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Abstract. The various existing models for predicting the maximum stable
drop diameter d,,, in turbulent stirred dispersions have been reviewed.
Variations in the basic framework dictated by additional complexities such
as the presence of drag reducing agents in the continuous phase, or
viscoelasticity of the dispersed phase have been outlined. Drop breakage
in the presence of surfactants in the continuous phase has also been
analysed. Finally, the various approaches to obtaining expressions for the
breakage and coalescence frequencies, needed to solve the population
balance equation for the number density function of the dispersed phase
droplets, have been discussed.
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1 Introduction

Mechanical agitation is a commonly employed method for generating and maintaining
a dispersion of one liquid phase in another. Two approaches are available to
quantitatively predict the rates of heat and mass transport in such dispersions. The
commonly used approach considers all the drops existing in the vessel to be identical
in size, and as having identical properties. Thus, an average drop size, an average
transfer coefficient and a uniform driving force are used. The average drop size, called
the ‘Sauter mean diameter’, d,,, is defined in such a way that the total surface area
available for transport is conserved. The area per unit volume of the dispersion can
then be calculated by

a=6¢/ds,. (1)

As d3, does not have a theoretical basis which can be exploited for its prediction,

A list of symbols is given at the end of the paper
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attempts have been made to predict d,,,,, the diameter of the largest drop that cannot
be further broken in the vicinity of the impeller. The value of ds, is then determined
from d,p,, by dividing it with an empirically obtained factor (lying between 1-5 and
1-6 for most systems). The main difficulty with the averaging method is that it bypasses
the fact that most transport processes can vary widely from drop to drop. Schumpe
& Deckwer (1980) have shown that averaging can lead to results significantly different
from those obtained experimentally. Further, the mixing of the dispersed phase
depends on coalescence and breakage of drops which occur at finite rates, whereas
the averaging technique assumes infinite rates of coalescence and breakage. A prelude
to such work that accounts for these processes must be the description of just the
coalescence and breakage processes. Thus attempts are being made to consider
individual drop sizes along with their rates of coalescence and breakage to obtain a
more realistic description of a stirred dispersion. This is achieved through the frame
work of pepulation balance equations (Hulburt & Katz 1964).

The number balance equation for the dispersed phase droplets can be written as:

e f ()0, 08,01y (0) ' =

v/2
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The first term on the right hand side of the above equation represents the rate of
formation of drops of size v due to breakage of drops of size larger than v. The second
term denotes the rate of disappearance of drops of volume v due to breakage. The
third term signifies the rate of formation of drops of size v due to coalescence between
droplets of volume v—v" and v'. The fourth term describes the rate at which drops
of volume v are lost due to their coalescence with other drops. The fifth and sixth
terms denote the input and escape rates of the drops of volume v. The left hand side
of the equation is the rate of accumulation of drops of volume v, as a result of their
birth and death due to breakage and coalescence, as well as feed and escape.

The fifth and sixth terms of (2) vanish for a batch system. In order to solve the
population balance equation, a knowledge of the breakage frequency, the probability
distribution of the size of the daughter droplets, the number of fragments formed
upon breakage, and the coalescence frequency are needed. Separate models are required
to obtain expressions for various terms involving breakage and coalescence of drops,
which are then incorporated in the population balance equation.

A brief outline of the paper is given below. As the knowledge of dmax is important
for the evaluation of both d, and breakage frequency, the basic framework required
for its prediction is first discussed along with the information about turbulence in
stirred vessels. Based on this framework, models for predicting d,,, for rheologically
complex dispersed phases and for situations where surfactants or drag reducing agents
are added to the continuous phase are then discussed. All these models assume that
a drop invariably breaks into two equal drops. It is then shown that the drops can
break into two unequal parts. The conditions under which this could happen are
then modelled. The breakage frequency models based on equal and unequal breakage
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follow in natural sequence. It is shown that the unequal breakage model, along with
the energy cascade theory of distribution of energy into eddies of different length
scales, can predict not only the breakage frequency but also the drop size distribution
of the daughter droplets. The drop size distribution for a breakage controlled situation
is then obtained by using a simplified population balance equation. Coalescence
frequency is the product of collision frequency and coalescence efficiency. Models for
both these are described. At the end of each major section, a short discussion is
presented regarding the weaknesses in our present understanding and the problems
to be solved by further work.

2. Drop breakage in stirred vessels

Understanding of the breakage phenomenon is necessary both for the prediction of
dmax (Which in turn is used for determining d,,) and for obtaining expressions for
breakage related terms like breakage frequency to be used in the population balance
equations.

Most of the models available up to this time assume that breakage primarily occurs
because of the pressure difference operating across the drop due to turbulent velocity
fluctuations. The drop experiencing these stresses tends to deform away from the
spherical shape and hence experiences a shape restoring stress due to interfacial
tension. Further, if the flow within the drop is assumed to be laminar, there will be
a viscous stress retarding the rate of deformation. The deformation of the drop is
three-dimensional. Unfortunately we do not yet have a clear picture of the three-
dimensional flow field in the vicinity of the drop. Hence one-dimensional models,
which capture the gross features of the breakage phenomenon but bypass the detailed
flow field, are being developed at this stage.

2.1 Turbulence characteristics of stirred vessels

A stirred vessel along with the Rushton impeller and baffles is shown in figure 1.
Different types of impellers are employed in stirred vessels, depending on the flow
characteristics desired. The Rushton turbine impeller is normally used for dispersions,
whereas other types of impellers are employed when high circulation rates are desired.
Several workers (Nishikawa et al 1976; Okamoto et al 1981; Benyad et al 1985;
Bujalski et al 1987; Costes & Coudrec 1988a,b) have reported data on turbulence
intensities, autocorrelation functions, turbulence scales, energy spectra, and turbulence
energy dissipation rates in stirred vessels. In general it is found that 60% of the energy
transmitted to the liquid by the impeller is dissipated in the region around the impeller;
the volume of this region being only about 10% of the total volume. Thus the energy
dissipation rates in this zone are nearly fifteen times as large as that in the region
away from the impeller. It is observed that the energy spectra show a — 5/3 slope in
the higher frequency range and this has been the basis for assuming that the turbulence
in the impeller zone is homogeneous and isotropic. This facilitates the application of
the energy cascade theory to estimate the energy contained in the eddies in the inertial
subrange, the size range occupied by the drops produced in the stirred vessels.

The above picture however shows that hydrodynamics in a stirred vessel is quite
complex with zones of high turbulence intensity as well as zones of low turbulence
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Figure 1. The stirred vessel.

intensity where viscous shear could be more important. This could be of relevance
{0 both breakage as well as coalescence phenomena since these depend crucially on
the type of flow field in which they take place.

The above reported measurements are in homogeneous media. A dispersion is
however a heterogeneous system and as the volume occupied by the dispersed phase
increases, the turbulence characteristics are bound to be altered. Due to the
experimental difficulties involved, measurements on such systems have so far not been
reported and this imposes serious limitations on theoretical developments in dispersions
with high volume fractions.

For all the analyses available, it is assumed that the isotropic turbulence theory
can be used. This is justified to some extent as breakage is likely to occur in the zone
surrounding the impeller where the turbulence intensity is very high. Experimental
measurements also show that the drop size increases as we move farther away from
the impeller.

