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ABSTRACT

We have studied two person stochastic di�erential games with multiple modes.
For the zero-sum game we have established the existence of optimal strate-
gies for both players. For the nonzero sum case we have proved the existence
of a Nash equilibrium.
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INTRODUCTION
We study a two-person stochastic di�erential game with multiple modes.

The state of the system at time t is given by a pair (X(t); �(t)) 2 Rd�S; S =
f1; 2; � � � ; Ng. The discrete component �(t) describes the various modes of
the system. The continuous component X(t) is governed by a \controlled
di�usion process" with a drift vector which depends on the discrete compo-
nent �(t). Thus X(t) switches from one di�usion path to another at random



times as the mode �(t) changes. On the other hand, the discrete component
�(t) is a \controlled Markov chain" with a transition rate matrix depending
on the continuous component. The evolution of the process (X(t); �(t)) is
governed by the following equations

dX(t) = b(X(t); �(t); u1(t); u2(t))dt + �(X(t); �(t))dW (t);

P (�(t+ �t) = j j �(t) = i; X(s); �(s); s � t) = �ij(X(t))�t+ o(�t); i 6= j;

for t � 0; X(0) = x 2 Rd; �(0) = i 2 S;where b; �; � are suitable functions;

�ij � 0; i 6= j;
NX
j=1

�ij = 0;

W (�) is a standard Brownian motion, u1(�) and u2(�) nonanticipative pro-
cesses taking values in prescribed sets U1 and U2, respectively, which are ad-
missible strategies for players 1 and 2, respectively. This kind of di�erential
game was �rst studied by Basar and Haurie [1] for a piecewise deterministic
case (� � 0). They have studied feedback Stackelberg and Nash equilibria
for a nonzero-sum game. Here we consider both zero-sum and nonzero-sum
games. In a zero-sum game player 1 is trying to maximize his expected
(discounted) payo�

E [
Z
1

0
e��t r(X(t); �(t); u1(t); u2(t))dt]

over his admissible strategies, where � > 0 is the discount factor and r

is the payo� function. Player 2 is trying to minimize the same over his
admissible strategies. This kind of game typically occurs in a pursuit-evasion
problem where an interceptor tries to destroy a speci�c target. Due to quick
maneuvering by the evader and the corresponding response by the interceptor
the trajectories keep switching rapidly and is generally modelled as a hybrid
system (X(t); �(t)) described above [12]. Though pursuit-evasion games are
generally treated on a �nite horizon, we have studied the in�nite horizon case
here. The corresponding results for the �nite horizon case can be derived
using analogous (almost identical) arguments. For the zero-sum game we
have established existence of randomized optimal strategies for both players.
We have then treated a special case where at each mode only one player



controls the game (think of billiards, for example). For this special case we
have shown the existence of optimal pure strategies. This may have potential
applications in token ring networks [4, p. 253]. In such networks each node
may be treated as a player and at any time the node having the token controls
the game completely. We next consider the nonzero-sum game where each
player is trying to maximize his own payo�. For player `; ` = 1; 2; the payo�
is

E [
Z
1

0
e��t r`(X(t); �(t); u1(t); u2(t))dt]:

This kind of game arises in a situation where two economic agents share
the same production system which is subject to random failure [10]. For a
nonzero-sum game we have established the existence of (Nash) equilibrium.
Our results for a nonzero-sum game extends to the several players case. We
have treated two players only for notational simplicity.

Our paper is organized as follows. Section 2 describes the technical details
of the problems. Zero-sum game is treated in Section 3. Section 4 deals with
nonzero-sume case.
PROBLEM DESCRIPTION

Let V` = 1; 2 be compact metric spaces and U` = P(V`) the space of
probability measures on V` endowed with the topology of weak convergence.
Let V = V1 � V2 and U = U1 � U2. Let S = f1; 2; � � � ; Ng. Let

�b : Rd � S � V !Rd; �b(�; �; �) = [�b1(�; �; �); � � � ;�bd(�; �; �)]
0

� : Rd � S ! Rd�d; �(�; �) [�ij(�; �)]; 1 � i; j � d.

�ij : R
d !R; 1 � i; j � N; �ij(�) � 0; i 6= j;

PN
j=1 �ij(�) = 0.

