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Generation of a superposition of multiple mesoscopic states of radiation in a resonant

cavity
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Using resonant interaction between atoms and the field in a high quality cavity, we show how
to generate a superposition of many mesoscopic states of the field. We study the quasi-probability
distributions and demonstrate the nonclassicality of the superposition in terms of the zeroes of the
Q-function as well as the negativity of the Wigner function. We discuss the decoherence of the
generated superposition state. We propose homodyne techniques of the type developed by Auffeves
et al [Phys. Rev. Lett. 91, 230405 (2003)] to monitor the superposition of many mesoscopic states.

PACS numbers: 42.50.Gy, 32.80.Qk

I. INTRODUCTION

The interaction of a single atom with a high quality
cavity has yielded many important results which can be
understood in terms of the Jaynes-Cummings model [1].
The advances in this field are extensively reviewed in
the literature [2, 3, 4, 5]. The generation of a superpo-
sition of mesoscopic coherent states has a fundamental
place in quantum theory as such a state exhibits quan-
tum interferences and the nonclassical character of the
radiation field [6, 7]. Eiselt and Risken [8] had discov-
ered that if a cavity contains a coherent field with large
photon numbers, say of the order of 10, then the state
of the field for certain times splits into two parts. Each
part can be characterized approximately by a coherent
state. Several authors have studied many aspects of such
splittings [9, 10]. Auffeves et al [10] made a successful
observation of this splitting. They also devised a novel
homodyne method to observe interferences. We note that
previously such superpositions were produced using dis-
persive interactions in a high quality cavity [11, 12] or
by using Raman transitions between the center of mass
degrees of freedom of trapped ions [13].

Earlier studies of the superpositions of more than two
coherent states have found many novel features of such
states. For example, Zurek [14] noticed that such su-
perpositions lead to structures in phase space which are
smaller than Planck’s constant. Clearly, we need efficient
methods to produce such superpositions. One of the early
suggestions [15] for the production of such states was
through the passage of a field in a coherent state through
a Kerr medium. However Kerr nonlinearities are usually
too small. Another possibility is via the dispersive inter-
action [12, 16] in the cavity. In this paper we present yet
another possibility by using the resonant interaction be-
tween the atom and the cavity. We show how successive
passage of atoms can be used to produce superpositions
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involving many coherent states. We specifically concen-
trate on a superposition of four coherent states.

The organization of the paper is as follows. In Sec
II we present the details of our proposal to produce a
superposition of four coherent states. We examines the
Wigner function and the Q-function for such states. We
present a comparison of exact and approximate phase
space distribution functions. We further study zeroes of
the Q-function which are a signature of the nonclassi-
cal properties of the field. In Sec. III we show how the
passage of the third atom can be used to monitor the su-
perposition of four coherent states. In Sec.IV we examine
the scale over which such a superposition can decohere.

II. PREPARATION OF A SUPERPOSITION OF

FOUR MESOSCOPIC STATES OF THE FIELD

In a recent experiment, Auffeves et al [10] have ob-
served a superposition of two distinguishable states of the
field in a high quality cavity using resonant interaction
between an atom and the field inside the cavity. This ob-
servation is in agreement with the theoretical prediction
of Eiselt and Risken [8]. When a two level Rydberg atom
interacts with a microwave field, it splits the field into
two parts whose phases move in opposite directions. If
the interaction time is chosen such that the phase differ-
ence between the split parts becomes π, then the cavity
field can be projected into a superposition similar to a
cat state, |α〉 + | − α〉.

