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Abstract

Here it is proved that if Q(x,y, z, t, u) is a real indefinite quinary quadratic form of type (4, 1) and
determinant D, then given any real numbers xo,>o, ZQ, IQ, UQ there exist integers x,y, z, t, u such that

0 < Q(x + xo,y + yo, z + ZQ, i + I* u + UQ) < (8|Z>|)1/5.

All critical forms are also obtained.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 E 20.

1. Introduction

Let Q(xu x2, • • . , xn) be a real indefinite quadratic form in n variables with
signature (r, n — r), 0 < r < n and determinant D =£ 0. It is known (see Blaney
(1948)) that there exists a real number K, depending upon n and r only, such that
given any real numbers cy,c2, . . . ,cn the inequality

0 < Q(xx + c,, x2+c2,...,xn + cn) < (<c|Z>|)I/n

has a solution in integers xv x2, . . . , xn. Let F r n _ r denote the infimum of all
such numbers K. Davenport and Heilbronn (1947) proved that Tlt = 4. F 2 , = 4
was proved by Barnes (1961) and F, 2 = 8 was obtained by Dumir (1967). Dumir
(1968a, b) has also shown that F3)1 = 16/3 and F 2 J = 16. The authors (1980)
proved that F3 2 = 16. In this paper we prove that F 4 , = 8. All the critical forms
are also obtained. More precisely we prove:
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THEOREM. Let Q(x,y, z, t, u) be a real indefinite quinary quadratic form of type
(4, 1) and determinant D ( < 0) then given any real numbers x^y^ ZQ, IQ, UQ, there
exist integers x, y, z, t, u such that

(1.1) 0 < Q{x + xo,y + y0, z + z0, t + t0, u + u0) < (8|Z>|)1/5.

The sign of equality in (1.1) is necessary if and only if either

(1.2) Q(x,y, z, t, u) ~ pQx = p(xy + z2 + t2 + u2 + zt + tu + uz)

or

(1.3) Q(x,y, z, t, u) ~ pQ2 = p{x2 + y2 + z2 + t2 - 4K 2 ) ,

where p > 0.
/ o r Qx, the sign of equality in (1.1) is necessary if and only if (*o> yo> zo> lo> Mo)

= (0, 0, 0, 0, 0) (mod 1) while for Q2 it is needed if and only ifix^y^ ZQ, 1$, UQ) =
(i, \, i, \, \) (mod 1).

2. Some lemmas

In the course of the proof we shall use the following lemmas:

LEMMA 1. If Q is as in the theorem, there exist integers xx,yv z,, t{, M, such that

(2.1) 0<e(x1,^1(z1,/1,Ml)<(8|Z)|)1/5.

The sign of equality in (2.1) is necessary if and only if Q — pQx, p > 0.

This follows from some results of Watson (1968), Jackson (1969) and Op-
penheim (1953a). Also see Watson (1958).

Let q>(y, z, t, u) be a real indefinite quaternary quadratic form of type (3, 1)
and determinant D ( < 0). We need the following results:

LEMMA 2. Given any real numbers y0, z0, t0, u0, there exist (y, z, t, u) =

(.Vo> zo> 'o> Mo) ( m o d 1) such that

(2.2) \<p(y,z,t,u)\<(\D\/3)l/\

This is a theorem due to Dumir (1967).

LEMMA 3. There exist integers y2, z2, t2, u2 such that

(2.3) 0<<p(>-2 ,z2 , / 2 ,M 2)<(4|Z) | ) I / 4

except when q>(y, z, t, u) ~ p<jp, = p(y2 + yz + z2 + tu) and <p(y, z, t, u) ~ ptp2

= p(y2 + z2 + tu), p > 0.
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This is Theorem 2 of Oppenheim (1953b).

LEMMA 4. There exist (y, z, t, u) = (.y0, ZQ, f0, MQ) (mod 1) such that

(2.4) 0 < 1 / 4

This follows from Theorem 1 of the authors (1980).

LEMMA 5. Let \p(z, t, u) be a real indefinite ternary quadratic form of type (2, 1)
and determinant D ( < 0). Then given any real numbers z0, t^ u0 there exist
(z, /, u) = (z0, to, MQ) (mod 1) such that

(2.5) | ^ z , / , « ) | 1 / 3

This is a theorem due to Davenport (1948).