Turbulence has been associated with the presence of eddies, often visualized as
simultaneously rotating and elongating fluid elements. The application of turbulent
stress on the drop is referred to as drop-eddy interaction, which lasts till the lifetime
of the eddy. The largest eddy present in the vessel cannot be larger than the blade
size of the impeller. The eddy size decreases thereby resulting in an energy cascade.
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Eventually the energy of the eddies gets dissipated as heat when the eddy sizes reach
the Kolmogorov scale. As the eddy size decreases, the energy associated with the
eddy as well as its lifetime decrease. If a drop interacts with a much larger eddy it
simply gets convected. As the eddy size becomes smaller and nearly equal to the drop
size it is able to deform the drop. As both the lifetime and energy of a large eddy are
high, and the restoring stress for a big drop is small, the large eddy is able to break
a drop of equal size. With decreasing drop and eddy sizes, the lifetime and energy of
the eddy will decrease whereas the shape-restoring interfacial tension stress will
increase. A drop size is finally reached which cannot be broken by the eddy in its
lifetime. This drop size is the maximum possible one existing near the impeller and
is referred to as d,,. This conceptual picture can form the basis of predictive theories
for d . It is assumed in all these models that the same stress remains on a drop for
the lifetime of the eddy in spite of the fact that the drop is moving.

It has been found that the Sauter mean diameter is approximately 60%, of d,,,.
Although this relationship can be wrong by about 30% in case of very viscous
dispersed phases, the conceptual convenience with which theories can be developed
for d,., has led several investigators to focus on predicting d,,,,.

2.2 Models for the prediction of dg,,

2.2a Dispersed phases of low viscosity: Kolmogorov (1949) and Hinze (1955) were
the very first to develop expressions for d,,,,. The kinetic energy of eddies of size d
is proportional to p.u?(d)d® while the surface energy of a drop of size d is proportional

to od®. The two energies are just equal to each other when d is equal to d,,,,, if
viscous resistance inside the drop is negligible. Thus,
puuz(dmax)drsnnx = kl Gdrznux‘ (3)

The mean of square of velocity fluctuations in an eddy in the inertial subrange in an
isotropic turbulent flow field is given by

u?(d) oc e¥3 4213, (4)

Further in a stirred vessel, it is usually found that
goc N3D2 (5)

Substitution of (4) and (5) into (3) yields,
dpae/D = C'We " ®

Equation (6) is a classical equation that has been used for lean dispersions of inviscid
liquids for many years. Sprow (1967) has found the constant C’ to vary between 0-126
and 0-15. Lagisetty et al (1986) found this constant to be 0-125. Coulaloglou &
Tavlarides (1976) have discussed the various correlations, based on this equation,
available in the literature.

2.2b  Viscous and rheologically complex dispersed phases: 1t has been reported by
many workers (Arai et al 1977; Konno et al 1982; Lagisetty et al 1986; Calabrese
et al 1986; Davies 1987) that the maximum drop size increases with increase in the
dispersed phase viscosity. Equation (6) cannot be used to predict the effect of dispersed




I

78 D K R Nambiar, R Kumar and K S Gandhi

phase viscosity as it neglects the viscous forces generated in a drop prior to its
breakage. Arai et al (1977) were the first to propose a model for predicting d,,, which
incorporated the effect of dispersed phase viscosity. They described the breakage
phenomenon through a Voigt element which simultaneously took into account the
restoring stress due to interfacial tension as well as the viscous stress due to flow
inside the drop. They assumed that the turbulent pressure fluctuation is periodic and
that the drop breaks when the deformation strain reaches a critical value. They
obtained a semi-empirical correlation for d.., in terms of Weber number and a
grouping that includes viscosity of the dispersed phase. Lagisetty et al (1986) have
pointed out that the Voigt model, as has been applied, has a maximum equilibrium
deformation and is reversible. They also felt that the periodic pattern assigned to the
turbulent stress is not realistic. Moreover, the model did not give the low viscosity
limit naturally and hence this limit had to be introduced in an ad hoc manner. They
considered that the basic phenomenon could indeed be expressed by a Voigt model,
but one that is modified to overcome the deficiencies of the models of Konno et al
(1982) and Arai et al (1977). They assumed that with the increase in deformation, the
restoring elastic stresses due to interfacial tension first increase, pass through a
maximum and then decrease. The depicted role of interfacial tension is in the right
direction as Rallison (1984) has observed in the context of drop break-up in shear
flows. As the drop approaches the break-up condition, interfacial tension actually
aids the fragmentation process. Lagisetty et al (1986) assumed that the force due to
‘nterfacial tension reaches zero when the dimensionless deformation of the drop 6
becomes unity. They also assumed that the drop break-up process should be completed
within the lifetime of the eddy. Thus, for breakage to occur, the value of 0 should
reach unity within the lifetime of the eddy. Their model has been schematically shown
in figure 2. The basic equations for their model are:

T, =T+ Ty )
1, =(0/d)6,(1-90,), 0,<1

=0, 6, >1 8)
7, =1, + K(df,/dt)". )

Equation (9) is the general constitutive equation yielding Newtonian, power law and
Bingham plastic fluids as special cases. The average turbulent stress in a stirred vessel

across a length scale of d is proportional to pcm and can be expressed as

1,= Cp, N*D*3d*?, (10)
As the Voigt model’s elements act in parallel,

0,=0,=0. (11)
Substituting (8), (9), (10) and (11) into (7), we obtain

Cp.N2D*3 4?3 — 1o = (a/d)B(1 — 0) + K (d6/dey". (12)
Equation (11) may be expressed in dimensionless form as:

C We(d/D)*"? — (6 — 0%) — (t,d/o) = (d6/dn)", (13)
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where 1 is the nondimensional time given by t/(Kd/s)!/". The initial condition for this
equation is given by:

0=1, at n=0. (14)

Equation (14)is solved to find n at § = 1. If n at § = 1 is more than the nondimensional
lifetime of the eddy, breakage would not occur. Thus, for breakage to occur, the
following condition must be satisfied:

n(0 =1)< T(Kd/o)'" (15)

The maximum diameter of the stable drop is that for which the following equality
holds:

n@=1)= T/(Kd,, /o) (16)

The d,,, can therefore be determined by solving (13), (14) and (16) provided an
expression is available for T. Using the turnover time of the eddy as the lifetime of
the eddy:

T=(1/N)(d/Dy*">. (17)

Lagisetty et al (1986) have given solutions for various values of n, including the
value of unity. They found that the value of C works out to be equal to 8. Their
model gives (6) as a limit as K—0 and, with C =8, the proportionality constant
equals 0-125, a value close to that reported by Sprow (1967). The solution for
Newtonian fluids is given by

(Re/We)(dmy /D)™ = [1/(4x — D)*Jtan™ " [1/(dx — 1)}], (18)
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Figure 3. Verification of the model of Lagisetty et al (1986) for the effect of dispersed phase
viscosity (1t;) 0N dpg,. The lines correspond to the theory (18) and are compared with the
experimental results of Arai et al (1977).

where 7 is equal to 8 We (dy,,/D)*". Figure 3 shows a comparison between theoretical
predictions and experimental observations for the effect of dispersed phase viscosity
on d,,,,. It can be seen that, when interfacial tension is of the order of 0:02 N/m, dpax
is hardly affected by the dispersed phase viscosity till it exceeds about 0-1 Pa.s. They
have tested the model using Newtonian, power law and Bingham plastic dispersed
phases and report the agreement between the predicted and experimentally obtained
values to be good. Some recent measurements on very viscous liquids however seem
to indicate that Lagisetty’s model overpredicts the value of d,,,, under these extreme
conditions.

