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Abstract. The electron density changes in molecular systems in the presence of external electric fields 
are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic 
sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and 
hence the dipole polarizability within the framework of density functional theory based linear response 
theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the 
molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in 
good agreement with available results. The usefulness of the approach to the calculation of intermolecular in-
teraction needed for computer simulation is highlighted. 
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1. Introduction 

The knowledge about the response of an atomic or mo-
lecular system to an external electric field is impor-
tant for an understanding of their interaction with 
radiation, intermolecular interaction and various other 
physicochemical phenomena of interest. The linear 
and nonlinear responses are characterised respectively 
by the polarizability and hyperpolarizability quanti-
ties both of which can be calculated through the 
evaluation of expectation values of single particle opera-
tors and hence density functional theory (DFT)1,2 
which employs the single particle electron density3 
as the basic variable is most suitable for this purpose 
from the point of view of conceptual simplicity as 
well as computational economy. DFT has also pro-
vided foundation2,4 to a number of chemical concepts 
used widely for the understanding of chemical binding, 
reactivity and interaction. Thus, the chemical potential 
of the electron cloud has been identified5 as the elec-
tronegativity6 parameter of chemistry, the charge ca-
pacity has been linked7 with the concepts of 
chemical hardness8,9 and softness and the frontier 
orbital theory10 has been rationalised11 in terms of the 
density derivatives within the framework of DFT. 
The calculation of polarizability of many electron 

systems using DFT has followed mainly two routes, 
the first one dealing12 directly with the density perturba-
tion in an external field using variational or numeri-
cal method, while the second one makes use of a hybrid 
prescription13–15 exploiting the interconnection of the 
response functions16 with some of the conceptual 
developments as mentioned above. 
 The major features of the electron density changes 
during intermolecular interaction, molecule forma-
tion or interaction with external fields can, however, 
be often captured in terms of much simplified repre-
sentation of the properties of atoms in molecules 
rather than using the full density function in 3-D 
space of the molecule. Recent years have seen an 
upsurge of interest in the development and extension 
of the conceptual framework in this direction. Thus, 
a perturbation theory of chemical binding has been 
developed17–20 where the concept of chemical potential 
equalisation4,5 (CPE) has been generalised to include 
the concept of bond chemical potential,17,18 spin-
polarised electronegativity19,20 etc., thereby incorpo-
rating the effect of charge delocalisation and spin 
pairing during molecule formation particularly for cova-
lent binding. There have also been developments of 
other descriptions21 where the atomic dipoles arising 
due to distortion of the charge distribution from spheri-
cal symmetry due to bonding have been taken into 
account. Most widely used application of CPE pro-
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cedure however is to the calculation of partial 
atomic charges22–24 in molecules with the ambitious 
goal of development of dynamic charge models25–28 
for predicting the intermolecular forces for computer 
simulation studies. 
 The purpose of the present work is to study the appli-
cability of simple chemical potential equalisation ap-
proaches within a DFT framework to the study of 
response properties of molecules in external fields. 
For simplicity, we have restricted ourselves to the 
study of electric dipole polarizability only although 
extension to multipolar polarizability is straightfor-
ward. 
 There have been many attempts29 in the past to 
obtain molecular polarizability by adding together 
the contributions from the constituent atoms. The effect 
of the bonded environment of an atom had been ac-
counted for in some of these additive models in an 
average manner by invoking the concept of atomic 
hybridisation dependent parameters. Attempt has 
also been made30 to obtain the molecular polarizabil-
ity in terms of the effective atomic polarizabilities de-
pendent on the net atomic charges on molecule 
formation. In an elegant approach, Applequist31 has 
proposed an electrostatic interaction model where 
the atomic response that leads to an effective atomic 
polarizability is not only due to the externally applied 
electric field but also due to an effective field arising 
from the induced dipole moments of all the atoms in 
the molecule. A major drawback of the electrostatic 
point dipole model has been corrected by Thole32 by 
modifying the dipole tensor through the use of a shape 
function at shorter distances. The interacting dipole 
model of Applequist31 however treated the molecule 
as a collection of polarizable points and only the in-
duced interacting atomic dipoles contributed to the 
induced dipole moment and hence the polarizability. 
The model was subsequently extended to incorporate 
the interatomic charge transfer effects by Olson and 
Sundberg33 and was further generalised by Applequist34 
himself in a series of papers as well as by others.35,36 
 The present work is close in spirit to these elec-
trostatic models31–34 developed by several authors 
during the last two decades where the concept of ef-
fective atomic polarizabilities has been invoked to 
reproduce the molecular polarizability. The major 
new features of the present approach involve the 
consideration of the density changes in terms of its 
first two moments, viz. the atomic charge and dipole 
within the framework of a chemical potential equali-
sation procedure in contrast to a purely electrostatic 