We make the following assumptions on �b; �; �.

(A1) ( i) For each i 2 S; �b(�; i; �; �) is bounded, continuous and Lipschitz
in its �rst argument uniformly with respect to the rest.
( ii) For each i 2 S; �(�; i) is bounded and Lipschitz with the least
eigenvalue of ��0(�; i) uniformly bounded away from zero.
(iii) For i; j 2 S; �ij(�) is bounded and Lipschitz continuous.

For x 2 Rd; � 2 S; (u1; u2) 2 U = U1 � U2, de�ne



bk(x; i; u1; u2) =
Z
V1

Z
V2

�bk(x; i; v1; v2)u1(dv1)u2(dv2); k = 1; � � � ; d

and
b(x; i; u1; u2) = [b1(x; i; u1; u2); � � � ; bd(x; i; u1; u2)]

0:

Let (X(�); �(�)) be an Rd � S-valued process given by

dX(t) = b(X(t); �(t); u(t))dt+ �(X(t); �(t))dW (t) (2.1a)

P (�(t+ �t) = j j �(t) = i; �(s); X(s); s � t) = �ij(X(t))�t+ 0(�t); i 6= j

(2.1b)

X(0) = x 2 Rd �(0) = i 2 S: (2.1c)

Here, W (�) = [W1(�); � � � ;Wd(�)]
0 is a standard Wiener process, u(�) = (u1(�),

u2(�)) where u`(�) is a U`-valued nonanticipative process (see [8] for a precise
de�nition of nonanticipativity). The process u`(�); ` = 1; 2; as above is called
an admissible strategy for player `. If u`(�) = v`(x(�); �(�)) for a measurable
v` : R

d � S ! U`, then u`(�) (or by an abuse of notation the map v` itself)
is called a Markov strategy for the `th player. A strategy u`(�) is called
pure if u` is a Dirac measure, i.e., u`(�) = �v`(�), where v`(�) is a V`-valued
nonanticipative process. If for each ` = 1; 2; u`(�) is a Markov strategy then
(2.1) admits a unique strong solution which is a strong Feller process [8]. Let
A`;M` and D` denote the sets of arbitrary admissible, Markov and Markov
pure (\deterministic") strategies, respectively, for player `. For p � 1 de�ne

W
2;p
loc (R

d � S) = ff : Rd � S ! R : for each i 2 S; f(�; i) 2 W 2;p
loc (R

d)g:

W
2;p
loc (R

d � S) is endowed with the product topology of (W 2;p
loc (R

d))N . Sim-
ilarly, we de�ne D(Rd � S);D0(Rd � S), etc. For f 2 W

2;p
loc (R

d � S) and
v = (v1; v2) 2 V1 � V2, we write

Lv1;v2f(x; i) = L
v1;v2
i f(x; i) +

NX
j=1

�ijf(x; j) (2.2)

where

L
v1;v2
i f(x; i) =

dX
j=1

�bj(x; i; v1; v2)
@f(x; i)

@xj
+
1

2

dX
j;k=1

ajk(x; i)
@2f(x; i)

@xj@xk
(2.3)



ajk(x; i) =
dX

`=1

�j`(x; i) �k`(x; i):

For (u1; u2) 2 U1 � U2 we de�ne

Lu1;u2f(x; i) =
Z
V1

Z
V2

Lv1;v2f(x; i)u1(dv1)u2(dv2): (2.4)

Zero-Sum Game.

Let �r : Rd � S � V1 � V2 !R be the payo� function. We assume that

(A2) �r is a bounded, continuous function, Lipschitz in its �rst argument
uniformly with respect to the rest.