In this section, we show that the above method can be
used for the preparation of a superposition of four meso-
scopic states of the field. We consider a two level Rydberg
atom having its higher energy state |e〉 and lower energy
state |g〉 and the cavity has a strong coherent field |α〉.
The atom passes through the cavity and interacts reso-
nantly with the field. The Hamiltonian for the system in
the interaction picture is written as

H = h̄g
(

|e〉〈g|a+ a†|g〉〈e|
)

, (1)

where g is the coupling constant for the atom with the
cavity field, and a(a†) is the annihilation (creation) op-
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erator. The state of the atom-cavity system is written as

|ψ(t)〉 =
∑

n

(cen(t)|e, n〉 + cgn(t)|g, n〉) . (2)

Using Hamiltonian (1), the Schrodinger equation in
terms of cen and cgn is

ċen−1 = −ig
√
ncgn, (3)

ċgn = −ig
√
ncen−1. (4)

We assume that the atom enters the cavity in its lower
state |g〉 and after interacting with the field for time t1,
it is detected in the same state |g〉. Thus, effectively, the
atom absorbs no photon but it projects the cavity field
into the state

|ψc〉 =
∑

n

cn cos(g
√
nt1)|n〉, (5)

=
1

2

∑

n

cne
ig
√

nt1 |n〉 + cne
−ig

√
nt1 |n〉, (6)

cn =
αn

√
n!
e−|α|2/2.

As a result the cavity field splits into two parts whose
phases move in directions opposite to each other. Now we
consider the passage of a second identical atom through
the cavity. The second atom enters the cavity in its lower
state |g〉 and after interacting with the field for time t2,
is detected in the same state |g〉. The state of the field
inside the cavity after passing the second atom is

|ψ′
c〉 =

∑

n

cn cos(g
√
nt1) cos(g

√
nt2)|n〉, (7)

=
1

4

∑

n

cne
ig
√

n(t1+t2)|n〉 + cne
−ig

√
n(t1+t2)|n〉

+cne
ig
√

n(t1−t2)|n〉 + cne
−ig

√
n(t1−t2)|n〉. (8)

Thus after passing second atom, the state of the field
inside the cavity splits into four parts.

In the coherent state |α〉, the photon distribution fol-
lows Poisson statistics, so in Eq.(8), most of the contri-
bution to the summation comes from the terms n ≈ |α|2.
Thus we can expand

√
n in phase terms around the av-

erage number of photons n̄ = |α|2 in Eq.(8). In fact for
n̄ ∼ 10, only the terms up to second order in (n− n̄) are
significant and other terms are negligible.

√
n =

√
n̄+

n− n̄

2
√
n̄

− (n− n̄)2

8n̄3/2
. (9)

If we substitute the value of
√
n from Eq.(9) in Eq.(8),

the term proportional to n will change the phase of the
coherent field while the second and higher order terms
in (n− n̄) will distort the shape of the coherent state in
phase space. For simplification, in order to understand
the nature of the generated superposition state, we do

not consider the distortion in the coherent state. Then
Eq.(8) can be approximated by

|ψ′
c〉 =

1

4

[

ei(η1+η2)|αei(θ1+θ2)〉 + e−i(η1+η2)|αe−i(θ1+θ2)〉+

ei(η1−η2)|αei(θ1−θ2)〉 + e−i(η1−η2)|αe−i(θ1−θ2)〉
]

;(10)

ηi =
gti

√
n̄

2
, θi =

gti

2
√
n̄
, i = 1, 2 (11)

If we choose interaction times t1 and t2 such that θ1 =
π/2 and θ2 = π/4, we get the superposition of four meso-
scopic coherent states placed in the east, west, north and
south directions in phase space.

|ψ′
c〉 =

1

4

[

e−i(η1−η2)|α′〉 + ei(η1+η2)| − α′〉 + ei(η1−η2)|iα′〉+

e−i(η1+η2)| − iα′〉
]

; (12)

where we set α = α′eiπ/4.
Now we calculate the Wigner distribution for the state

(7). The Wigner distribution for the state having density
matrix ρ can be obtained using coherent states as [17]

W (γ) =
2

π2
e2|γ|

2

∫

〈−β|ρ|β〉e−2(βγ∗−β∗γ)d2β. (13)

The density matrix ρc for state (7) in terms of number
states is

ρc =
∑

n,m

αnα∗m

√
n!m!

e−|α|2 cos(gt1
√
n) cos(gt2

√
n)

cos(gt1
√
m) cos(gt2

√
m)|n〉〈m|. (14)