LEMMA 6. Let \f/(z, t, u) be as in Lemma 5. Let c = | , \ or \. Then given any
real numbers z0, t0, u0 there exist (z, t, u) = (ZQ, t0, u<) (mod 1) such that

(2.6) -c(/(c)|Z> | ) 1 / 3 < *(z, t, u) < (f(c)\D | ) 1 / 3 ,

where f{\) = ^ , / ( ^ ) = ^ W / ( | ) = f. 77ie «g/j of equality in (2.6) w wce^ao '
i/ and only if c = } a/u/ ^ — pi//,, p > 0 where >//j = z2 + t2 — 4u2. For i//, the
equality is needed if and only if (z0, t^ uj = ({, \, \) (mod 1).

For c = f and | , the result follows from a theorem of Dumir (1969). For
c = j , it is due to the authors (1979).

LEMMA 7. Let a, /?, and d be real numbers with d > 1. Then given any real
number x0, there exists x = x0 (mod 1) such that

(2.7) 0 < (x + a)2 - P2 < d

provided

,[ < (d - l)2/4 ifdis an integer,
(Z.o) p < 2

[ < [ < / ] / 4 ifdis not an integer.

Further strict inequality in (2.8) implies strict inequality in (2.7).

This is Lemma 6 of Dumir (1968a).

LEMMA 8. Let n be an integer > 1. If f(d) is an increasing function of d for
d > n and if

(2.9) f(d) <(d- l ) 2 /4 ford > n + 1,
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then for n < d < n + 1,

(2.10) f(d)<[d]2/4.

This obvious lemma is useful in many calculations.

3. Proof of the theorem

Let

(3.1) m= inf Q(x, y, z, t,u).
x,y, z, I, uSZ,

Q{x,y,z,t, u)>0

By Lemma 1,

0 < m < (8|Z>|)1/5.

If m = 0, the result follows from a result of Watson (1960). So we can suppose
that m > 0 in the rest of the paper. Let 0 < e0 < ̂  be a sufficiently small
number. Then we can find integers xvyy, zt, tx, M, such that

where 0 < e < e0 and g.c.d. (xvyv zv tx, M,) = 1. By a suitable unimodular
transformation we can suppose that

and write

Q(x,y, z, t, u) = m{\ - t)~l{(x + hy + gz + h't + g'uf + <p(y, z, t, u)},

where \h\ < j , |g| < j , \h'\ < \, \g'\ <\ and cp(y, z, t, u) is a real indefinite
quadratic form of type (3, 1) with determinant

(3.2) Z ) ( m / ( l - e ) ) - 5 < - | .

Equality in (3.2) occurs if and only if Q ~ pQx (by Lemma 1). Also by definition
of m, we have, for any integers x, y, z, t, u either Q(x, y, z, t, u) < 0 or
Q(x, y, z, t, u) > m. Because of homogeneity it suffices to prove:

THEOREM A. Let Q(x, y, z, t, u) = (x + hy + gz + h't + g'uf +

<p(y, z, t, u), where <p(y, z, t, u) is a real indefinite quaternary quadratic form of
type (3, 1) and determinant D such that

(3.3) D<~\ (D = ~ 1 if and only if Q ~
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and

(3-4) \h\<\, \g\<\, \g'\<\, W\<\-

Suppose further that for integers x,y, z, t, u we have

(3.5) either Q(x,y, z, t, u) < 0 or Q(x,y, z, t, u) > 1 - e,

where e ( > 0) is sufficiently small. Let

(3.6) </=(8|/>|)1/5.

Then given any real numbers x0, ya, z0, f0, u0 there exist (x, y, z, t, u) =
( x ^ o , ZQ, to, «<,) (mod 1) satisfying

(3.7) 0<Q(x,y,z, t, u) < d.

The sign of equality in (3.7) is necessary if and only if Q — Qx or Q2. For £?„
equality occurs if and only if {xo,yo, z0, f0, «„) = (0, 0, 0, 0, 0) (mod 1) while for
Q2 it occurs if and only if (XQ, y0, z^ IQ, U0) S (\, \, \, \, j) (mod 1).

3.1. Proof of Theorem A.

LEMMA 9. If Q(x,y, z, t, u) is as defined in Theorem A, then for integers
y, z, t, u we have

(3.8) either <p(y, z, t, u) < 0 or <p(y, z,t,u)> - - e.

This result and its proof is similar to Lemma 4.1 of Dumir (1969).

LEMMA 10. If Q = Qx, then (3.7) is true with strict inequality unless
zQ, t0, u0) = (0, 0, 0, 0, 0) (mod 1), in which case equality is necessary.