When the state of the system is (x; i) 2 Rd � S and the players 1, 2
choose the actions v1 2 V1; v2 2 V2, respectively, player 1 receives a payo�
�r(x; i; v1; v2) from player 2. The problem is to �nd a strategy for player
1 which will maximize his accumulated income and a strategy for player
2 which will minimize the same quantity. For performance evaluation, we
consider the discounted payo� on the in�nite horizon. Let � > 0 be the
discount factor. Let (u1; u2) 2 A1 � A2 and (X(�); �(�)) the solution of (2.1)
corresponding to this pair of strategies. The �-discounted payo� to player 1
for the initial condition (x; i) is de�ned as follows:

R[u1; u2] (x; i) = E
u1;u2
x;i [

Z
1

0
e��t r(X(t); �(t); u1(t); u2(t))dt] (2.5)

where

r : Rd � S � U1 � U2 !R

is de�ned as

r(x; i; u1; u2) =
Z
V1

Z
V2

�r(x; i; v1; v2)u1(dv1)u2(dv2): (2.6)

A strategy u�1 2 A1 is said to be (�-discounted) optimal for player 1 if for

(x; i) 2 Rd � S

R[u�1; ~u2](x; i) � inf
u22A2

sup
u12A1

R[u1; u2](x; i) : = �R(x; i) (2.7)



for any ~u2 2 A2. The function �R : Rd�S !R is called upper value function
of the game. Similarly, a strategy u�2 2 A2 is said to be optimal for player 2
if

R[~u1; u
�

2](x; i) � sup
u22A2

inf
u12A1

R[u1; u2](x; i) := R(x; i) (2.8)

for any ~u1 2 A1 and (x; i) 2 Rd � S. The function R : Rd � S ! R is
called the lower value function of the game. If �R � R, then the game is said
to admit a value and the common function is denoted by R and is called
the value function. Clearly the existence of a pair of optimal strategies for
both players ensures that the value function exists but the converse need not
hold. We will establish the existence of a value function and Markov opimal
strategies for both players. Since the addition of a constant to the payo�
function does not alter the optimal strategies, we may (and will) assume
that �r � 0.

NonZero-Sum Game
For each ` = 1; 2; let �r` : Rd � S � V1 � V2 ! R be the payo� function

for player `. We assume that

(A3) �r` is bounded, continuous and Lipschitz in its �rst argument uniformly
with respect to the rest.

When the system is in state (x; i) and the action v = (v1; v2) 2 V1 � V2 are
chosen by the players then player `; ` = 1; 2; receives payo� �r`(x; i; v1; v2). Let
r` : Rd � S � U1 � U2 be de�ned as follows: for (x; i) 2 Rd � S; (u1; u2) 2
U1 � U2

r`(x; i; u1; u2) =
Z
V1

Z
V2

�r` (x; i; v1; v2)u1(dv1)u2(dv2); k = 1; 2: (2.9)

Each player wants to maximize his accumulated income. We again consider
the �-discounted payo� on the in�nite horizon. Let (u1; u2) 2 A1 � A2. Let
(X(�); �(�)) be the solution of (2.1) corresponding to (u1(�); u2(�)). Then the
(�-discounted) payo� to player ` for the initial condition (x; i) is de�ned as

R`[u1; u2](x; i) = E
u1;u2
x;i [

Z
1

0
e��t r`(x(t); �(t); u1(t); u2(t))dt]: (2.10)

A pair of strategies (u�1; u
�
2) 2 A1 � A2 is said to be a (Nash) equilibrium if

for (x; i) 2 Rd � S



R1[u
�

1; u
�

2](x; i) � R1[u1; u
�

2](x; i) for any u1 2 A1;

and

R2[u
�

1; u
�

2](x; i) � R2[u
�

1; u2](x; i) for any u2 2 A2: (2.11)

We will establish the existence of an equilibrium in Markov strategies. Note
that the two-person nonzero-sum game can be extended to the N -person
game. We are treating only the two-person case for notational simplicity.

We conclude this section by showing that both the players can con�ne
their attention to only Markov strategies. To this end we introduce the con-
cept of �-discounted occupation measures. Let (u1(�); u2(�)) 2 A1 � A2 and
(X(�); �(�)) the corresponding process. The �-discounted occupation measure
denoted by �[u1; u2] 2 P(R

d � S � V1 � V2) is de�ned implicitly by

NX
j=1

Z
Rd�V1�V2

f(x; i; v1; v2)�[u1; u2](dx; i; dv1; dv2)

= � E
u1;u2
x;i [

Z
1

0

Z
V1

Z
V2

e��t f(X(t); �(t); v1; v2)u1(t)(dv1)u2(t)(dv2)dt]

(2.12)

for f 2 Cb(R
d � S � V1 � V2). Indeed, �[u1; u2] will depend on the ini-

tial condtion (x; i), but we have suppressed this dependence for notational
convenience. In terms of �[u1; u2], (2.5) becomes