Using equations (13) and (14), the Wigner distribution
for the state (7) is

W (γ) =
2e2|γ|

2

π2

∑

n,m

αnα∗m

n!m!
e−|α|2 cos(gt1

√
n)

cos(gt2
√
n) cos(gt1

√
m) cos(gt2

√
m)

∫

(−β∗)nβme−|β|2 exp[−2(βγ∗ − β∗γ)]d2β. (15)

After evaluating the integral, Eq.(15) is simplified to the
form

W (γ) =
2e2|γ|

2

π

∑

n,m

(−1)n+mαnα∗m

2n+mn!m!
e−|α|2 cos(gt1

√
n)

cos(gt2
√
n) cos(gt1

√
m) cos(gt2

√
m)

∂n+m

∂γn∂γ∗m
e−4|γ|2.(16)

In the Fig.1 we show the Wigner distributions for the gen-
erated superposition state (8) as well as for the approxi-
mated state (10) using some typical values of parameters.
There are four patches at the corners corresponding to
four mesoscopic states of the field and between each pair
of states of the field there are interference fringes indicat-
ing the coherence between the states. In the central part
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there are subplanck structures as noticed by Zurek [14]
which form as a result of quantum interference between
the two diagonal pairs. The comparison of Fig.1 (a) and
(b) shows that a significant squeezing perpendicular to
the arc of the circle |z| = |α| occurs due to the effects of
the higher order terms in (n−n̄) (see Eq. (9)). Squeezing
in the resonant Jaynes-Cummings model [18] has been
studied very well earlier. As a result of small differences
in the field statistics, there are differences in the inter-
ference patterns. In Fig.2, the Q-distributions for the
states (7) and (10) are shown with the same parameters
used in Fig.1. We select the interaction times such that
there is no overlapping between two states of the field. A
comparison of Fig.2 (a) and (b) shows that the states of
the field corresponding to the phases ±g√n(t1 + t2) [see
(8)] in the generated mesoscopic state have more spread
along the circle |z| = |α| and squeezing perpendicular
to it in phase space because of larger distortion terms.
Thus the split states of the field in the generated super-
position state are situated at the same position as in the
approximated state but with changed shape.

We further mention that after passing N atoms
through the cavity and properly selecting the interaction
times we can generate the superposition of 2N mesoscopic
states of the field placed along the arc of a circle of radius
|α| in phase space. In Fig.3 we show the Q-distribution
for the generated state of the field after passing three
atoms through the cavity. It is clear that the gener-
ated state is a coherent superposition of eight mesoscopic
states.

The relation between the Q-distribution and the P-
distribution for a state is given by

Q(γ) =

∫

P (α)e−|α−γ|2d2α. (17)

From Eq. (17), it is clear that for Q = 0 the P-
distribution will oscillate between +ve and −ve values.
The negative value of P is a signature of the nonclas-
sical nature of the state. Thus the exact zeros of the
Q-distribution are also signatures of nonclassical nature.
Here it will be interesting to analyze the exact zeros of
the Q-distribution of the approximated state (12). The
Q-distribution for state (12) is

Q(γ) =
1

π

∣

∣

∣
〈γ|α′〉e−i(η1−η2) + 〈γ| − α′〉ei(η1+η2)

+〈γ|iα′〉ei(η1−η2) + 〈γ| − iα′〉e−i(η1+η2)
∣

∣

∣

2

. (18)

The exact zeros of Q(γ) will be given by
∣

∣

∣
〈γ|α′〉e−i(η1−η2) + 〈γ| − α′〉ei(η1+η2)

+〈γ|iα′〉ei(η1−η2) + 〈γ| − iα′〉e−i(η1+η2)
∣

∣

∣
= 0. (19)

Thus the Q-distribution shows nonclassical behavior at
all phase points γ satisfying the condition (19). For
example if we take α′ to be real and observe the Q-
distribution along the line γ = |γ|eiπ/4 in phase space,

the condition for nonclassicality (19) simplifies to

e
− |γ|α′

√
2 cos

[

η1 + η2 +
|γ|α′
√

2

]