The basic framework of the model has been tested for a number of situations
where either surfactants (or drag reducing agents) were added to the continuous phase,
or the dispersed phase was a rheologically more complex viscoelastic fluid.

2.2¢  Breakage in presence of surfactants: Koshy et al (1988a) have investigated the
breakage of dispersed phases when a surfactant is added to the continuous phase.
Addition of surfactant could be expected to reduce the drop diameter by reducing
the interfacial tension of the system. Two systems with identical interfacial tensions,
one with surfactant and the other without it, were studied. The water—octanol system
had an interfacial tension of 00083 N/m and did not have a surfactant. Teepol was
added to a water-styrene system to bring its interfacial tension from 0-034 N/m to
0-0083 N/m. The viscosities of both the dispersed phases were too low to affect dp,,
and in any case were nearly equal. The values of d,,,, have been plotted as a function
of revolutions per second (rps) for both the systems in figure 4. It is interesting to
note that the two systems yield different results and, surprisingly, while (6) explains
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Figure4. Breakage in presence of surfactants. The experimental values for the water -octanol
system (@) are in good agreement with (6) (----- ). The best fit line (——) through the
experimental data (A) for a surfactant solution-styrene system having the same interfacial
tension (0-0083 N/m) indicate lower d,,,, values in the presence of a surfactant.

the results of the water—octanol system, using a value of 0-125 for the constant, it fails
to explain the results of the system containing the surfactant. These results indicate
that the surfactant not only acts through reduction of the interfacial tension, but also
influences the breakage in some other fashion which has not been considered by any
of the earlier models.

A pressure fluctuation across a drop diameter most probably causes a depression
or elongation which propagates, resulting in drop breakage. When surfactants are
present at the interface, the pressure fluctuation, apart from causing depression at
the surface, also removes the adsorbed surfactant molecules thereby exposing fresh
interface. This fresh interface has dynamic interfacial tension, which is higher than
the static interfacial tension. This difference in the two interfacial tensions causes a
flow towards the base which adds to the flow already taking place due to pressure
fluctuation. The assumed mechanism through which the extra stress is generated has
been shown in figure 5. The model of Lagisetty et al (1986) has been modified to
account for this extra stress as follows:

Cp.N2D*3d23 4 (Ac/d) — 1o = (/d)0(1 — 0) + K (d0O/dr)", (19)

where Ag is the difference between the dynamic and static interfacial tension values.
The modified model has been tested by Koshy et al (1988a). Figure 6 shows two sets
of experimental data in the range of surfactant concentrations where the dynamic
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Figure 5. Mechanism through which a surfactant influences drop breakage. (a) Drop before
interation with eddy; (b) formation of the depression.

and equilibrium interfacial tensions differ. For both sets of data presented, the system
is water-styrene. Different concentrations of Teepol have been used for the two sets.
In one of the sets, the interfacial tension has been reduced to 0-011 N/m while the
A is 0:0014 N/m. The points are experimental whereas the solid and dotted lines
correspond to (19) and to Lagisetty et al’s (1986) model respectively. It is evident that
the model represented by (19) is able to predict the results correctly while the other
overpredicts the dy,,, values significantly. Similar conclusions can be drawn from the
other set, the interfacial tension and Ac for which are 00253 and 0-0011 N/m

respectively.

10%
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Figure 6. Effect of surfactant on dnae When the dynamic and static interfacial tensions are
different. The system is styrene-water and the surfactant used is Teepol. Two different
concentrations have been employed - (O): o =0011 N/m; Ao =00014N/m and (A):
o =00253N/m; Ag =0-0011 N/m. The dashed lines represent (18) while the solid lines
correspond to the model of Koshy et al 1988a, (19).
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Figure 7. Effect of high concentrations of surfactant on d,,,,. A: pure styrene-water system,
o = 0034 N/m; O: water-Teepol-styrene system, ¢ = 0-0032 N/m. The solid lines correspond
" to the model of Koshy et al 1988a, (19).

As the concentration of the surfactant is raised from zero, the Ac first increases
and then decreases, eventually becoming zero. Figure 7 shows the results for zero
and high concentrations of the surfactant (corresponding to Ag =0). It is interesting
that the experimental results are explained by the model of Lagisetty et al (1986)
which is a special case of the model represented by (19). When a very viscous dispersed
phase is used, the effect of surfactant is found to be insignificant, as the breakage is
controlled mainly by the viscous stresses, with minor changes in interfacial tension
making negligible contribution.

2.2d  Mildly viscoelastic dispersed phases: Koshy et al (1988b) conducted experiments
on breakage of viscoelastic fluids by using aqueous solutions of polyacrylamide
(Separan ApP-30) as the dispersed phase. Two solutions having concentrations of 0-25
and 0:5% were employed. The drop sizes were much larger than those predicted by
the model of Lagisetty et al (1986) for purely viscous drops. This model was therefore
modified by Koshy et al (1988b). The modification was mainly concerned with the
manner in which a viscoelastic drop deforms. It was assumed that the interaction
between an eddy and the drop begins sharply. Under these conditions, the polymer
acts as a glass and supports the applied stress without significant deformation. As
time progresses, the stress borne by the polymer decreases due to the relaxation of
the polymer molecules. The deformation therefore proceeds in this manner with the
stress borne by the polymer decreasing continuously. The relaxation of the stress
borne by the polymer was assumed to follow the expression:

t,=1e"" (20)

where A is the relaxation time of the polymer. With this modification the equation
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Figure 8. Verification of the model of Koshy et al (1988b) for viscoelastic liquids. System:
heptane and carbon tetrachloride (specific gravity 1-06)-0-5% aqueous solution of polyacry-
lamide, interfacial tension = 0:057 N/m. A experimental points, —— (21); ---- (18).

for viscoelastic dispersed phases becomes:

Cp.N2D* 3 1y = (o/d)0(1 — 0) + (Cp N*D*3d*3)e ™14 +
+ K(do/dey 1)