R[u1; u2](x; i) = ��1
NX
j=1

Z
Rd�V1�V2

�r(y; j; v1; v2)�[u1; u2](dy; j; dv1; dv2)

(2.13)

and (2.10) becomes

R`[u1; u2](x; i) = ��1
NX
j=1

Z
Rd�V1�V2

�r`(y; j; v1; v2)�[u1; u2](dy; j; dv1; dv2):

(2.14)

Let

�[A1; A2] = f�[u1; u2] j (u1; u2) 2 A1 � A2g:



�[M1; A2]; �[A1;M2]; �[M1;M2] etc. are de�ned analogously. We can closely
mimic the proof of [8, Lemma 4.2], to obtain the following result.

Lemma 2.1. For any �xed initial condition

�[A1;M2] = �[M1;M2] = �[M1; A2]:

It immediately follows from the above lemma that for the two person
zero-sum game no player can improve his payo� by going beyond Markov
strategies. For the nonzero-sum game there is no notion of value of the
game. Di�erent pairs of equilibrium strategies may yield varied payo�s to
the players. However, due to the enormous complexity in implementing a
non-Markov strategy both players look for equilibrium in Markov strategies
only.
ZERO-SUM GAME

In this section we will establish Markov optimal strategies for both play-
ers. To this end we �rst study the corresponding Isaacs equation given by

infu22U2
supu12U1

[Lu1;u2 �(x; i) + r(x; i; u1; u2)]

= sup
u12U1

inf
u22U2

[Lu1;u2 �(x; i) + r(x; i; u1; u2)] = ��(x; i): (3.1)

Note that (3.1) is a quasilinear system of uniformly elliptic equations with
weak coupling in the sense that the coupling occurs only in the zeroth order
term.

Theorem 3.1. Under (A1), (A2) the equation (3.1) has a unique solution
in C2(Rd � S) \ Cb(R

d � S).

Proof. Consider �rst the system of equations

inf
u22U2

sup
u12U2

[Lu1;u2 �(x; i) + r(x; i; u1; u2)] = ��(x; i): (3.2)

For R > 0, let BR = fx 2 Rd : jxj < Rg. Consider the following Dirichlet
problem on BR � S

inf
u22U1

sup
u12U2

[Lu1;u2�(x; i) + r(x; i; u1; u2)] = ��(x; i) in BR � S (3.3a)

�(x; i) j@BR�S = 0: (3.3b)



Under (A1), (A2) the existence of a unique solution �R(x; i) of (3.3) in
W 2;p(BR � S); 2 � p < 1, is guaranteed by using the arguments in [11,
Thm. 5.1, p. 422]. Thus to each R > 0 there corresponds a solution �R
of (3.3) belonging to W 2;p(BR � S); 2 � p <1. By the Sobolev imbedding
theorem �R(x; i) 2 C

1;(BR � S), for 0 <  < 1;  arbitrarily close to 1, and
hence by our assumption on �b; �; �r ((A1); (A2)), it is easy to see that

��(x; i)� inf
u22U2

sup
u12U1

[
dX

j=1

bj(x; i; u1; u2)
@�R(x; i)

@xj

+
NX
j=1

�ij(x)�R(x; j) + r(x; i; u1; u2)]

is in C0;. By elliptic regularity [9, p. 287] applied to (3.3a) it follows that
�R(x; i) 2 C

2;r (BR � S). Standard arguments involving Ito's formula yield
�R(x; i) =

inf
u22M2

sup
u12M1

E
u1;u2
x;i [

Z �R

0
e��t r(X(t); �(t); u1(X(t); �(t)); u2(X(t); �(t))dt];

(3.4)

where �R is the hitting time of @BR of the processX(�). Since �r � 0; �R(x; i) �
�R(x; i) (the upper value of the game). Clearly �R(x; i) is nondecreasing in R.
Let R0 > R. Then by the interior estimates [11, pp. 398-402] f�R0gR0>R is
bounded in BR�S uniformly in R0 and fr�R0gR0>R is bounded inW 1;2(BR�
S) uniformly in R0. By the Sobolev imbedding theorem W 1;2(BR � S) ,!
L2+�(BR � S) for some � > 0. Then by suitably modifying the arguments in
(4.10) in [11, p. 400], we obtain

jj �R0 jj W 2;2+�
(BR�S)

