A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst

Vasant R. Choudhary,* Anirban Dhar, Prabhas Jana, Rani Jha and Balu S. Uphade

Received 27th June 2005, Accepted 22nd September 2005 First published as an Advance Article on the web 4th October 2005

DOI: 10.1039/b509003b

Benzyl alcohol is oxidized selectively to benzaldehyde with high yield, with a little formation of benzylbenzoate, by molecular oxygen over a reusable nano-size gold catalyst supported on U₃O₈, MgO, Al₂O₃ or ZrO₂ in the absence of any solvent.

Liquid phase oxidation of benzyl alcohol is an important preferred reaction practically for the production of chlorine-free benzaldehyde, without loss of carbon in the form of CO₂ (a geenhouse gas). The preparation of benzaldehyde by reacting benzyl alcohol with stoichiometric or excess amounts of potassium or ammonium permanganate in aqueous acidic medium¹ is not environmentally benign at all, because of the formation of a large amount of toxic waste. A few studies on the benzyl alcoholto-benzaldehyde oxidation by H2O2 or O2 in the presence of organic solvent, using different solid catalysts, such as Pd/C,² Pd(II) hydrotalcite,³ Pd-Ag/pumice,⁴ Ru-Co-Al hydrotalcite,⁵ Ni-containing hydrotalcite^{6,7} and nano-size NiO₂,8 have been reported. However, because of the use of organic solvent, the benzaldehyde production in these cases is not environmentally benign, even though an environmentally clean oxidant (O2 or H₂O₂) is used. Recently, Choudhary et al. 9,10 have reported the solvent-free oxidation of benzyl alcohol to benzaldehyde over MnO₄⁻-exchanged hydrotalcite⁹ and transition metal containing layered double hydroxides and/or mixed hydroxides, 10 using tert-butylhydroperoxide (TBHP) as the oxidant; after consumption TBHP leaves tert-butanol as a co-product and hence it is not a clean oxidizing agent. To be a cost effective and environmentally-friendly (or green) process, the benzyl alcohol-tobenzaldehyde oxidation with high selectivity and yield must be accomplished under solvent-free conditions, using molecular oxygen (which is not only a clean agent but also the cheapest oxidizing agent) as the oxidant and also using a highly active solid catalyst (which is easily separable and also reusable) in the process. This has been achieved in the present investigation. We report in this Communication a totally green process for the liquid phase selective oxidation of benzyl alcohol to benzaldehyde, with high selectivity and yield, by molecular oxygen using easily separable and reusable supported nano-size gold catalysts (viz. Au supported on U₃O₈, MgO, Al₂O₃ or ZrO₂) in the absence of any solvent.

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune-411008, India. E-mail: vrc@che.ncl.res.in; vrc@ems.ncl.res.in; Fax: +91 20 25893041; Tel: +91 20 25893300 (extn. 2318)

Results showing the solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen over nanosize gold supported over different metal oxides are presented in Table 1. In the absence of any catalyst, the benzyl alcohol conversion was 4% with 96% and 5% selectivity for benzaldehyde and benzylbenzoate, respectively. The preparation (by homogeneous deposition precipitation of gold on support) and characterisation of the supported nano-size gold catalysts are given earlier. 11 The liquid phase oxidation of benzyl alcohol over the supported Au catalysts, was carried out in a magnetically stirred reactor (capacity: 10 cm³), provided with a mercury thermometer for measuring the reaction temperature and reflux condenser, at the following reaction conditions: reaction mixture = 29 mmol benzyl alcohol + 0.1 g catalyst, temperature = 130 °C, pressure = 1.5 atm, and reaction time = 5 h. After the reaction, the catalyst was removed from the reaction mixture by filtration and the reaction products and unconverted reactants were analysed by gas chromatography with a flame ionisation detector, using a SE-30 column and N₂ as carrier gas.

From the results in Table 1 the following important observations can be made:

- Among the gold catalysts, the Au/U₃O₈ catalyst showed the best performance [both high activity (53% conversion) and selectivity (95%)] in the oxidation of benzyl alcohol to benzaldehyde. The other supported gold catalysts, particularly Au/MgO, Au/Al₂O₃ and Au/ZrO₂ also showed good activity in the benzyl alcohol-to-benzaldehyde oxidation.
- The highest activity (benzyl alcohol conversion of 68.9%) was shown by the Au/Al₂O₃ catalyst. However, this catalyst showed somewhat lower benzaldehyde selectivity (65%).
- The Au/Fe₂O₃ catalyst showed very high selectivity (100%) for benzaldehyde but low activity (16.2% conversion) in the oxidation.
- The order of the catalysts for the benzaldehyde formation (benzaldehyde yield) is Au/U_3O_8 (50.4%) > Au/Al_2O_3 (44.8%) > Au/ZrO_2 (44.1%) > Au/MgO (43.9%) > Au/ZnO (37.6%), Au/BaO or Au/La_2O_3 (35.5%) > Au/MnO_2 (34.5%) > Au/MnO_3 Sm_2O_3 (33.3%) > Au/Eu₂O₃ (32.4%) > Au/CaO (30.4%) > Au/ CoO (26.7%) > Au/NiO (25.0%) > Au/CuO (18.6%) > Au/Fe₂O₃(16.2%).