model. It basically provides a simple linear response 
theoretic approach within DFT for the study of re-
distribution of the electron density due to an external 
field and is in the spirit of a semiempirical model for 
polarisation and charge transfer. Although the final 
equations possess classical-like appearance, the underly-
ing physics is based on a rigorous quantum mechanical 
framework of DFT. 
 Chemical potential equalisation schemes have 
been attempted37–39 recently for the induced atomic 
charges in a molecule due to an applied field and 
thereby calculation of the polarizability. However, 
the main limitation of these works is that they are 
based on the charges alone and hence the polariza-
bility in the perpendicular direction in a planar 
molecule is predicted to be zero. Although attempts 
have been made37 to use the Drude oscillator model 
to mimic this, a more satisfactory approach seems to 
lie in the consideration of the atom centered dipoles 
used earlier in electrostatic models. This will also 
unify the proposed chemical potential equalisation 
approach with the well developed interaction model 
of Applequist31–34 resulting into an integrated approach. 
A close connection with the distributed polarizability 
approaches40–42 will also be apparent. 
 In what follows, we first discuss the theoretical 
framework for density functional investigation of 
chemical potential equalisation of atomic constitu-
ents in molecular systems in §2 and the choice of 
various atomic and other (interatomic) parameters 
appearing in this theory is considered in §3. The lin-
ear response version of the equations corresponding 
to the chemical potential equalisation for molecular 
polarizability is discussed in §4. The results of numeri-
cal calculations for various molecular systems have 
been presented in §5 which is followed by a few 
concluding remarks in §6. 

2. Density functional theory and effective 
chemical potential equalisation of atoms in  
molecules 

In DFT, the ground state electronic energy of a many-
electron system characterised by the external potential 
v(r) arising due to the nuclei and/or any other exter-
nal source of electric field, can be expressed as a 
unique functional Ev[ρ(r)] of its electron density 
ρ(r) and is given by, 
 

 Ev[ρ(r)] = ∫drρ(r)v(r) + F[ρ(r)], (1) 
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where F[ρ(r)] is a universal functional of the density 
consisting of kinetic, Coulomb and exchange-correla-
tion energy components. The equilibrium density 
ρ0(r) is the solution of the Euler equation corre-
sponding to the energy minimisation, viz. 
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where µ is the Lagrange multiplier associated with 
the density normalisation [∫drρ(r) = Nel] and signi-
fies the chemical potential of the electron cloud and 
hence the electronegativity χ (with a negative sign) 
as demonstrated by Parr et al5, viz. 
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with Nel denoting the number of electrons in the system. 
The second derivative has also been defined7 to rep-
resent the hardness parameter η as 
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which has further been expressed43 in terms of the 
density as 
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where η(r) denotes the local hardness43 and the en-
ergy functional derivative η(r, r′) given by 
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represents the hardness kernel.16 The function f(r) 
used here is the Fukui function11 which has been 
known to play an important role in the theory of 
chemical reactivity and is defined as f(r) = (∂ρ(r)/ 
∂Nel)v(r) although one can also use (ρ(r)/Nel) or any 
other function integrating to unity in place of this 
function for evaluating the hardness44 through (5). 
 If the system is perturbed by a perturbing potential 
δv(r) so that the new potential is v(r) + δv(r) and the 
corresponding density change is δρ(r), the energy 

change can be expressed27 in terms of the various func-
tional derivatives using (1) and retaining terms up to 
second order as 
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Analogously the change in chemical potential µ(=  
µ0 + ∆µ) is given up to first order change in δρ(r) by, 
 
 ∆µ = µ – µ0 

   = δv(r) + ∫ dr′η(r, r′)δρ(r′), (8) 

 
as obtained by using (2) and (6) as well as the rela-
tion45 (δ2E/δρ(r)δv(r′)) = δ(r – r′). The density change 
δρ(r) can also be written as a sum of contributions 
due to the change in the number of electrons dNel 
and the potential, viz. 
 