� kR;

where kR is a constant independent of R0. (The modi�cation is needed be-
cause of the factor � > 0, but it is routine). Repeating the above procedure
over and over again we conclude that f�R0gR0>R is uniformly bounded in
W 2;p(BR � S) for 2 � p < 1. Since W 2;p(BR � S) ,! W 1;p(BR � S)
and the injection is compact, it follows that f�R0gR0>R converges strongly in
W 1;p(BR � S). Thus given any sequence fRng; Rn ! 1 as n ! 1, and
for any �xed integer N � 2, we can choose a subsequence fRnig such that



f�Rni
g converges strongly in W 1;p(BN�1 � S). Using a suitable diagonaliza-

tion, we may assume that f�Rni
g converges strongly in W 1;p(BN�1 � S) for

each N � 2. Let  be a limit point of f�Rni
g. It can be shown as in [3, p.

148] (see also [11, p. 420]) that

inf
u22U2

sup
u12U1

[
dX

j=1

bj(x; k; u1; u2)
@�Rni

(x; k)

@xj
+

NX
j=1

�kj�Rni
(x; k)

+ r(x; k; u1; u2)]

ni!1! inf
u22U2

sup
u12U1

[
dX

j=1

bj(x; k; u1; u2)
@ (x; k)

@xj
+

NX
j=1

�kj(x)

+ r(x; k; u1; u2)]

strongly in Lp(BN�1 � S). Therefore  2 W
1;p
loc (R

d � S) and it satis�es
(3.2) in D0(Rd � S); i :e: in the sense of distributions. By elliptic regularity
 2 W

2;p
loc (R

d � S). Then by the Sobolev imbedding theorem and elliptic
regularity  2 C2;(Rd � S); 0 <  < 1;  arbitrarily close to 1. Using (A1),
(A2), and Fan's minimax theorem [6] it follows that  satis�es (3.1). Clearly
 2 Cb(R

d � S). Let v�1(�) 2 M1 and v�2(�) 2 M2 be the outer maximizing
and outer minimizing selectors respectively in (3.1). The existence of such
selectors is guaranteed by a standard measurable selection theorem [2]. Then
routine arguments involving Ito's formula yield

 (x; i) = E
v�
1
;v�
2

x;i [
Z
1

0
e��tr(X(t); �(t); v�1(X(t)�(t)); v�2(X(t); �(t)))dt]

= inf
v22M1

sup
v12M1

E
v1;v2
x;i [

Z
1

0
e��tr(X(t); �(t); v1(X(t)�(t)); v2(X(t); �(t)))dt]

= sup
v12M2

inf
v22M2

E
v1;v2
x;i [

Z
1

0
e��tr(X(t); �(t); v1(X(t)�(t)); v2(X(t); �(t)))dt]:

Thus  (x; i) = V (x; i) = �V (x; i) = V (x; i), the value of the game. To prove
uniqueness let V 0(x; i) be another solution of (3.1) in C2(Rd�S)\Cb(R

d�S).
Let k be a common bound on j V (�; �) j and j V 0(�; �) j. Then it can be shown
that (see [5, pp. 69-70])

j V (x; i)� V 0(x; i) j � 2e��tk:



Letting t!1, we have V � V 0.

Theorem 3.2. Assume the conditions (A1), (A2). Let v�1 2 M1 be such
that

inf
v22U2

[
dX

j=1

bj(x; i; v
�

1(x; i); v2)
@V (x; i)

@xj
+

NX
j=1

�ij(x)V (x; j)+ r(x; i; v�1(x; i); v2)]

= sup
v12U1

inf
v22U2

[
dX

j=1

bj(x; i; v1; v2)
@V (x; i)

@xj
+

NX
j=1

�ij(x)V (x; j) + r(x; i; v1; v2)]

(3.5)
for each i and a:e:x. Then v�1 is optimal for player 1.