The results reveal a strong influence of metal oxide support on the catalytic performance (both the benzyl alcohol conversion activity and product selectivity in the oxidation of benzyl alcohol to benzaldehyde) of the supported gold catalysts. However, since the supported gold catalysts do not have the same gold loading, their comparison may not be valid. It is, however, interesting to note that the Au/ZrO₂ catalyst shows

Table 1 Results of the oxidation of benzyl alcohol-to-benzaldehyde by O₂ over different metal oxide supported nano-size gold catalysts in the absence of any solvent

Nano-gold catalyst	Conc. of gold (wt.%)	Gold particle size/nm	Conversion of benzyl alcohol (%)	Selectivity (%)		Benzaldehyde	
				Benzaldehyde	Benzylbenzoate	yield (%)	TOF ^a /mol g(Au) ⁻¹ h ⁻¹
Au/MgO	7.5	8.9 ± 0.7	51.0	86.0	14.0	43.9	0.34
Au/CaO	4.7	9.6 ± 1.2	33.3	91.3	8.6	30.4	0.38
Au/BaO	5.3	7.1^{a}	43.5	81.5	18.5	35.5	0.39
Au/Al ₂ O ₃	6.4	3.6 ± 1.1	68.9	65.0	35.0	44.8	0.41
Au/ZrO ₂	3.0	4.5 ± 1.20	50.7	87.0	13.0	44.1	0.85
Au/La ₂ O ₃	6.5	n.d.	51.6	68.8	31.3	35.5	0.32
Au/Sm ₂ O ₃	4.2	7.9 ± 0.5	44.4	75.0	25.0	33.3	0.46
Au/Eu ₂ O ₃	6.6	n.d.	37.5	87.5	12.5	32.4	0.29
Au/U ₃ O ₈	8.0	9.4 ± 3.2	53.0	95.0	5.0	50.4	0.37
Au/MnO ₂	4.1	6.1 ± 1.7	39.7	88.8	11.1	34.5	0.49
Au/Fe ₂ O ₃	6.1	5.8 ± 0.3	16.2	100	_	16.2	0.15
Au/CoO	7.1	5.7 ± 1.3	28.3	95.2	4.8	26.7	0.22
Au/NiO	6.2	23.1 ± 3.7	32.0	78.0	22.0	25.0	0.23
Au/CuO	6.8	11.7 ± 2.6	27.0	69.0	31.0	18.6	0.16
Au/ZnO	6.6	5.9^{a}	40.5	92.8	7.2	37.6	0.33

^a Rate of the formation of benzaldehyde per unit mass of the deposited gold per unit time.

high activity (much higher than many of the supported Au catalysts) inspite of the fact that its Au loading is the lowest. This may be because of the lower Au particle size of the Au/ZrO₂. A comparison of the data also indicates that there is no direct relationship between the Au loading and the performance (in the benzyl alcohol-to-benzaldehyde oxidation) of the supported Au catalysts.

When the supported Au catalysts were compared for their turn-over-frequency (TOF), measured in terms of the rate of benzaldehyde formation per unit mass of gold deposited on the different metal oxide support, the supported Au catalysts show the following order: Au/ZrO₂ > Au/MnO₂ > Au/Sm₂O₃ $> Au/Al_2O_3 > Au/BaO > Au/CaO > Au/U_3O_8 > Au/MgO >$ $Au/ZnO > Au/ La_2O_3 > Au/Eu_2O_3 > Au/NiO > Au/CoO >$ $Au/CuO > Au/Fe_2O_3$. The interaction between the supported gold and the support is expected to play an important role in deciding both the gold particle size and catalytic performance of the supported gold catalysts.

When the promising supported nano-size gold catalysts, Au/U₃O₈, Au/MgO, Au/Al₂O₃ and Au/ZrO₂, were reused in the benzyl alcohol-to-benzaldehyde oxidation, the variation in the benzaldehyde yield and selectivity was within 3-5%, indicating an excellent reusability of the catalysts. For the Au/U₃O₈ catalyst, the benzaldehyde yield after 1st, 3rd and 5th reuse was 50.1, 50.3 and 49.8%, respectively. The supports (viz. MgO, Al₂O₃, ZrO₂ and U₃O₈) alone showed negligible small activity for the oxidation of benzyl alcohol. Also, when the catalysts from the reaction mixture were removed after the initial reaction period of 30 min, there was no further appreciable increase in the conversion or yield, indicating that the reaction is essentially catalyzed by the heterogeneous supported gold. Use of supported gold catalysts has also been reported earlier for the selective oxidation by molecular oxygen of glycerol to glyceric acid, 12 polyhydroxylated aliphatics to monocarboxylates¹³ and aliphatic/aromatic aldehydes to carboxylic acids.14