PROOF. Here \D\ = {, so that d = 1.

Case (i). (xo,yo) a£ (0, 0) (mod 1). Suppose without loss of generality that
x0 ^ 0 (mod 1). Choose (z, t, u) = (z0, t0, KQ) (mod 1) arbitrarily, x = x0

(mod 1) such that 0 < |x| < \ and then choosey =y0 (mod 1) to satisfy

0 < xy + z2 + t2 + u2 + zt + tu + uz < |x| < - < d = 1.

Case (ii). (xQ, y0) = (0, 0) (mod 1). First we deal with the case when (z^ t^, MQ)
5* (0, 0, 0) (mod 1). Without loss of generality we can suppose that z0 ^ 0
(mod 1). Choose z = z0 (mod 1) such that 0 < |z| < | . Now choose t =
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t0 (mod 1) such that 0 < \t + z / 3 | < j and u = uQ (mod 1) such that 0 <
\u + t/2 + z/2\ < \. Take x = y = 0. So that

0 < xy + z2 + t2 + u2 + zt + tu + uz

= xy + (z/2 + t/2 + u)2 + 3(t + z/3)2/4 + 2z2/3
1 3 1 2 1 29 ,

< 4 + 4 - 4 + 3 - 4 = 4 8 < 1 -
Now let (x0, y0, z0, t0, u0) = (0, 0, 0, 0, 0) (mod 1). Then equality is needed in
(3.7) because xy + z2 + t2 + u2 + zt + tu + uz takes integral values only.

Since from (3.3), d = (8|Z>|)1/5 > 1 and d = 1 if and only if Q ~ Qv we can
suppose that d > 1 in the rest of the paper.

LEMMA 11. Let vl = d — \ and v2 > 0 be a real number satisfying

v | < (d - l ) 2 /4 if d is an integer,

< [ d~\ 2/4 if d is not an integer.

Suppose that we can find (y, z, t, u) = (y^ ZQ, /„, u0) (mod 1) such that

(3.10) -v2 < <p(y, z, t,u) < *-,

then for any x0, there exists x = x0 (mod 1) satisfying (3.7). Further strict
inequality in (3.10) implies strict inequality in (3.7).

PROOF. If 0 < <p(y, z, t, u) < vv choose x =x0 (mod 1) such that

so that

\x + hy + gz + h't + g'u\ < - ,

0 < Q(x,y, z,t,u) <vl+- = d.

Strict inequality holds if we have strict inequality in (3.10). If ~v2 < <p(y, z, t, u)
< 0, then the result follows from Lemma 7 with a = hy + gz + h't + g'u and
/32 = -<p(y,z,t>u).

LEMMA 12. If d > 11, then (3.7) is true with strict inequality.

PROOF. By Lemma 4, there exist (y, z, t, u) = (y^ ZQ, tq, u0) (mod 1) such that

that is
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Then the result will follow from Lemma 11, if we have

[[d]2/4 ifll<rf<12.

f(d) = (Ild5/4)l/4 is an increasing function of d for d > 1. By Lemma 8, it is
enough to verify the above inequality for d > 12. This verification is easy and
we omit the proof.

LEMMA 13. If4 < d < 11, then again (3.7) is true with strict inequality.

PROOF. By Lemma 2, there exist (y, z, t, u) = (y0, z0, ?0, u0) with

\<p(y,z,t,u)\<(\D\/3)1/4=(d5/24)l/\

The result will follow from Lemma 11, if we have

(3.11) (d5/24)1/4 < d - |

and

[ 2 4 if 5 < rf < 11,

[d] 2/4 U4<d<5.
(3.12) (</5/24)1/4 < V ,

\[d] 2

We observe that by Lemma 8, it is enough to verify (3.12) for 5 < d < 11.
Verification of these inequalities is easy and is left to the reader.

REMARK. For 1 < d < 4, we shall repeat the procedure of reduction described
in Section 3. We shall use Lemma 3 on the homogeneous minimum of positive
values of quaternary forms of type (3, 1). So we first dispose of the exceptional
forms.

LEMMA 14. If <p(y, z, t, u) ~ p<p, or p<p2, 1 < d < 4, p > 0, then again (3.7) is
true with strict inequality.

PROOF. Case (i). cp ~ pqp,. It is enough to consider

<p = (xpi = p(y2 + yz + z2 + tu).

So that

Q(x,y, z, t, u) = (x + hy + gz + h't + g'uf + p(y2 + yz + z2 + tu).