The d,,,, can be found as before by integrating the above equation with the initial
and breakage conditions described earlier. The verification of the model has been
shown in figure 8, where d., is plotted as a function of rps for 0-5% polyacrylamide
solution as the dispersed phase. The points are experimental whereas the solid line
is based on the model. The predictions made by the model of Lagisetty et al (1986)
are shown as the dotted line, and fall significantly below the observed values of dy,.
The above model has been found to successfully predict the d,, values only when
the dispersed phase is mildly viscoelastic (having time constants of the order of 0-1s
or less). For highly viscoelastic dispersed phases, no drop breakage was observed
experimentally. Instead, the dispersed phase was found to be present in the form of
big blobs which elongated into thread-like structures when they passed through the
impeller zone. The model was unable to predict such behaviour.
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2.2e Breakage in presence of drag-reducing agents: A number of investigators
(Mashelkar et ul 1975; Quraishi et al 1976; Hoecker et al 1980) have shown that the
addition of small quantities of drag-reducing agents (DRA) to a stirred vessel results
in torque suppression, indicating that the turbulent energy pattern gets altered. Thus,
the drops formed in such a situation, should be larger than those obtained without
the addition of DRA. Walstra (1974) measured average drop size of paraffin oil in a
turbomixer by adding polyvinyl alcohol (pva) to the continuous water phase and
found that with increase in Pva concentration, the drop size first decreased and then
increased. However when a surfactant was also added, the average drop size increased
with increase in Pva concentration. Koshy et al (1989) measured d,,,, values for a
number of systems and found that the addition of even 25 ppm of polyacrylamide
to the continuous aqueous phase resulted in an increase in d,,,, values. They did not
use any surfactant in the continuous phase in their experiments. They were able to
predict the increase quantitatively by considering that the DRA change the cnergy
budget of the eddies thereby causing a change in the inertial stress. In the elongating
eddies, the DRA molecules elongate and store a part of the eddy energy as potential
energy. On drop-eddy interaction, the molecules relax releasing a part of the stored
energy. The energy available for breakage can be obtained by subtracting the stored
energy at any time from the energy of the eddy without drag-reducing agents. Thus

= C[f)L_L;i—(;;'S - (eps - epr)]’ (22)

The energy stored by a polymer molecule was evaluated by the finitely extendable
elastic dumbbell (FENE) model. The molecule extends because of the difference in
velocity across the molecule, but this extension is retarded because of the elastic
spring. Finally, the extended molecule reaches an equilibrium size corresponding to
the strain rate existing in the eddy. The energy of an extended molecule is:

E,(Ro,d)= f(HR3/2)In[1 + ((/HT)]. (23)

This equation has to be modified by multiplying the right hand side with d/i; if
the eddy size is smaller than the Taylor microscale, I;.

As there will be a molecular weight distribution of the polymer molecules, the
overall energy accumulated in all the polymer molecules present per unit volume
works out to be:

eps = (3/2)(fIn)(p.Ry Timo)w L g(p)In[1 + (4% 20/6T)dp. (24)

The above expression also has to be multiplied by d/I; if the eddy size is smaller than
the Taylor microscale, [;. For evaluating the energy released back by the polymer
molecules to the eddy, they used the expression:

E,(1—e Th), ‘ (25)

Taking the molecular weight distribution into account, e, was found to be:

ey = (3/2)(f/n)(pc Ry Timo) w L g(p)(1 — e”")In[ 1 + (4n24,/6T)1dp.
(26)
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Figure 9. Effect of a drag reducing agent on d,,,,. System: toluene~50 ppm aqueous solution
of polyacrylamide, interfacial tension 0-036 N/m. A experimental points; model of
Koshy et al (1989), (28).

Substitution of expressions for e,, and e, in (22) yields:

€

t,= 8p.u2(d) - 12(fn) o Ry Timg)w f g(p)(e™™)In[1 + (4n2 4 /6T)] dp.
0
27)

The rest of the analysis of Koshy et al (1989) follows the same lines as that of Lagisetty
et al (1986). The final expression for d

max 1S

(Re/We)(dpay/D) ™1 = (4/a*) tan ™ (1/a), (28)
where

a= 32[WC - (Tudmax/a)](dmax/D)5/3 - 1=

and 7, is the last term of (27). Figure 9 presents a typical comparison between the
predicted and experimental values of d,,, as a function of rps for a water—toluene
(dispersed) system, when 50 ppm of polyacrylamide were added to the continuous
(water) phase. It is possible to explain the results obtained for other systems also
including the ones containing surfactants, when DRA are added to the continuous
phase.

22f Variation of d,,, with dispersed phase volume fraction: The turbulence in the
stirred vessel is dampened as the volume fraction of the dispersed phase (hold-up)
increases. Though there is no theory available to predict the dampening quantitatively,
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empirical expressions have been proposed to calculate the effect. Typical of such
correlations is the following proposed by Laats & Frishman (1974):

[ @)1y = (1+4¢) 2 [ (@d)], . (29)

Lagisetty et al (1986) have shown that by modifying the turbulent stress in accordance
with the above empirical expression, the effect of the hold-up of the dispersed phase
on the values of d,,, can be predicted up to a hold-up value of about 0-3.

22g Some ourstanding problems: Itis seen that our understanding of drop breakage
in turbulent stirred dispersions is still at a rudimentary stage. First generation models,
which bypass the flow field and simplify the three-dimensional problem to a
unidimensional one are however available. These models, though gross, can predict
the d,,, values for lean dispersions containing viscous drops, though they fail when
the dispersed phase is highly viscoelastic or its viscosity is extremely high.

In slightly concentrated dispersions, the turbulence gets suppressed and empirical
modifications have to be resorted to for the prediction of d,,,,. Even these work only
up to a dispersed phase hold-up (¢) of about 0-3. Beyond this dispersed phase hold-up,
highly unexpected results are obtained. With increased hold-up, the turbulence
intensity decreases. Thus the d,,,, value is expected to rise as ¢ is increased. This
however happens only up toa ¢ of around 0-3, as is seen from figure 10, which presents
d,,., as a function of ¢ for the water-toluene system. A surfactant was added to the

continuous phase to suppress coalescence, thus making the process predominantly
breakage controlled. It is seen from the figure that beyond a value of ¢ of around
03, the d_,,, values decrease instead of increasing. These results lead one to speculate
that under such conditions, the d,,, is not decided by the turbulent breakage
mechanism as this would yield an increase in d,,,. Instead d,,, is now decided by
other mechanisms. One possibility is that the drops break in the extensional flow
generated at the impeller by the liquid approaching the impeller in the middle and
accelerating outwards. The second possibility is the drop breakage in the boundary
layer existing at the impeller. Here shear breakage would be predominant. Though
the magnitudes of elongational rates and shear rates are different, both mechanisms
yield a lowering of drop size with ¢ which is in qualitative agreement with observed
trends. Thus it is likely that the experimentally observed d,,,, is the minimum of the
d... values generated by these different (viz. turbulent, elongational flow and shear
flow) mechanisms. Further conceptual complications arise in the case of concentrated
suspensions. For instance, in such media, should suspension viscosity be used for
characterizing the continuous phase? Further, what modifications are needed in the
theory if the viscosity of the dispersion is such that the tip Reynolds number is reduced
below 10*? A reduction by a factor of ten, which would imply that flow is still
turbulent, is perhaps the case in most emulsifiers.

The models discussed above have accounted for the breakage occurring in the
impeller zone since that is relevant for calculation of d,,. However, the breakage
that occurs in other areas of the stirred vessel, where shear forces may also be
simultaneously important, would also be needed for calculating the drop-size
distributions.

Apart from these lacunae, there remain several other conceptual questions. The
above models do not really account for the eddy—drop interaction in a mechanistic
way. Further, they adopt an arbitrary breakage condition. Thus, does the drop break
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Figure 10. Variation of d,,, with dispersed phase hold-up. The dispersed phase is toluene.
The continuous phase (water) contains 0-3% sodium lauryl sulphate to suppress coalescence.
The solid line through the experimental points diverges from the model predictions of
Lagisetty er al (1986) beyond a hold-up of 0-3.

by surface tension driven instability or by the end-pinching mechanism observed in
laminar flows or by an entirely different process? The black box approach towards
drop-eddy interaction is also silent on the details of the nature of the flow that occurs
inside the drop. For instance, is it elongational or shear in nature? An answer to this
question may hold the key to explaining the failure to disperse highly viscoelastic
dispersed phases.