+e
|γ|α′
√

2 cos

[

η1 − η2 +
|γ|α′
√

2

]

= 0. (20)

Now using the values of η1 = π|α′|2/2, η2 = π|α′|2/4
(see Eq.(11)), the condition (20) can be rewritten as the
simultaneous equations

|γ|√
2α′ +

3π

4
= (2n1 + 1)

π

2α′2 ,

|γ|√
2α′ +

π

4
= (2n2 + 1)

π

2α′2 ; ni = 1, 2, .. (21)

The solution of the equations (21) gives α′2 = 2(n1 −n2)
thus α′2 must be an even integer and the values of |γ| are
given by

|γ| =
π

2
√

(n1 − n2)
(3n2 − n1 + 1); n1 > n2. (22)

III. DETECTION OF THE GENERATED

SUPERPOSITION OF MESOSCOPIC STATES OF

THE FIELD

In the previous section, we have shown how the cavity
field can be projected into a superposition of 2N meso-
scopic states of the field after passing N atoms through
the cavity. The generated state in the cavity can be de-
tected by the conditional probabilities of detection of the
atoms used in the preparation itself as the cavity field
is entangled with the atomic states. An elegant method
can also be homodyne detection [10] which can be imple-
mented in the same experimental set up. After preparing
the cavity in the desired superposition state, a resonant
external coherent field |β〉 is injected into the cavity. For
the sake of simplicity let us assume that two atoms are
passed through the cavity in the preparation of the meso-
scopic state of the field (Eq.(7)). After adding the exter-
nal field, the state of the resultant field in the cavity is

|Ch〉 =
∑

n

cn cos(gt1
√
n) cos(gt2

√
n)D(β)|n〉,

=
∑

m

∑

n

cn cos(gt1
√
n) cos(gt2

√
n)〈m|D(β)|n〉|m〉,

=
∑

m

Fm|m〉 (23)

Fm =
∑

n

cn cos(gt1
√
n) cos(gt2

√
n)〈m|D(β)|n〉, (24)

where D(β) ≡ eβa†−β∗a is displacement operator. Now
we bring the third atom in its lower energy state |g〉 to
probe the cavity field. The probability of detecting the
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FIG. 1: (Color online) The Wigner distributions W (γ) for (a)
the generated state (8) and (b) the approximated state (10),
using parameters α = 4, gt1 = 3.7π, gt2 = 1.9π.

FIG. 2: (Color online) The Q-distribution function Q(γ) for
(a) the generated state (8) and (b) the approximated state
(10), using same parameters as in Fig.1.

probe atom in its lower state |g〉 after crossing the cavity
in time tp is

Pg =
∑

m

|Fm|2 cos2(gtp
√
m). (25)

The interaction time tp for the probe atom is selected
such that if there are photons in the cavity it leaves the
cavity in its higher energy state |e〉 with larger proba-
bility. We have shown in the earlier section that all the
states of the field in the superposition lie on a circle of
radius |α| so if we choose the external field |β〉 having
amplitude |α| and phase φ, the probe atom will leave the
cavity in its ground state with larger probability when
the value of π + φ will match to the phases of the states
of the field in the generated superposition . Thus the
probability of the probe atom leaving the cavity in its
lower state |g〉 would, as a function of φ, have peaks cor-
responding to the positions of the centers of the super-
posed mesoscopic states. In Fig.4, we plot the probability
of detecting the probe atom in its lower state with φ. It
shows four peaks at the positions of the four states of
the field in the generated superposition state. The small
oscillations in the background are because of the inter-
ference effects of residual field components after adding
the external field to the cavity.

IV. DECOHERENCE OF THE GENERATED

SUPERPOSITION STATE

Next we study the decoherence of the generated su-
perposition state (8). We are interested in the coherent
superposition of four well separated mesoscopic states of
the field. The decoherence of such a state will be equiv-
alent to the decoherence of the state (12). This can be

done using the master equation

ρ̇ = −κ
2
(a†aρ− 2aρa† + ρa†a), (26)

where κ is cavity field decay parameter and we carry
analysis in the absence of thermal photons. For initial

FIG. 3: (Color online) The Q-distribution function Q(γ) for
the generated state after passing three atoms through the
cavity, for α = 8. The interaction times for the first atom,
second atom and the third atom are chosen such that gt1 =
8π, gt2 = 4π, gt3 = 2π.