If g' * 0, then by (3.4) we get 0 < Q(0, 0, 0, 0, 1) = g'2 < \ < 1 - e. This
contradicts (3.5). Therefore g' = 0. Similarly h' = 0. Consideration of the values
of Q at the points (0, 0, 1, - 1 , 1) and (0, 1, 0, - 1 , 1) gives g = h = 0. Therefore
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Q(x,y, z, t, u) = x2 + p(y2 + yz + z2 + tu) and |D| = 3p4/l6. Here p =
(16|Z)|/3)1/4 = (2d5/3)l/A < Idloxd < 4.

Subcase (i). (t0, u0) ^ (0, 0) (mod 1). Without loss of generality we can sup-
pose that t0 ^ 0 (mod 1). Choose (x,y, z) = {x^y^, z^) (mod 1) arbitrarily,
t = t0 (mod 1) such that 0 < \t\ < | and then choose u = u0 (mod 1) satisfying

0 < x2 + p(y2 + yz + z2 + tu) < p\t\ < p/2 < d.

Subcase (ii). (f0, M0) = (0, 0) (mod 1). Take t = u = 0. Choose x=x0 (mod 1)
such that \x\ < \, z = z0 (mod 1) such that \z\ < \ and/ =y0 (mod 1) such that
\y + z/2 | < \. So that

0 < x2 + p(y2 + yz + z2 + tu)

= x2 + p(y + z/2)2 + 3 • Pz2/4 + ptu < 7p/16 + ^ < rf.

(It can be easily checked that 7p/4 < 4d - 1, for d < 4.) Therefore (3.7) is
satisfied with strict inequality unless x = 0, y + z/2 = 0, z = 0. In this case
change x to 1, then (3.7) is satisfied with strict inequality.

Case (ii). <p — pq>2, p > 0 is similar and is left to the reader.

3.2. Proof of Theorem A continued

From now on we can suppose that 1 < d < 4 and <p(y, z, t, u) ^ p«p, or ptp2,
p > 0. By Lemma 3, there exist integers y2, z2, t2, u2 with g.c.d. (y2, z2, t2, u^ = 1
such that

(3.13) 0<a = <p(y2,z2,t2,u2)<(4\D\)l/4 = (d5/2y/4.

Also from (3.8) we have a > f — e. By a suitable unimodular transformation we
can suppose that <p(l, 0, 0, 0) = a. So we can write

<p(y, z, t, u) = a{{y + fz + ft + f'uf + ^(z, t, u)},

where

(3.14) | - e < a < (d5/2)l/4

and ij/(z, t, u) is a real indefinite ternary quadratic form of type (2, 1) and
determinant D/aA.

In view of Lemma 11, it is enough to prove that there exist (y, z, t, u) =

(^c zo> 'o> wo) ( m o d 1) s u c t l t h a t

(3.15) -v/a <{y + fz + ft + f"uf + +(z, t, u) < (4d - I)/4a,
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where

(3.16)

Inhomogeneous quinary quadratic forms

- if 3 < d < 4,
4
1 if 2 < d < 3,

\ if 1 < d < 2.
4
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Let JM, = (4c? - 1 - a)/'4a and X = (4d - I + 4v)/4a. Using (3.14) one can
easily verify that /i, > 0 and A > 1.

LEMMA 15. Let n2 > 0 be a real number satisfying

(A — 1) / 4 + via i/X is an integer,

[A] /4 + v/a ifXis not an integer.

Suppose that there exist (z, t, u) = (z0, t0, u0) (mod 1) such that

(3.17) - ^ < Hz, t,u) < Ml.

77ie« we can find y =y0 (mod 1) satisfying (3.15). Further strict inequality in
(3.17) implies strict inequality in (3.15).

The proof is similar to that of Lemma 11, so we omit it.

LEMMA 16. 7/3 < d < 4, then (3.17) and hence (3.15) holds with strict inequal-
ity.

PROOF. In this case v = | , so that A = (d + 2)/a.

By Lemma 6, we can find (z, t, u) = (z0, t0, u0) (mod 1) such that

') < xf,(z, t,u) < -

Then (3.17) will hold with strict inequality if we have

(3.18) -(d5/24a4)l/3 < {4d - 1 - a)/4a

and

(3.19) (</5/24a4)1/3 < •
(A — l) 2 /4 + - f l if A is an integer,

Q

[A]2/4 + - a if A is not an integer.