 δρ(r) = f(r)dNel + ∫ dr′χ0(r, r′)δv(r′), (9) 
 
involving the fukui function f(r) and the response 
function χ0(r, r′) given by χ0(r, r′) = (δρ(r)/δv 
(r′))Nel. 
 While these equations are general and applicable 
to any many-electron system, we here specialise to a 
molecular species consisting of N atoms with their 
nuclei located at the fixed positions {Rα} corre-
sponding to the equilibrium geometry of the molecule. 
Let the density change δρ(r) on molecule formation 
and due to the applied electric field E be partitioned in 
some way and be expressed as a sum of the atomic 
components, viz. 
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where rα = r – Rα denotes the atom-centered coor-
dinate with the origin located at the α-th atom. In 
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this partitioning of a molecular system into atomic 
subsystems, the regions may be overlapping but one 
can assume without any loss of generality that the 
density components δρα(r) vanish outside the α-th 
atomic region. 
 We now consider the α-th atom and the region rα 
surrounding this atomic site Rα for which the chemical 
potential µ ≡ µα(rα) as given by (8) can be written as 
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with the symbol µ0

α(≡ µα(0)) denoting the chemical 
potential of the α-th atom. In writing (11), the as-
sumption that δρβ(r′) is nonzero only within the re-
gion of the β-th atom has been used. Consider now 
the Taylor series expansions of the potential and the 
hardness kernel as 
 
 K+∇+∇⋅+= )()()()( 22

2
1 αδαδαδδ ααααα vvvv rrr  

  (12) 
 
and 
 

),(),(),(),( βαηβαηβαηη ββααβα ∇⋅′+∇⋅+=′ rrrr  

      
2 2 2 21 1

2 2( , ) ( , )

( , ) ...,

α α β β

α β α β

η α β η α β

η α β

′+ ∇ + ∇

′+ ∇ ∇ +

r r

r r
 (13) 

 
where the arguments (α) and (α, β) as in δv(α), η(α, 
β) etc. indicate that the quantities are evaluated at 
the atomic site α(rα = 0) and sites α, β(rα = rβ = 0) 
respectively. Also the notations ∇α f(α) and ∇α f(α, 
β) indicate derivatives of f(rα) and f(rα, rβ) with re-
spect to rα, evaluated at rα = 0 and also rβ = 0 for 
the latter. Substituting these expressions (12) and 
(13) into (11), one obtains 
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which can be rewritten, on using the definitions of the 
atomic charges qβ and dipoles Pβ at the atomic site β 
(with Nel

β denoting the corresponding number of elec-
trons) given by 
 
 qβ = –∆Nel

β  = –∫ dr′βδρβ(r′β) (15) 
 
and 
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where terms involving quadrupole moments have 
been neglected. Here Eα(= – ∇αδv(α)) represents the 
electric field at the atomic site α. This equation es-
sentially expresses the chemical potential of an atom 
in a molecular species simplified under the assump-
tion of superposed atomic site densities and ap-
proximated in terms of its first two moments, viz. 
the atomic charges and the dipole moments denoted 
respectively by qα and pα for the α-th atomic site. 
Thus, in this model a molecule is a collection of 
atom centers containing point charges and dipoles, 
the magnitudes of which are determined through the 
chemical potential equalisation of DFT by equating 
µα as embodied in the above equation for all the atoms.  
 Now, since this equation is valid for any value of 
rα and the left side is a constant, one can generate 
two sets of equations by equating on both sides the 
constant terms and the terms linear in rα respectively, 
viz. 
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and 
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which can be rewritten by separating out the β = α 
terms as 
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for α = 1, … , N. Here the diagonal (α = β) con-
tributions from the quantities ∇βη(α, β) and 
∇αη(α, β) vanish as the charges and dipoles at the 
same sites do not interact with each other in this 
point charge dipole approximation and hence the po-
tential and the field generated at site α due to the di-
pole pα and the charge qα respectively are omitted. 
 Since at equilibrium the chemical potentials of all 
the atoms are equalised, one can obtain a set of N – 1 
equations by equating µα = µβ given by (20) for all 
the atoms. The N-th equation is provided by the 
charge conservation (neutrality for a neutral mole-
cule) ∑qα = 0. This set of N scalar equations to-
gether with N vector equations corresponding to (21) 
determine the N scalar atomic charges {qα} and N 
vector atomic dipoles {pα}. 