−1 −0.5 0 0.5 1
φ/π

0.4

0.5

0.6

0.7

P
g

FIG. 4: The probability of detecting probe atom in its ground
state as a function of φ for the generated superposition (7).
The parameters used are same as in Fig.1 and the interaction
time for the probe atom is selected such that gtp = 1.5π.

state (12) we find the density matrix after time t

FIG. 5: The decoherence of the approximated state (12) in
terms of Wigner function at different times, (a) for κt = 0,
(b) for κt = 1/2|α|2, (c) for κt = 1/|α|2 , (d) for κt = 2/|α|2 ,
for |α| = 4.

ρ(t) =
1

16
[(|αt〉〈αt| + | − αt〉〈−αt| + |iαt〉〈iαt| + | − iαt〉〈−iαt|)

+ e−2|α|2(1−e−κt)
(

|αt〉〈−αt|e−2iη1 + | − αt〉〈αt|e2iη1 + |iαt〉〈−iαt|e2iη1 + | − iαt〉〈iαt|e−2iη1

)

+ e−|α|2(1−i)(1−e−κt)
(

|αt〉〈iαt|e−2i(η1−η2) + | − iαt〉〈αt|e−2iη2 + | − αt〉〈−iαt|e2i(η1+η2) + |iαt〉〈−αt|e−2iη2

)

+ e−|α|2(1+i)(1−e−κt)
(

|iαt〉〈αt|e2i(η1−η2) + |αt〉〈−iαt|e2iη2 + | − iαt〉〈−αt|e−2i(η1+η2) + | − αt〉〈iαt|e2iη2

)]

;(27)

αt = α′e−κt/2.
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In Eq.(27) the second, third and the fourth terms reflect
the coherent character of the superposition. These are
the terms which decohere due to interaction with the
environment. The contribution to the Wigner function
from the second term in Eq.(27) is

e−2|γ|2−2|α|2(1−e−κt)

4π
{cos[η1 + i(α′γ∗ − α′∗γ)]

+ cos[η1 + (α′γ∗ + α′∗γ)]} , (28)

which decays as e−2|α|2(1−e−κt) ≈ e−2|α|2κt for κt << 1.
This term arises from the coherence between the pair
|α′〉, |−α′〉 and the pair |iα′〉, |− iα′〉, and is responsible
for the central sub-Planck structures. The term in curly
bracket can be written as {cos[η1 +2α′|γ| sin θ]+cos[η1 +
2α′|γ| cos θ]}. Thus in any direction θ 6= nπ/2 one has an
interference pattern which arises from two cosine terms
with different periodicity. Thus the sub-Planck struc-

tures decohere as e−2|α|2κt. The third and the fourth
terms in Eq.(27) show the coherence between other pairs

of coherent states, and decay as e−|α|2κt. In Fig.5 we
plot the decoherence of the approximated state (12) in
terms of the Wigner function at different times. As time

progresses in Fig.5 from (a) to (d), the central interfer-
ence patterns decay faster and disappear earlier than the
interference fringes between the coherent states, say |α〉
and |iα〉, disappear. This is clear from the equation (27)
that the central interference patterns decohere two times
faster than the interference fringes between the coherent
states like |α〉 and |iα〉.

V. CONCLUSIONS

In this paper we have shown the possibility for gener-
ating the superposition of four mesoscopic states of the
field using resonant interaction between atoms and the
field in a cavity. We have discussed the properties of the
quasi-probability distributions of the generated state and
compared with the superposition of four coherent states.
We have discussed the time scale over which the state de-
coheres and shown that the generated state can be mon-
itored using homodyne detection techniques. Another
way to detect such superposition is by doing tomography
[19] of such states.
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