow exponentially. For e
ample, s1snd , s1sn1desn2n1dytg . The m dependence o
the “growth time scale”tg is shown in Fig. 4 and is con
sistent withtg ~ m21. In a timeDn, the average increas
in s1 in a large sparse graph is given byDs1 , ps1Dn,
which is the average number of mutating nodes out ofDn
which will get an incoming link from thes1 nodes of the
dominant ACS. Thereforetg , 1yp , sym. The av-
erage “time of arrival”ta ; kn1l of an ACS in a spars
graph is given byta , sym2 , 1ysp2sd, since the proba
bility that a graph which does not have an ACS will g
a 2-cycle at the next time step (3-cycles and larger A
being much less likely for smallp) is ,p2s. Thus for
any finite p, however small, the appearance and gro
of ACSs in this model is inevitable.

The graphs generated at the end of the growth phas
highly nonrandom. The probability of a random gra
with s nodes and on averagemp links per node being
an ACS isfff1 2 sss1 2 fmpyss 2 1dgddds21gggs, which declines
exponentially with s when mp , Os1d. This may be
relevant to the origin of life problem for which naiv
estimates of the probability of a complex organization
a cell arising by pure chance on the prebiotic earth g
exponentially small values. The present model prov
an example whereby highly nonrandom organizations
arise in a short time by a mechanism that causes
exponential increase in complexity. The hypercycle
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FIG. 4. Power law dependence oftg on m.
ks

e
or

od

-

t
s

th

are
h

e
e
s

an
an
is

known to suffer from the short-circuit instability whic
reduces its complexity [12]. It is interesting that
the present model ACSs provide the system with
opposite kind of instability, in the direction of increasin
complexity. Finally, this model provides an example
how selection for fitness at the level of individual spec
results, over a long time scale, in increased comple
of interaction of the collection of species as a who
Note in Fig. 2 that in the random run ACSs come and
whereas, when selection is operative, the system “ca
in” upon the novelty provided by an ACS that aris
by chance. This is reminiscent of how ecosystems
economic webs capitalize on “favorable” chance event
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