Similarly, let v�2 2M2 be such that

sup
v12U1

[
dX

j=1

bj(x; i; v1; v
�

2(x; i))
@V (x; i)

@xj
+

NX
j=1

�ij(x)V (x; i) + r(x; i; v1; v
�

2(x; i)]

= inf
v22U2

sup
v12U1

[
dX

j=1

bj(x; i; v1; v2)
@V (x; i)

@xj
+

NX
j=1

�ij(x)V (x; j) + r(x; i; v1; v2)]

(3.6)
for each i and a:e:x. Then v�2 is optimal for player 2.

Proof. We prove this claim for the �rst player. The corresponding claim for
the second player follows similarly. Let v�1 2M1 satisfy (3.5). The existence
of such v�1 follows from a standard measurable selection theorem [2, Lemma
1]. Pick any v2 2 M2. Let (X(�); �(�)) be the process governed by (v�1 ; v2)
with X(0) = x; �(0) = i. Then using the same arguments as in the proof of
the previous theorem, we can show that

V (x; i) � R[v�1; v2](x; i):

Hence v�1 is optimal for player 1.

We now consider a special case where in each discrete state i 2 S, one
player controls the game exclusively. In other words, we assume the following

(A4) Let S1 = fi1; � � � ; img � S; S2 = fj1; � � � ; jng � S be such that
S1 \ S2 = � and S1 [ S2 = S. Further assume that

�b(x; i; v1; v2) = �b1(x; i; v1)



�r(x; i; v1; v2) = �r1(x; i; v2)
for i 2 S1,

�b1 : R
d � S1 � V1 !R

�r1 : R
d � S1 � V2 !R

satisfying the same conditions as �b and �r1. Also for any i 2 S2

�b(x; i; v1; v2) = �b2(x; i; v2)

�r(x; i; v1; v2) = �r2(x; i; v2)

satisfying the same conditions as �b and �r (cf , (A1), (A2)).

Theorem 3.3. Under (A1), (A4), each player has Markov optimal pure
strategies.

Proof. Let im 2 S1. Then under (A4) we have

V (x; im) = supu12U1
[
Pd

k=1

R
V1

�b1k(x; im; v1)u1(dv1)
@V (x;im)

@xk

+
NX
j=1

�imj(x)V (x; j) +
Z
V1

�r(x; im; v1)u1(dv1)]: (3.7)

For each (x; im) the supremum in the above will be attained at an ex-
treme point of U1 = P(V1). Thus to each (x; im) 2 Rd � S1 there exists
a v�1(x; im) 2 V1 such that the supremum in (3.7) is obtained at �v�

1
(x;im). The

map (x; im) ! v�1(x; im) may be assumed to be measurable in view of the
measurable selection theorem in [2]. Thus the strategy v�1 2 D1 is optimal
for player 1. The claim for the second players follows similarly.

NONZERO-SUM GAME
We make the following assumption

(A5) �b and �rk; k = 1; 2; are of the form

�b(x; i; v1; v2) = �b1(x; i; v1) + �b2(x; i; v2)

�rk(x; i; v1; v2) = �r1k(x; i; v1) + �r2k(x; i; v2); k = 1; 2;

where �b` : R
d � S � V` ! Rd; �r`k : Rd � S � V` ! R, satisfy the same

assumptions as �b; �r .

Let (v1; v2) 2 M1 �M2. By Lemma 2.1, for any (x; i) 2 Rd � S



sup
u12A1

R1[u1; v2](x; i) = sup
u12M1

R1[u1; v2](x; i)

sup
u22A2

R2[v1; u2](x; i) = sup
u22M2

R2[v1; u2](x; i):

In view of the results in [8] the above suprema on the right hand side can be
replaced by maxima. Thus, there exist v�1 2M1; v

�
2 2M2 such that

sup
u12A1

R1[u1; v2](x; i) = max
u12A1

R2[u1; v2](x; i)

= R1[v
�

1; v2](x; i) := ~R1[v2](x; i) (4.1)

sup
u22A2

R2[v1; u2](x; i) = max
u22A2

R2[v1; u2](x; i)

= R2[v1; v
�

2](x; i) := ~R2[v1](x; i): (4.2)

Indeed, v�1 will depend on v2 and v
�
2 will depend on v1. v

�
1 (resp. v

�
2) is called

the optimal response of player 1 (resp. player 2) given player 2 (resp. player
1) is employing v2 (resp. v1). From [8] the following result follows.