3. Choice of the atomic and interatomic  
parameters 

While the parameters appearing in (20) and (21) can 
be obtained in principle from a suitable form of the 
hardness kernel η(r, r′) used in (13) for approxima-
tion, it is often more appealing to identify them from 
physical considerations by comparing the equations 
with those of the so called atoms-in-molecules ap-
proach or the atom-charge-dipole interaction model 
for binding and polarizability respectively. Thus, one 
can identify the parameters as follows. The scalar 
hardness kernel η(α, β) used here resembles the atom-
in-molecule hardness matrix {ηαβ} introduced and 

widely investigated by Nalewajski46 and can be 
modeled along similar lines.47 The other vector and 
tensor quantities introduced here, however, have no 
such precedence and are modeled through electro-
static analogy. For this purpose, we have used a 
slightly different and simplified notation for the 
hardness kernels, viz. the scalar η(α, β) = η0,0

αβ ,  the 
vectors ∇βη(α, β) = η→0,1

αβ ,  ∇αη(α, β) = η→1,0
αβ  and the 

tensor ∇α∇βη(α, β) = η↔1,1
αβ ,  where the first or second 

superscripts as unity denotes the derivative with re-
spect to the first or second argument respectively, 
while the superscript zero indicates no derivative. 
 Thus, the diagonal element η(α, α)(= η0,0

αα ) of the 
scalar kernel η(α, β) is clearly the hardness η0

α of 
the α-th atomic species while the off-diagonal ele-
ment η0,0

αβ  corresponds to the charge-charge interac-
tion and hence can be represented by the Coulomb 
potential between the sites α and β in terms of their 
internuclear distance Rαβ = |Rαβ| with Rαβ = Rα – Rβ 
or in a better way by the Mataga–Nishimoto–Ohno 
formula47,48 of semiempirical quantum chemistry. 
Thus, one has 
 
 η(α, α) = η0,0

αα = η0
α (22) 

 
 η(α, β) = η0,0

αβ = 1/εRαβ 
        (Coulomb approximation) (23) 
 
 η(α, β) = η0,0

αβ = 1/(Rαβ + aαβ); aαβ = 2/(η0
α + η0

β) 

  (Mataga–Nishimoto–Ohno formula) (24) 
 
where ε represents a measure of the dielectric con-
stant of the electron cloud medium for the Coulomb 
interaction approximation. One can also rewrite (24) 
in the form of (23) by defining an effective dielectric 
constant εαβ specific to the bonded atom pair α and 
β as 
 
 η0,0

αβ  = 1/εαβRαβ;  εαβ = (1 + aαβ/Rαβ). (25) 
 
The vector quantities ∇βη(α, β) = η→0,1

αβ  and ∇αη(α, 
β) = η→1,0

αβ  correspond to charge–dipole interaction 
representing essentially the potential at the α-th 
atom due to a unit point dipole at the β-th atom and the 
field at the α-th atom due to a unit point charge at the 
β-th atom respectively. One can thus write 
 
 ∇βη(α, β) = η→0,1

αβ = Rαβ/εR3 
αβ (26) 

and 

 ∇αη(α, β) = η→1,0
αβ = –Rαβ/εR3 

αβ (27) 
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for α ≠ β and zero otherwise as already indicated. 
Clearly, one has the result ∇βη(α, β) = –∇αη(α, β), i.e., 
η→0,1

αβ  = –η→1,0
αβ  and η→0,1

αα  = η→1,0
αα  = 0. 