Finally it would be interesting to see if the model of Lagisetty et al (1986) can be
used in other equipment, such as pulsed columns, nozzles etc. by making appropriate
substitution for e, the power dissipation per unit mass.

Thus even for d,,,, evaluation, there is need for more robust models which could
account for drop-eddy interaction in a more acceptable fashion, take detailed flow
field into account and incorporate a more realistic breakage condition.

2.3 Breakage frequency

The evaluation of d,, though useful for calculating the average drop diameter existing
in the vessel, cannot yield the drop-size distribution. To obtain this, it is necessary
to solve the population balance equations, which in turn require expressions for
breakage frequency, coalescence frequency and the size distribution of the daughter
droplets formed through the breakage of a larger drop.
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Breakage frequency [T'(v)] can be physically interpreted as the fraction of drops of
a given size v that break in unit time when they are kept in a turbulent flow field.
In view of the time invariance of the statistical properties of the turbulence, it is also
a measure of the transitional breakage probability of one such drop i.e. I'(v)dt is the
probability of a drop of size v undergoing breakage in a small time interval dt. Its
average value for a given drop size may, therefore, be computed as the reciprocal of
the expected survival time of such a drop in the turbulent environment under
consideration. A reliable model for this is necessary to enable us to solve the population
balance equation and obtain the drop-size distribution. Models are available in the
literature which try to predict breakage frequency for inviscid dispersed phases, which
undergo instantaneous breakage. There is no reported model which attempts to
predict breakage frequency for dispersed phases which have finite viscosities or which
display more complex rheological behaviour.

2.3a  Models for breakage frequency: Early models of breakage frequency have
been either ad hoc or have drawn upon analogies to rate expressions characteristic
of chemical reactions. Thus Valentas & Amundson (1968) have assumed the breakage
frequency (regarded as a function of the drop diameter, d, in this section) to be
proportional to the droplet surface area:

r(d)=C,d% (30)

Ross & Curl (1973) saw a similarity between drop breakage and chemical
decomposition. They assumed a drop to form an ‘activated complex’ due to imparted
kinetic energy, which then broke just like a chemical reaction. Thus:

normal drops="‘activated drops’ — breakage products,

where the normal drops are in equilibrium with the activated drops and K” is the
rate constant for the decomposition or the break-up process. The breakage frequency
is thus simply

I'(d)=K*K", (31)

where K* is the equilibrium constant for the normal-activated drop exchange. From
similarity to molecular decomposition,

K* =exp(— activation energy/kinetic energy). (32)

The kinetic energy is assumed to come from all eddies smaller than the drop since
larger eddies would be expected to convect the drop without breaking it. The activation
energy is taken to be proportional to ¢d* where ¢ is the interfacial tension. Their
final expression is:

I'(d)=C,ND**d~Pexp[— C,0/(p, N D*3d?)]. (33)

The two unknown parameters C, and C, are determined from the experimental data
to obtain the best fit.

Coulaloglou & Tavlarides (1977) define the breakage frequency on more physical
grounds as:

['(d) = (1/breakage time) x number fraction of drops of size d
breaking in that time. (34)
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They assumed that the fraction of drops breaking is proportional to the fraction of
drops of size d which have a total kinetic energy greater than a minimum value
necessary to overcome the surface energy holding the drop intact. This minimum
surface energy was taken as

E,ocad?. , (39)

Using the two-dimensional normal distribution for the velocity fluctuations of the
eddies, they derived an expression for the fraction of eddies with kinetic energies
exceeding E,:

fra. .on of eddies with E > E, =exp[—(E./E,)]. (36)

Here E, is the kinetic turbulent energy of an eddy of size d and is related to the energy
dissipation per unit mass by

E, ocp.e2?d* B, (37)
They estimate the time available for breakage to be
ty=d*Pe" 13, (38)

from consideration of the relative motion of two lumps of fluid in a turbulent flow
field as described by Batchelor (1953). In terms of the operating parameters of the
stirred vessel, their final expression is: :

C(d)=K,d"2*ND**exp[ — K,0/(p.D*3 N*d*?)], (39)

where K, and K, are parameters to be determined from experimental data. As is
evident, the dispersed phase viscosity has been ignored in the development of the
breakage frequency expression. In addition, the idea of time required for the centres
of mass of the would-be daughter droplets to separate may have little to do with the
breakage phenomenon because during fragmentation itself the parent drop is quite
deformed and would give rise to already separated daughter droplets.

Narsimhan et al (1979) view the droplet as a one-dimensional simple harmonic
oscillator, oscillating about its spherical equilibrium shape. Oscillations are induced
by the arrival of eddies of different energies at the surface of the droplet. They argue
that the increase in the surface energy required for fragmentation is minimum if binary
equal breakage occurs and has the value

(213 — 1)t /263,2P, | (40)

for a drop of volume v. The arrival of eddies at the surface of a drop is assumed to
be a Poisson process with a parameter 4 independent of the droplet diameter. The
arriving eddy has a kinetic energy per unit mass of 3 u* where u is an associated
characteristic velocity. To be able to break the drop, therefore, one must have

1u? > (213 = 1)on'?6*Pv*3/(p, v). (41)

Assuming that the joint probability distribution of 2 point-velocities in an agitated
vessel is normal with a variance

o? =2(ed)*, (42)
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they arrive at the following expression for the breakage frequency

T'(d) = Zerfe[\/a(n/6)"0d ™56 /(2™ 113)], (43)
where
a=22"% = 1)r'36>3(a/p,). (44)

Das (1984) points out that even though the drop gets to interact with an eddy of
sufficiently high energy, the breakage itself need not be instantaneous. Furthermore,
there is a finite probability of the nascent daughter droplets recombining which has
not been accounted for in the above model. He has modified this model by considering
the possibility of recombination of the daughter droplets also.

None of the foregoing models addresses the situation wherein the dispersed phase
has a finite, non-zero viscosity. As the breakage of drops of size d,,,, is not possible,
the size distributions generated by these models contain drops predominantly in the
region of d,,,,. Experimentally obtained distributions however contain drops much
smaller than d,,. Furthermore, they yield no information about the daughter droplet
distribution fi(v,v") and subsequent use of these breakage models in the population
balance equation has to be coupled with independent assumptions about f(v,v'). In
the absence of a phenomenological model, it has been the practice to assume
expressions for fi(v,v') that render the population balance equations analytically
tractable. Thus, uniform breakage [f(v,v) = 1/v'], equal breakage [3(v,v') = 6(v — v'/2)]
and ‘normal’ breakage {B(v,v')=[0(2m)'*] 'exp[—(v—v'/2)*/26*]} have been
reported in the literature (Narsimhan et. al 1979; Shiloh et al 1973; Coulaloglou &
Tavlarides 1977).