A simple calculation yields the inequality (3.18). So we proceed to verify (3.19).
Let n < A = (d + 2)/a < n + 1, n = 1, 2, 3, . . . . Then (3.19) will be satisfied if
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we have

(3.20) d%/24 < al^ + n2a/4\ - g(a) (say).

Since a > (d + 2)/n + 1, we have

g{a) > g((d + 2)/ (n + 1)) = (d + 2)(n + 1)-V3{9(« + 1) + «2(</ + 2)}3.

We shall have (3.20) if

For fixed n, h(d) is a decreasing function of d and rf < 4, therefore

h(d) > h{4) = 6 • 27 • 4-5(/i + 1)~4{3(« + 1) + 2/i2}3 > | ^

because n > 1. This proves (3.20) and hence (3.19).

LEMMA 17. / / 2 < d < 3, f/ien aga/« (3.17) W /te/ice (3.15) w satisfied with
strict inequality.

PROOF. In this case v = 1, so that X = (3 + 4d)/4a. Let w < (3 + Ad)/4a <
n + 1, « = 1, 2, . . . . In view of Lemma 15, it is enough to prove that there exist
(z, t, u) = (z0, t^ Mo) (mod 1) such that

(3.21) - (n2/4 + I/a) < $(z, t, z)<{4d-\- a)/4a.

Case (I). 7i > 2. By Lemma 5, there exist (z, t, u) = (z0, t^ u^ (mod 1) such
that

|«Hz, f, «)| < (27|£>|/100a4)1/3 = (27rf5/800a4)1/3.

Then (3.21) will hold if we have

(3.22) (27</5/800a4)1/3 < (4d - 1 - a)/4a

and

(3.23) (27</5/800a4)'/3 < n2/4 + I/a.

We omit the straightforward verification of these inequalities.
Case (II). n = 1 that is 1 < (3 + 4d)/4a = \ < 2. By Lemma 6, with c = {,

we can find (z, /, M) = (z0, t^, u0) (mod 1) such that

-^(32</5/429a4)1/3 < ^(z, r, u) < (32d5/429a4)l/3.

Then (3.21) will hold if we have

(3.24) (32</5/429a4)1/3 < (4d - 1 - a)/4a



[ i l l Inhomogeneous quinary quadratic forms 185

and

(3.25) (32</5/429a4)1/3 < 2(n2/4 + \/a) = (a + 4)/2a.

Since (4d - 1 - a)/4a < (a + 4)/2a for a > (3 + 4</)/8 and d < 4, it is
enough to verify (3.24), which can be easily done.

LEMMA 18. / / 1 < d < 2, then again (3.17) and hence (3.15) « frue.

PROOF. In this case v =\, so that A = d/a. Also from (3.13), A = d/a <
8/(3 — 4e) < 3, on taking e sufficiently small. We distinguish two cases:

Case (i). 2 < A < 3. In this case [A]2/4 + v/a = (1 + 4a)/4a. So we have to
prove that there exist (z, t, u) = (z0, f0, u0) (mod 1) such that

(3.26) - (1 + 4a)/4a < ^(z, /, u) < (4d - 1 - a)/4a.

By Lemma 6, with c =\, there exist (z, f, u) = (z0, *<,, M0) (mod 1) such that

-j(32</5/429a4)1/3 < ^/(z, f, M) < (32</5/429a4)1/3.

Then (3.26) will hold with strict inequality if

(32rf5/429a4)1/3 < min( 4d " ^ ~ a , 1 ^ ) = (4rf - 1 - a)/4a.

This will be so if and only if

g(a) = a(d-(\ + a)/4)3 > 32d5/'429.

g(a) is an increasing function of a for d/3 < a < d/2, therefore

g(a) > g{d/3) - j< /{< / - (1 + d/3)/4f > 32rf5/429

if h(d) = (lld- 3fd^ > 123 • 32/143, which is true for 1 < d < 2.

Case (ii). 1 < A < 2. In this case [A]2/4 + v/a = (1 + a)/4a. By Lemma 15,
it is enough to prove that there exist (z, t, u) = (z0, /„, MQ) (mod 1) such that

(3.27) - (1 + a)/4a < ifr(z, t, u) < (4d - 1 - a)/4a.

By Lemma 6, with c = | , there exist (z,;, M) = (z0, f,,, «(,) (mod 1) such that

-j(27|Z>|/32a4)I /3 < tfz, r, ti) < (27|Z)|/32a4)1/3.

Then (3.27) will follow if we have

(27|Z)|/32a4)1/3 = (27</5/256a4)1/3 < min((4rf - 1 - a)/4a, 3(1 + a)/4a).