 Analogously, the tensor quantity ∇α∇βη(α, β) 
corresponds to the dipole-dipole interaction repre-
senting essentially the field at the α-th atom due to a 
unit point dipole at the β-th atom and hence can be 
expressed by the dipole–dipole tensor of electrostat-
ics as 
 

 .311),( 23
1,1









−−==∇∇ αβαβ

αβαβ
αββα ε

ηβαη RR
RR

tt
 

  (28) 
 
The corresponding diagonal term ∇α∇βη(α, β)|α=β 
can be easily interpreted as the inverse polarizability 
as is evident by considering (19) or (21) for a single 
atom, where the off-diagonal terms are absent and 
hence one has 0 = Eα – ∇α∇βη(α, β)|α=βpα. One can 
thus write, 
 

 ∇α∇βη(α, β)|α=β = η↔1,1
αα  = α↔α 

–1, (29) 

 
where α↔α represents the polarizability tensor of the 
α-th atom. This quantity can be interpreted as the 
hardness parameter for the induction of atomic di-
pole just as η is the hardness for charge transfer. 
 It may be noted that here the parameters η0,0

αβ ,   
η→0,1

αβ  = –η→1,0
αβ  and η↔1,1

αβ  denoting respectively the scalar, 
vector and tensor quantities, with the superscripts 0 
and 1 referring to charge and dipole respectively, are 
given by the simple expressions of electrostatics as 
indicated above. As has already been pointed out, 
the expression given by (25) for η0,0

αβ  in the case of 
bonded atoms is also of the same form but with an 
effective dielectric constant specific to an atom pair. 

4. Chemical potential equalisation, linear  
response and molecular polarizability 

It is well known that a molecule formation is associ-
ated with equalisation of chemical potential of the 
constituent atoms mediated through electron density 
redistribution. When an external electric field is applied 
to the molecule, a further reorganisation of the elec-
tron density takes place and modified charges and 
dipoles are induced at each site. The chemical poten-
tial equalisation equations in the presence of the field 
provides equations for evaluation of these quantities. 
For this purpose, we first rewrite (20) representing 

the effective chemical potential (of the α-th atom) in 
the already discussed notation as 
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where the notation ∑′ indicates omission of β = α 
term in the summation, φ0

α = δv(α) is the potential at 
the α-th atomic site due to an external field E0 
which is considered to be uniform for the purpose of 
polarizability calculation here, but can be in general 
a position dependent field. Also µ0

α and η0
α represent 

the chemical potential and hardness parameters of 
the α-th atom in a suitable neutral atom reference 
state (prior to change transfer) for the molecule. 
 Equating the effective chemical potential as given 
by (20) or (30) for all the sites, one obtains (N – 1) 
equations which are linear in the charges {qα} and the 
dipole moments {pα} of the atomic sites. Another 
equation is provided by the charge neutrality of the 
molecule, viz. 

 ∑
=

=
N

q
1

0
α

α  (31) 

where the right hand side which is zero here for a 
neutral molecule, is to be replaced by the net charge 
of the molecule for an ionic species. It may be noted 
that these atomic charges and dipoles for the mole-
cule in presence of the field, include contributions 
from interatomic charge transfer during molecule 
formation (from the reference state) in addition to 
the field-induced contributions. Writing these equa-
tions for the unperturbed molecule (using φ0

α = 0  
and Eα = E0 = 0, one obtains equations for the 
charges and dipoles due to molecule formation from 
the reference state. Subtraction of the corresponding 
equations in the two sets leads to N equations in-
volving the induced charges and dipoles {δqα} and 
{δpα} respectively. The final equations can be writ-
ten in matrix form as  
 

 0,0 0,1

1 1

. , 1, 2, ..., ,
N N

b q c d Nαβ β β ααβ
β β

δ δ α→

= =
+ = =∑ ∑ p  

 (32) 
 
where the coefficients b0,0

αβ , c→0,1
αβ  and dα are given by 

 

 b0,0
αβ  = (η0,0

αβ  – η0,0
1β ) + δα1, (33) 
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 c→0,1
αβ  = (η→0,1