It is interesting to note that benzyl benzoate is the only other product formed apart from benzaldehyde and the formation of benzoic acid was not at all detected in GC and/or in GC-MS analysis. The reactions involved in the oxidation process are as follows:

$$C_6H_5CH_2OH + 0.5 O_2 \rightarrow C_6H_5CHO + H_2O$$
 (1)

$$C_6H_5CHO + 0.5 O_2 \rightarrow C_6H_5COOH$$
 (2)

$$C_6H_5COOH + C_6H_5CH_2OH \rightarrow C_6H_5COOCH_2C_6H_5$$
 (3)

The absence of benzoic acid in the GC and GC-MS analysis indicates that, as soon as benzoic acid is formed (reaction (2)), it reacts immediately with benzyl alcohol, which is available in much higher concentration, forming benzyl benzoate (reaction (3)).

The organic solvent-free preparation of chlorine-free benzaldehyde from the selective oxidation of benzyl alcohol by molecular oxygen using the supported nano-size gold catalyst, particularly nano-size gold supported on U₃O₈, MgO, Al₂O₃ or ZrO₂, is a totally clean process. Also, no operational problems are foreseen for use of this green process in the large scale production of benzaldehyde. The process may be carried out at higher oxygen pressure (>1.5 atm) to increase both the conversion and product yield or to reduce the reaction time.

References

- 1 (a) L. Kotai, B. Kazinczy, A. Keszler, H. Sandor, I. Gacs and K. Banerji, Z. Naturforsch., B, 2001, 56, 823; (b) A. Corma, V. Lambies, F. V. Melo and J. Palou, An. Quim., Ser. A, 1980, 76, 304.
- 2 N. S. Bijlani and S. B. Chandalia, Indian Chem. Eng., 1981, 23, 44.
- 3 T. Nishimura, N. Kakiuchi, M. Inoue and S. Uemura, *Chem. Commun.*, 2000, 1245; T. Nishimura, N. Kakiuchi, M. Inoue and S. Uemura, Bull. Chem. Soc. Jpn., 2001, 74, 165.
- 4 L. F. Liotta, A. M. Venezia, G. Deganello, A. Longo, A. Martorana, Z. Schay and L. Guczi, Catal. Today, 2001, 66, 271.
- 5 I. Matsushita, K. Ebitani and K. Kaneda, Chem. Commun., 1999, 265.
- 6 B. M. Choudary, M. Lakshmi Kantum, Ateeq Rahman, Ch. Venkat Reddy and K. Koteshwara Rao, Angew. Chem. Int. Ed. Engl., 2001, 40, 763.
- 7 T. Kawabata, Y. Shinozuka, Y. Ohishi, T. Shishido, K. Takaki and K. Takehira, J. Mol. Catal. A, 2005, 236, 206.
- 8 H. Ji, T. Wang, M. Zhang, Y. She and L. Wang, Appl. Catal. A, 2005, 282, 25.

- 9 V. R. Choudhary, D. K. Dumbre, V. S. Narkhede and S. K. Jana, Catal. Lett., 2003, 86, 229.
- 10 V. R. Choudhary, D. K. Dumbre, B. S. Uphade and V. S. Narkhede,
- J. Mol. Catal. A, 2004, 215, 129.
 11 (a) N. S. Patil, R. Jha, B. S. Uphade, S. K. Bhargava and V. R. Choudhary, Appl. Catal. A, 2004, 275, 87; (b) N. S. Patil, B. S. Uphade, P. Jana, S. K. Bharagava and V. R. Choudhary, J. Catal., 2004, 223, 236; (c) N. S. Patil, B. S. Uphade, P. Jana, R. S. Sonawane, S. K. Bhargava and V. R. Choudhary, Catal. Lett., 2004, 94, 89; (d) N. S. Patil, B. S. Uphade, P. Jana, S. K. Bhargava and V. R. Choudhary,
- Chem. Lett., 2004, 33, 400; (e) N. S. Patil, B. S. Uphade, D. G. McCulloh, S. K. Bhargava and V. R. Choudhary, Catal. Commun., 2004, 5, 681.
- 12 (a) S. Carrettin, P. McMorn, P. Johnston, K. Griffin and G. J. Hutchings, *Chem. Commun.*, 2002, 696; (b) S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard and G. J. Hutchings, Top. Catal., 2004, 27, 131.
- 13 S. Biella, G. L. Castiglioni, C. Fumagalli, L. Prati and M. Rossi, Catal. Today, 2002, 72, 4314.
- 14 A. Corma and M. E. Domine, Chem. Commun., 2005, 4042.