Nambiar and others (D K R Nambiar, T R Das, R Kumar & K S Gandhi,
unpublished) have recently developed a model which not only predicts the breakage
frequency [T'(v)], but also f(v,v’). These authors consider the possibility of unequal
breakage of drops larger than d,,,,. They find that once the drop’s diameter has a
value of d,,,, or lower, it cannot be further broken. However larger drops can undergo
unequal breakage yielding very small drops which are observed in actual experiments.
It is found that for a drop of given size, there is a range of eddy sizes whose interaction
with the drop can result in its breakage. The size range of eddies (I,;,, < [ < d) capable
of breaking a drop of size d has been obtained through a slightly modified version
of the model of Lagisetty et al (1986). The variation of [ ;,(d) with the drop diameter,
d, is shown in figure 11. It is seen that for d,,,, the ratio of [ ;,(d)/d is unity, indicating
that smaller eddies cannot break the drop. To obtain the breakage frequency, the
drop is permitted to interact sequentially with eddies of various sizes existing in the
vessel. If the drop interacts with an eddy much larger in size than itself, it will be simply
convected and no breakage will result. Similarly if an eddy of size lesser than [ ;,(d)
interacts with it, the drop will get slightly deformed but will not break. It is only
when an eddy having size greater than I,;,(d) and less than d interacts with it that
breakage will occur. The eddy-size distribution evaluated on the basis of the energy
cascade hypothesis is

f()=2Dl[(D*~B)P]. (45)

With this eddy size distribution, the expression for the expected survival time of a
drop, t,,, works out to be:

[(%X = (q/p) J\

h

D D

T() fU1¢(lnin, )11 + f (b d) f (b, d)]dL, - (46)

I




92 D K R Nambiar, R Kumar and K S Gandhi

Umin (d)/d

08

06

T

04

02

0 1 | L ] 1
0 5 10 15 20

d/dmax

Figure 11. Variation of I, () with drop diameter (d).

where

d
p= j fhd, (47)
and -
qg=1-p (48)

The breakage frequency is obtained as the reciprocal of the expected survival time,
T =1/, 49)

A typical comparison of the variation of the breakage frequency with drop size.
with the variation predicted through (49) is shown in figure 12. The effect of raising
the dispersed phase viscosity hundred-fold has also been indicated in the figure. The
breakage frequency tends to be lower in this case. Figure 13 shows the results of a
numerical solution of the population balance equation incorporating the above
expression, (49), for I'(v) and neglecting coalescence. The initial population in this
case consists of uniformly sized particles of size 10 dmay. The cumulative volume
fraction evolves until no drops of size exceeding d,,, survive in the system. The solid
line in figure 13 shows the steady state size distribution obtained experimentally by
Narsimhan et al (1980) using an encapsulation technique. It is difficult to describe
the initial size distribution in experiments on a batch system to any degree of accuracy
and this makes comparison of transient size distributions with numerical solutions

difficult. It is reasonable to believe, though, that the steady state size distribution
should be independent of the initial conditions.
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Figure 12. Variation of the breakage frequency (I') with drop diameter (d). The effect of
increasing the dispersed phase viscosity (y,) is also indicated.

The daughter droplet distribution may be obtained directly from the eddy size
distribution using the geometric relation between the daughter droplet volume v" and
the size [ of the eddy-causing breakage (Papoulis 1984, p. 95).

B, 0) =4 f(lllnse <1< A)}/{I(dv/dD)}. (50)
If the angle ¢ is defined by
cos(y) =1 —(2v'/v), (51)

the final expression for f(/, v) becomes

Bv',v) = {8(Dlx)*/[pn(D* — [{)1*d]} [sin |(n/3) — (2y/3)|/sin Y] (52)

It is seen from this expression that for binary breakage, equal breakage, which has
been hitherto a standard assumption, is more of an exception than the rule.

2.3b Comments on breakage frequency models: Breakage frequency is not measured
directly but is extracted from the evolution of the drop size distribution with time in
a stirred vessel, under conditions where breakage is predominant. This is normally
achieved through using low dispersed phase hold-up. The method of extraction of
breakage frequency information from the evolving drop size distribution has been
described by Narsimhan et al (1984). The existing models of breakage frequency
have not been rigorously tested even when the dispersed phase viscosity is low. For
dispersed phases of high viscosity, the only model is that of Nambiar and others
(D K R Nambiar, T R Das, R Kumar & K S Gandhi, unpublished) and it has not been
tested against any experimental data, as such data are not available. Similar is the
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Figure 13. Numerical solution of the population balance equation showing the evolution
of the cumulative volume fraction F(d, 1) with time. F(d, 1) is the contribution at time ¢ to the
dispersed phase volume fraction from drops of diameter not exceeding d. The initial dispersion
is monodisperse particles of size 10 Ay The solid line shows the steady state size distribution
obtained experimentally by Narsimhan et af (1980) for the same parameter values.

situation for dispersed phases displaying more complex rheological behaviour. Thus
there is need for experimental information so that existing models can be tested and
new models developed if necessary.

When the dispersed phase hold-up becomes high, other mechanisms of breakage
involving flow at the impeller become important. For such breakage mechanisms,
there are no models available for breakage frequency and entirely new models are
required to be developed. ‘

Expressions for f(v, ') are normally assumed. Equation (52) is the only expression
based on a mechanistic model. At present, it is not possible to recommend any
particular expression for B(v,v') as the experimental measurement of f(v,v") has not
been possible. ’

24 Coalescence Jrequency

The other most important term required for the solution of the population balance
equation is the coalescence frequency. Its prediction involves an analysis of the relative
motion between drops. For two drops to coalesce, they must first come very close
lo each other and then the intervening liquid film between them must drain to such
a thickness that it becomes unstable and ruptures. Therefore the problem is normally
approached through a two-step procedure. Collision frequency is first computed
from an estimation of the diffusion coefficients of different droplets in an isotropic
turbulent field. This is then multiplied by coalescence efficiency to account for the
complex hydrodyn.mic interactions that are ignored in the first step.
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2.4a  Maodels for collision frequency: Smoluchowski (1917), and later Harper (1936)
have considered the problem of determining the collision frequency of spherical
particles subject to thermal agitation. Two particles of radii r; and r, may be said
to be in collision when the distance between their centres is s =r; +r,. According
to the theory, if D, and D, be the Brownian diffusivities of the two kinds of particles
in a binary mixture wherein their number densities are n; and n, respectively, the
frequency of collisions between them per unit volume of the system is given by

V' =4nn,nys(Dy + D,). (53)

Howarth (1964) reasoned that the above expression could also be used to predict
the frequency of collisions between spherical particles suspended in an isotropic,
turbulent field, it only being necessary to account for the enhanced diffusivity that is
characteristic, in general, of turbulence. For isotropic turbulence, when the diffusion
times are short in relation to the Lagrangian integral time scale, the diffusion coefficient
is time dependent and is given by (Taylor 1921)

D, =ut, (54)

where u? is the mean square Lagragian turbulent velocity fluctuation. The time
available for diffusion is of the order of the reciprocal of the collision frequency. Thus
Howarth (1964) estimates the frequency of collision as

ve = (4nnsu? )k, (55)

An alternative approach to the problem of inter-particle collisions in a turbulent
medium is supplied by the kinetic theory of gases. The droplets under consideration
here are larger than the microscale of turbulence. They are not therefore completely
entrained by the turbulent eddies. The impact of eddies on them in all directions
causes them to move.in a random fashion mimicking the random motion of molecules
in an ideal gas. Based on this concept, Coulaloglou & Tavlarides (1977) provide the
following expression for the collision frequency between drops of volume v and v':

W(o,v') = 72 + 02 W) + 12 () T (56)

The above expression is typical of this approach and variations, differing from the
above only marginally, have been proposed by several other workers (Rietema 1964;
Kuboi et al 1974; Abrahamson 1975).