αβ – η→0,1
1β ), (34) 

 
  dα = (φ0

1 – φ0
α), (35) 

with η0,0
αβ

 = η0
α and η→0,1

αα
 = 0 as implied. The results 

b0,0
αβ

 = 1, c→0,1
αβ

 = 0 and dα = 0 for α = 1 follow di-
rectly from the general results. 
 Analogously, (21) can be written for the induced 
dipoles as 
 

 1,1 1,10 ' '

1 1

. ,
N N

qαα β βαβ αβ
β β

δ α η δ η δ↔ ↔ ↔

= =

 
= − − 

 
∑ ∑p E p  

  α = 1, 2, …, N,  (36) 
 
which can be rewritten in the general matrix form as 
 

 ,,,2,1,,
1

1,1

1

0,1 Nskqh
NN

Krtr
==⋅+ ∑∑

==

αδδ αβ
β

αββ
β

αβ p  (37) 

 
with the coefficients h

→1,0
αβ , k↔0,1

αβ  and s
→

α given by 
 
 h1,0

αβ = α↔α⋅η↔1,0
αβ ,  (38) 

 
 k↔1,1

αβ = α↔α⋅η↔1,1
αβ ,  (39) 

 
   s

→
α = α↔α⋅E0. (40) 

 
where use has been made of the fact that η→1,0

αα = 0 
and η↔1,1

αα = α↔ –1
α . The results h

→1,0
αα = 0 and k↔1,1

αα = 1
↔

 fol-
low automatically for the case of α = β from the 
general expressions in (38) and (39) respectively. 
 Thus, (32) and (37) with the coefficients defined 
by (33)–(35) and (38)–(40), constitute a set of 4N 
linear equations for 4N unknowns (charge and three 
components of the dipole vector for each of the N 
atomic sites) which can be solved to calculate the 
induced charges δqα and dipoles δpα at each (α-th) 
atomic site in the molecule. The net induced dipole 
moment is then calculated by evaluating the expres-
sion, 

 ),(
1

α
α

αα δδδ pRp += ∑
=

N

mol q  (41) 

and hence the molecular polarizability components 
can be calculated as 
 
 αxx = (p→mol)x/E

0
x; αyy = (δpmol)y/E

0
y; 

 αzz = (δpmol)z/E
0
z (42) 

5. Results and discussion 

Thus, with all the parameters defined, we now have 
one scalar equation (32) and one vector equation (37) 
corresponding to each of the N atoms for determining 
the induced charges {δqα} and dipoles {δpα} at these 
atomic sites in the molecule. The atomic parameters 
entering in these equations consist of the polarizabil-
ity and hardness quantities of the atoms of the mole-
cule. Although one can use available experimental 
or even calculated values of the atomic polarizabil-
ity, when the field is applied to the molecule, it is 
the bonded atom which gets polarised and hence the 
polarizability should be effectively that of the bonded 
atoms which is less than that of the free atoms. We, 
therefore, propose to employ a multiplicative correc-
tion factor which we presently determine empirically. 
Analogously, the hardness parameters defined in (4) 
and calculated as (I – A)/2, within the finite differ-
ence approximation, from the experimental ionisation 
potential (I) and the electron affinity (A) values for 
the free atoms are corrected to partially account for 
the bonded atoms with increased hardness. For sim-
plicity, we assume this factor to be inverse of that 
used for the polarizability in view of the inverse pro-
portionality observed49 between these two quantities. 
The factors for polarizability, however, are assumed to 
be unity in the perpendicular direction for a planar 
molecule and for the two perpendicular directions 
for a linear molecule. 
 Illustrative numerical calculations of the mean po-
larizability of several diatomic as well as polyatomic 
molecules have been carried out using the experi-
mental values of the atomic polarizability and hard-
ness parameters. However, as already indicated the 
polarizabilities have been scaled by a constant factor 
to account for the reduction in polarizability in bond 
formation with a parallel increase in hardness im-
plemented through inverse of this scale factor, thus 
introducing only one scale parameter. The site-site 
charge-charge hardness η0,0