Lemma 4.1. Fix (v1; v2) 2M1 �M2. Then ~R1[v2] is the unique solution in
W

2;p
loc (R

d � S) \ Cb(R
d � S); 2 � p <1, of

sup
u12U1

[Lu1;v2�(x; i) + r(x; i; u1; v2(x; i)] = ��(x; i) (4.3)

in Rd � S. A strategy v�1 2 M1 is an optimal response for player 1, given
player 2 is employing v2, if and only if

[
dX

j=1

bj(x; i; v
�

1(x; i); v2(x; i))
@ ~R1[v2](x; i)

@xj
+

NX
j=1

�ij(x) ~R1[v2](x; j)

+ r1(x; v
�

1(x; i); v2(x; i)]

= sup
v12U1

[
dX

j=1

bj(x; i; v1; v2(x; i))
@ ~R1[v2](x; i)

@xj
+

NX
j=1

�ij(x) ~R1[v2](x; j)



+r1(x; v1; v2(x; i)]: (4.4)

Similarly, ~R2[v1] is the unique solution in W 2;p
loc (R

d � S) \ Cb(R
d � S); 2 �

p <1, of

sup
u22U2

[Lv1;u2 (x; i) + r2(x; i; v1(x; i); u2)] = � (x; i) (4.5)

in Rd � S. A strategy v�2 2 M2 is an optimal response for player 2, given
player 1 is employing v1, if and only if

[
dX

j=1

bj(x; i; v1(x; i); v
�

2(x; i))
@ ~R2[v1](x; i)

@xj
+

NX
j=1

�ij(x) ~R2[v1](x; j)

+r2(x; i; v1(x; i); v
�

2(x; i)]

= sup
v22U2

[
dX

j=1

b(x; i; v1(x; i); v2)
@ ~R2[v1](x; i)

@xj
+

NX
j=1

�(x) ~R2[v1](x; j)

+r2(x; i; v1(x; i); v2)]: (4.6)

Theorem 4.1. Under (A1), (A3), (A5) there exists an equilibrium (v�1; v
�
2) 2

M1 �M2.

Proof. Let M1 and M2 be endowed with the metric topology described
in [8]. (See Lemma 3.2 in [8] for the convergence criterion describing the
topology of M1;M2). Then M1 and M2 are compact, metric spaces. Let
M1 �M2 be endowed with the product topology. Let (v1; v2) 2 M1 �M2.
Let (�v1; �v2) 2 U1 � U2. Set

F1(x; i; �v1; v2(x; i)) =
Pd

j=1 bj(x; i; �v1; v2(x; i))
@ ~R1[v2](x;i)

@xj

+
NX
j=1

�ij(x)
~R1[v2](x; i)

@xj
+ r1(x; i; �v1; v2(x; i))

F2(x; i; v1(x; i); �v2) =
Pd

j=1 bj(x; i; �v1(x; i); �v2)
@ ~R2[v1](x;i)

@xj



+
NX
j=1

�ij(x) ~R2[v1](x; i) + r2(x; i; v1(x; i); �v2):

Let

G1[v2] = fv�1 2M1 j F1(x; i; v
�
1(x; i); v2(x; i)) = sup�v12U1

F1(x; i; �v1; v2(x; i))

a.e.x, for each i g

G2[v1] = fv�2 j F2(x; i; v1(x; i); v
�
2(x; i)) = sup�v22U2

F2(x; i; v1(x; i); �v2) a:e:x;

for each ig.

Then G1[v2] and G2[v1] are nonempty, convex, compact subsets of M1 and
M2, respectively. Let G[v1; v2] = G1[v2]�G2[v1]. Then G[v1; v2] is a noempty,
convex and compact subset of M1 �M2. Thus (v1; v2) ! G[v1; v2] de�nes
a point-to-set map from M1 � M2 to 2M1�M2. Mimicking the arguments
in [5, Thm. 5.1] this map is seen to be upper semicontinuous under the
assumption (A1), (A2) and (A5). By Fan's �xed point theorem [7], there
exists (v�1; v

�
2) 2 M1 �M2 such that (v�1; v

�
2) 2 G2[v

�
1; v

�
2]. The pair (v

�
1; v

�
2) is

clearly an equilibrium.
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