Both the above approaches to collision frequency are extensions of the existing
theories to domains outside the regime of their strict validity. The diffusing elements
in Taylor’s theory are indistinguishable from the fluid and extension of this concept
to macroparticles that alter the flow field around them is open to argument. The
kinetic theory models, on the other hand, are intuitive generalizations and their
validity comes into serious question when extended to turbulence in a stirred vessel.
However, in the absence of more realistic models, one of the models described above
is normally employed.

24b  Models for coalescence efficiency: The models for the collision frequency
clearly view the droplets as hard spheres consequently ignoring th finer details of
droplet deformation, the thinning of the intervening film and its rupture at a critical
value of thickness. These details are considered in defining the coalescence efficiency
which estimates the proportion of collisions that actually result in coalescence.
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Howarth (1964) has developed an expression for the coalescence efficiency by
deeming coalescence between two drops to occur if the relative velocity along the
line of their centres exceeds a critical value. By assuming that the three-dimensional
Maxwell's equation describes the drop turbulent velocity fluctuations, he obtained
the coalescence efficiency as the fraction of drops which have kinetic energy exceeding
the critical value W*. Thus the coalescence efficiency between drops of volume » and
v' is given by

n=exp(—3W*/a?), (57)

where u? is the mean square turbulent velocity fluctuation.
Coulaloglou & Tavlarides (1977) have assumed the following form for the
coalescence efficiency:

n=exp(~t./1). (58)

Here t, and 7 are the mean coalescence time and the mean contact time respectively.
The mean contact time is estimated by viewing the coalescing droplet pair as being
entrained in an eddy of length scale d, where d is the sum of the diameters of the
coalescing droplets. The contact time is then the mean lifetime of such an eddy,

T=¢!P3g23, (59)

The coalescence time 1, is the time taken for the intervening liquid film to drain
from an initial thickness h, to critical film thickness h. under the action of a net
squeezing force F effected by the turbulent environment. For drainage between
deformed spheres, Chappelear (1961) gives the drainage time as

E—to=(3uF/16m0*)[(1/h*) — (1/h3) ] [dd'/(d + d')]* (60)

The force is estimated as

F=pa? [dd'/(d+d)], (61)
where

u=e(d + a). (62)
Their final expression for the coalescence efficiency is

n=exp{(— ku.pe/o)[dd'/(d + d')]?}, (63)

where k is a parameter.

Das (1984) and Das et al (1987) recognize the stochastic nature of the drainage
process. The drainage equation is that for the thinning of a film of viscous liquid
trapped between two rigid, unequal spheres under the action of a squeezing force F
directed along their line of centres. Unlike earlier deterministic models, however, the
drainage is treated as a stochastic process. If the autocorrelation time of the force
fluctuations is far smaller than the characteristic time of drainage, the fluctuations
may be viewed as white noise (Daser al 1987) superimposed on a constant mean value:

F=F-3/T¢, ' (64)

Here ¢, is a Gaussian white noise process and F and § are, respectively, the mean
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and standard deviation of the force F. The parameter T is the autocorrelation time
of the force fluctuations. With this assumption, the drainage equation

dhjdt = (2hF 3mu )[(1/d) + (1/d')]? (65)

becomes a stochastic differential equation and is seen to be completely equivalent to
the random, one-dimensional Brownian motion of a hypothetical particle in a bounded
interval on the coordinate axis of the variable x = In (h/h,) with a steady drift towards
the origin. The Fokker—Planck equation describing the evolution of the transitional
probability density is

D* (&% p/ox*) + (8p/dx) = (8p/dv), (66)

where
v=aft; a=(2/3u)[(1/d)+(1/d)]?, (67)
D* = a3 TI(2F/5), (68)

and p = p(x,1|xy,0) = probability that the particle is at location x at time 7 given
that its initial location was x,.

The initial condition is an assertion of the film thickness at the start of the drainage
process:

p(x,0]xg,0) = d(x — x,). (69)

The boundary conditions are:

P(O,T|X0,0) = 0, (70)
—D*QE = (1 4 kp)ple= s, (71)
ax x=Xxg

The first of these corresponds to an absorbing wall at x =0 which indicates that
rupture is immediate and the coalescence process gets terminated whenever h = h,.
The second boundary condition assigns to the particle a finite probability of escape
from the interval through its right end-point x = x,. Physically this implies that the
collisional state of the droplet pair may be terminated and the droplet pair may be
separated at their initial separation hy. If it is further assumed that the collision time
is very large in relation to the time scales over which the fate of the particle pair
(coalescence or separation) is decided, the efficiency of coalescence is obtained as

n = probability that the Brownian particle will ever be absorbed at x =0
_ f pxP
o 0Ox

For coalescence between drops of diameters d and d’, the standard deviation of
the force fluctuations in the above model has been taken to be

dr. : (72)

x=0

d=puP(d+d)[dd/d+d)]> (73)

The mean value of the force is assumed to be proportional to & with the proportionality
constant expected to decrease with increasing intensity of turbulence. The auto-
correlation time T has been assigned a constant value of 1074,
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Muralidhar & Ramkrishna (1986) have pointed out that a case for neglecting the
dynamic drop deformation during film drainage can be made only after due
consideration of the various time scales characteristic of the process. At least the
following five different time scales can be identified:

i) film liquid flow, T,
ii) drop deformation, T,
iii) force fluctuations, T
iv) film thinning, T, and
v) film expansion, Tj.

Neglecting the dynamic drop deformation amounts to tacitly assuming that
T,;» T,.

In a similar vein, viewing the force fluctuations as a white noise demands that
T, « T.

If the force fluctuations have a finite autocorrelation time it is more appropriate
to model them as a correlated, band-limited or coloured noise (Muralidhar et al 1988).
The time evolution of the force is itself then described by a stochastic differential
equation,

dF' = — (F"/T)dt +(§/T*)dW,. (74)

W, is the standard Wiener process. For rigid spheres, the film drainage equation has
the form

dh= —oh(F + F')dt. (75)
Defining dimensionless quantities,

n=4T,

x =In(h/h.)/In(ho /h),

y=F(/F—’

and

the system of equations describing the drainage process is:

dx = [aF TIn(h,/he)1(1 + y)dn, ' (76)
dy=—ydn +(6/F)dW,. (77

The associated initial conditions specify the initial separation x; and the initial force
y; which is a random variable drawn from a normal distribution with zero mean and
variance 6°/2F% The drainage is readily seen to be equivalent to the two-dimensional
motion of an abstract particle on the x-y plane confined to the region bounded by
the lines x =0, representing coalescence, and x = 1, at which separation occurs. A
value of y> —1 implies that the force on the drop pair is squeezing in nature and,
consequently, a particle hitting the left boundary x = 0 with such a value of y would
coalesce and leave the system. The entire ray x =0, y > — 1 is thus an absorbing wall.
Similar considerations prevail at the right boundary where the ray x=1, y< — 1 is
an absorbing barrier for particles exiting the coalescence process on account of their
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separation exceeding h,. The probability density function p(x, y, ) which specifies the
probability of finding the particle in a differential area around the point (x, y) at time
7 is described by the following Fokker—Planck equation:

ap oFT ap

L= (14 )~+-a—( )+
ot (k) Vo Tap?