αβ  given by (24) (or (25) 
in the form of an effective dielectric constant εαβ) 
which corresponds to the Mataga–Nishimoto–Ohno 
formula has been assumed only for the bonded atom 
pairs. For non-bonded pairs, this hardness quantity 
has been given by the Coulomb approximation (23), 
with an empirically assumed value of the dielectric 
constant. Thus essentially one employs the Coulomb 
approximation in both cases but the dielectric con-
stant for nonbonded atom pair is an empirical pa-
rameter while the same is an effective dielectric 
constant for the bonded atom pair for bonded atoms. 
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The other hardness quantities η→0,1
αβ ,  η→1,0

αβ  and η↔1,1
αβ  are 

calculated using the expressions given by (26)–(29). 
These quantities determine the coefficients appearing in 
the linear equations (32) and (37) which are solved 
numerically by using the standard matrix inversion 
techniques to determine the induced atomic charges 
{δqα} and dipole moments {δpα} as a function of the 
field strength. The mean polarizability is then calcu-
lated using these calculated charges and dipoles. 
 The polarizability and hardness parameters as well 
as the correction factor αfac for each atom as used in 
the calculation has been given in table 1. These values 
of αfac are chosen so as to reproduce the experimen-
tal polarizabilities of the corresponding homonu-
clear diatomic molecules. Two sets of calculations 
have been carried out corresponding to two choices 
of the dielectric constant. Thus, the first corresponds 
to the use of an effective ε as given by (25), while  
 
 
Table 1. Atomic parameters (in a.u.) used in the calculation. 

Atom Polarizability α Hardness η αfac 
 

H 4⋅5 0⋅235 0⋅45 
C 11⋅9 0⋅184 0⋅3 
O 5⋅41 0⋅223 0⋅3 
Cl 14⋅7 0⋅172 0⋅5 

 
 
Table 2. Polarizability α (in a.u.) of simple molecular 
systems. 

Molecule Calculated α Experimental α 
 

HCl 17⋅11(a) 17⋅76 
 17⋅12(b) 
CO 12⋅92 13⋅17 
 13⋅21 
H2O 9⋅72 9⋅79 
 8⋅54 
CO2 16⋅65 19⋅66 
 17⋅42 
C2H2 21⋅99 22⋅49 
 22⋅25 
HCHO 15⋅02 18⋅92 
 15⋅20 
CH4 20⋅70 17⋅52 
 20⋅82 
CCl4 79⋅03 70⋅93 
 79⋅29 
CH3Cl 34⋅38 31⋅2 
 34⋅51 
CHCl3 63⋅56 64⋅17 
 63⋅77 
(a)Corresponds to using an effective ε as defined in (25) 
of the text; (b)Obtained by using the same ε = 2⋅0 for all 
the molecules 

the second one uses the same value of ε = 2.0 for all 
the molecules considered here. The calculated mean 
polarizabilities for a number of diatomic and polya-
tomic molecules are shown in table 2 alongwith the 
experimental results and it is clear that the agree-
ment is quite good. It is also apparent from the two 
sets of the results that the calculated polarizabilities 
are not very sensitive to the value of the dielectric 
constant used. At present one empirical parameter 
has been used for each atom but we hope to rationalise 
this in terms of the different properties and charges 
on the atoms and also possibly the anisotropy of the 
bonded atom. 

6. Concluding remarks 

The present work reports a DFT-based chemical po-
tential equalisation approach for the calculation of 
response properties of molecules in an external field. 
The chemical potential equalisation is done in two 
stages, viz. the first one during the molecule forma-
tion from isolated atoms and the second one after 
the external field is applied. The induced charges 
and dipoles at the atomic sites are calculated from a 
set of linear equations derived here. A unified picture, 
supported by a sound theoretical framework, that has 
thus emerged encompasses all the earlier empirical 
approaches for the evaluation of molecular polariza-
bility from the atomic ones. 
 The calculated polarizabilities obtained here from 
the chosen atomic parameters are found to be in 
good agreement with the available experimental 
values. The importance of the work lies in the ease 
with which one can calculate the response properties 
which can ultimately be used for the calculation of 
intermolecular interactions or forces using this method. 
This simplicity can be immensely time saving in 
molecular simulation studies. Further work in this 
direction is in progress. 
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