Now (4d — 1 — a)/4a < 3(1 + a)/4a if and only if </ < 1 + a, which is true.
(Strict inequality holds unless d = 2,a = d/2 = 1.) So it is enough to verify that

(3.28) (27</5/256a4)1/3 < (4d - 1 - a)/4a.
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We shall have (3.28) if and only if

(3.29) g(a) = a(d - (1 + a)/4)3 > 27J5/256.

g(a) increases or decreases according as a < d — \ ox a > d — \ and since
d/2<d- i, dfl < a < {\d5)x/*, (3.29) will be true if

mini g\d/ 2), g\\ a / L) \\ > 2/a / Zjb.

Now g(rf/2) = </(7rf - 2)3/1024 > 27^/256 if/(</) = (7</ - 2fd^ > 108. f(d)
increases or decreases according as d < * or d > f. Therefore

f(d) > min(/(l),/(2)) =/(2) = 108,

and strict inequality holds unless d = 2. The inequality g((^5/2)1/4) >
27rf5/256 can be easily verified.

Therefore (3.29) is satisfied with strict inequality unless d = 2, a — d/2 = 1.
Hence (3.27) is true. Equality holds in (3.27) only if d = 2, a = 1, and «//, ZQ, /„,
u0 are such that equality is needed in (2.6).

This completes the proof of Lemma 18.

4. The case of equality

LEMMA 19. For d > 1, the sign of equality in (3.7) is necessary if and only if
Q ~ Qi- For (?2> '* is so if and only ifix^y^ z0, t^ u0) = {-, \, 5, \, 5) (mod 1).

PROOF. Equality can hold in (3.7) only if it holds in (3.15). This happens only
if d = 2, a = 1 and î , z0, f0, w0 are such that equality is necessary in (2.6) (see
Lemma 18). Thus we must have \p ~ p<//, = p(z2 + t2 — 4«2), p > 0 and
(z0, t0, u0) = ( i , i , 5) (mod 1). Then 4p3 = \D\/a4 = </78a4 = 4 so that p = 1.
Therefore <p(y, z, t, u) = (y + fz + ft + f'uf + z2 + t2 - 4M2.

By a suitable unimodular transformation we can suppose that

(4-1) | / | < y , l / ' l<i> 1/1 < \-
JL Z Z

Again for equality to occur in (3.15), the following inequality

-\ < F(y, z, t, «) = (>-+ y0 + f[z + \) + f\t + | ) +/"(« + ~

should not have any solution in integers >», z, t, and u. Now

-\< F(y, 0,0,0)
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is solvable for integer^ unless

(4.2) y0 + f/2 + f/2 + f"/2 = ± (mod 1).

Similarly considering F(y, - 1 , 0 , 0), F(y, 0, - 1 , 0) and F(y, 0, 0, -1) for equal-
ity to occur we must have

(4.3) y0 - f/2 + f/2 + f"/2 = \ (mod 1),

(4.4) y0 + f/2 - f/2 + f"/2 = \ (mod 1),

(4-5) y0 + f/2 + f/2 - f"/2 = \ (mod 1).

Subtracting (4.3), (4.4) and (4.5) from (4.2) we get

/=/ '=/" = 0(mod 1).

Then from (4.1) we have

/ = / ' = / " = 0, yQ = \ (mod 1).

Therefore <p(y, z, t, u) = y2 + z2 + t2 - 4«2, and (y0, z^ t^ uj = (5, {, {, 5)
(mod 1). Hence

Q(x,y, z, t, u) = (x + hy + gz + h't + g'uf + y2 + z2 + t2 - Au2.

Again if equality is necessary in (3.7), the following inequality

^ + xo,y + - , z + 2 ' ' + i ' " +

should not have any solution in integers x,y, z, t, u. Proceeding as above, one
can see that this is solvable unless

h=g = h' = O (mod 1).

Since \h\ < \, | g\ < \, \h'\ < \, \ g'\ < \ from (3.4), we must have

h = g = h' = g' = 0 and xo = -= (mod 1).

Hence Q(x, y, z, t, u) = x2 + y2 + z2 + t2 - 4u2 and (x^ y^ ZQ, t^ MQ) =
( | , | , \, i , ̂ ) (mod 1). Considering congruences modulo 8, one can see that the
sign of equality is necessary in this case.

The proof of Theorem A follows from Lemmas 10-19, and thus our theorem
is proved.
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