8% 0%p
oy 7).
The coalescence efficiency is simply the time integral of the total probability current
through the absorbing wall at the left boundary:

S _ofT )
n—L dfj 1dy[ ————ln(hu/ho)(l+y)p(0,y,r)]- (79)

The coalescence probability can also be estimated from a Monte-Carlo simulation
of the system of stochastic differential equations describing the evolution of the force
and the film thickness. A large number of sample pathways are constructed following
the O(h?) algorithm for simulating Ito equations derived by Rao et al (1974) and
coalescence efficiency is estimated as the fraction of realizations resulting in the
abstract particle (describing random motion in a two-dimensional phase plane in
accordance with the differential equations) striking the absorbing barrier at h, before
hitting h,. Muralidhar et al (1988) have obtained excellent agreement between the
results of the simulation and an approximate construction using orthonormal
polynomials. It is of interest to note the band-limited noise model predicts trends
quite opposite to those of the white-noise model. The authors speculate that the
neglect of dynamic drop deformation is probably responsible for this difference. They
also point out that the general framework for analysis of the coalescence problem as
outlined above embeds the random contact time model of Coulaloglou & Tavlarides
(1977).

24c  Comments on the models of coalescence frequency: One of the major short-
comings of the coalescence efficiency models is that they do not provide any guidelines
for selection of either A, or h,. The stability of thin films has yet to be incorporated
into the theory and until this is done 4, remains an adjustable parameter whose value
is chosen to provide the best fit to the experimental data. Furthermore, the models
proposed do not permit easy generalization to more complex situations as, for instance,
the one wherein surfactants or electrolytes are present in the system. The experimental
information on both collision frequency and coalescence efficiency is hard to collect
and hence its availability is extremely limited. It is difficult to compare various models.
The existing models of various complexity can at best be used for first approximation
calculations. There is great need for improving the existing models by incorporating
the details for calculating h,, which has upto this time been taken in an ad hoc manner.
When the external phase is rheologically complex, its drainage behaviour will be
strongly influenced by its rheological parameters. Some information in this area has
recently become available (Hartland & Jeelani 1987; Bousfield 1989). Similar is the
situation for the stability of the thin film intervening between the coalescing drops.
Though the basic notion of many tiny fluctuations acting on drops and causing either
coalescence or separation is reasonable, the details need deeper analysis. Further, in
the wall region of the stirred vessel, where coalescence is predominant, the collisions
may occur due to shear rather than the way they have been assumed to occur so
far.
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Thus the present state of understanding of both collision frequency and coalescence

efficiency is incomplete. There is need for both experimental and theoretical work in
this area.

3. Conclusions

It is seen that first generation models for both breakage and coalescence of drops in
stirred vessels are now available. Though breakage models have been tested against
experimental results for dispersed phases of low viscosity, they have hardly been
verified for highly viscous liquids and for liquids displaying more complex rheological
behaviour. The breakage frequency models for viscous and rheologically complex
fluids have not been tested at all. The situation with regard to coalescence frequency
is no different. There is strong need both for generating more robust models and for
collecting reliable experimental data for verifying them.

List of symbols

a interfacial area per unit volume of the dispersion, m~1;
¢c,c,c, constants;

d diameter of drops or eddy size, m;

ds, Sauter mean diameter, m;

Qs diameter of the largest stable drop, m;

D impeller diameter, m;

D, turbulent diffusivity, m2s- 1.

DD, diffusion coefficients of colliding particles, m?s~!;

E, critical energy required for drop to break, J;

E, mean kinetic energy of eddies, J:

E, energy of an extended polymer molecule, J/mol;

€ps energy stored by drag reducing polymers per unit volume, kgm?s - 2

€ energy released by drag reducing polymers per unit volume,
kgm?s~2;

f correction for the energy of an extended polymer molecule;

Sfo(v) escape rate of drops, s™!;

§i0) distribution of eddy sizes, 1 is the length scale of the eddy, m~1;

f(l]A) eddy size distribution, conditional onevent 4, m~!;

F,F driving force for coalescence and its mean, N;

g(p) molecular weight distribution of polymer, p is the degree of
polymerization;

H spring constant of elastic dumb-bell, Nm~!;

h distance between coalescing particles, m;

h, critical distance of approach required for coalescence, m;

ho initial separation between coalescing particles, m;

K constant in power-law model, Nm~2g",

Ki,K, k,,K* K" constants;

I Taylor’s microscale, m;

Loin minimum size of eddy capable of breaking a drop, m;

Iy Kolmogorov scale, m;
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L, T, T, T, T,
T()

lex

ty(l,d)
u?(d)
v,V

We

W,

W*

w

o
fv,v')dv

1)
&
n
¢
7(v)
['(v)

molecular weight of monomer unit;

power law index;

number of droplets of the dispersed phase in the size range (v, v + dv)
at time ¢ in a unit volume of the dispersion, m~3;

revolutions per second of the stirrer, s ™ !;

number feed rate of drops in the size range (v,v + dv) per unit
volume of the dispersion, m~3s~!;

transitional probability density;

frequency of coalescence between drops of size v and v/, m3s™?;

Reynolds number, D"(ND)*>~"p/[K2""*(3 + 1/n)"];

extended length of the polymer molecule, m;

gas constant, J/(mol K);

radii of colliding particles, m;

distance between the centres of particles in collision, m;

temperature, K, and also autocorrelation time of the random force
fluctuations, s;

time scales characteristic of coalescence, s;

mean lifetime of an eddy of size [, s;

expected survival time of an eddy, s;

time taken by an eddy of size | to break a drop of diameter d, s;

mean square velocity fluctuation across a length scale d, m?s~2;

drop volume, m?;

Weber number, p,N?D3/c;

Wiener process;

critical value of kinetic energy required for coalescence, J;

weight of polymer per unit volume, kgm~3;

defined in (28);

fraction of daughter droplets in the size range (v, v + dv), when a
drop of size v’ breaks;

standard deviation of stochastic driving force for coalescence;

power dissipation per unit mass, m?s~3;

dimensionless time, and also coalescence efficiency;

volume fraction of the dispersed phase;

number of daughter droplets formed on breakage;

breakage frequency, s™*;

dimensionless deformation, subscripts v and s refer to deformation
due to viscous and interfacial stresses respectively;

relaxation time of polymer, s, and also arrival rate of Poisson
process, s 1;

viscosity, Pa s, subscripts d and o refer to Newtonian and Bingham
plastic dispersed phases respectively while ¢ refers to the
continuous phase;

frequency of collisions per unit volume, m~3s™!;

frequency of collisions, s~ *;

rate kernel for collisions between drops of size v and v, m3s~!;

density, subscripts ¢ and d refer to the continuous and dispersed
phase, kgm ™ 3;

interfacial tension, N/m;

difference between dynamic and static interfacial tensions;
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yield stress, Nm~2;

T

T: stress borne by polymer, Nm™2;

T stress due to interfacial tension, Nm~2;
1, turbulent stress, Nm~2;

T, defined in (27), Nm™2;

T, viscous stress in the drop, Nm~2;

b4 defined in (18);

¢ friction coefficient, Nm™!s;

¢, Gaussian white noise.
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