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Abstract: The authors present a new approach to neural based optimisation, to be termed as the
compact analogue neural network (CANN), which requires substantially fewer neurons and
interconnection weights as compared to the Hopfield net. They demonstrate that the graph colouring
problem can be solved by using the CANN, with only O(N) neurons and O(N2) interconnections,
where N is the number of nodes. In contrast, a Hopfield net would require N2 neurons and 0{N*)
interconnection weights. A novel scheme for realising the CANN in hardware form is discussed, in
which each neuron consists of a modified phase locked loop (PLL), whose output frequency
represents the colour of the relevant node in a graph. Interactions between coupled neurons cause the
PLLs to equilibrate to frequencies corresponding to a valid colouring. Computer simulations and
experimental results using hardware bear out the efficacy of the approach.

1 Introduction

Optimisation problems arise in nearly every aspect of our
lives, and most real world tasks involve the minimisation or
maximisation of an objective, subject to certain constraints.
Combinatorial optimisation applications form a special
class, and include some of the most challenging and well-
studied problems. Many members of this class are NP-
complete, which makes their exact solution infeasible. The
search for efficient heuristics to obtain good solutions in a
reasonable amount of time has therefore engaged the atten-
tion of researchers for many years.

In their papers in the 1980s, Hopfield and Tank [1, 2]
showed that a coupled system of neurons, now well known
as the 'Hopfield net', converges to a local minimum of an
associated energy function. Their approach involves con-
structing an artificial network with a specific energy func-
tion, so that a desired objective can be minimised. The
approach has since been applied to literally thousands of
problems in a variety of fields [2-10].

A significant hindrance to the effective application of
neural based optimisation has been the hardware complex-
ity, which also affects the cost of simulation. To solve an
Af-node graph colouring problem, for example, one
requires a Hopfield net with N x N neurons and O(A/4)
connections.

In this paper, we propose a new approach, to be termed
as the compact analogue neural network (CANN), and
illustrate its application to optimisation tasks with graph
colouring, a classical NP-complete problem. However, the
proposed approach can be adopted to solve other combi-
natorial optimisation applications as well.
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Graph colouring is formulated in a novel manner as an
optimisation problem in only N variables. An energy func-
tion whose minima correspond to valid colourings of a
given graph is derived. We also describe how the approach
can be extended to other combinatorial optimisation tasks.
A scheme for the hardware realisation of the CANN is
then discussed. The design requires only N neurons and
O(N2) interconnections to solve the most complex graph
colouring problem with N nodes. Note that N colours
would be needed to colour a clique of size N. Each neuron
is constructed by using a modified phase locked loop
(PLL), whose frequency represents the neuron's output
state, and equivalently, the colour of the corresponding
node. With appropriate interconnections, the network of
PLLs converges to a set of frequencies which meet the
adjacency constraints imposed by the graph. Experimental
results using breadboard versions of the hardware corrobo-
rate the validity of the CANN design. A simulation model
used for larger examples is then discussed. Computer simu-
lations based on a MATLAB model also bear out the effi-
cacy of the approach.

2 New approach to combinatorial optimisation

Preliminary ideas of this Section were presented in [11].
A combinatorial optimisation problem can typically be

described in terms of a set of N variables Vt, i = 1, 2, ..., N,
where N is the problem size. Each of the N variables needs
to be assigned one label from a set of K available ones {Lb

L2,..., Lk}. For example, the travelling salesperson problem
(TSP) involves determining the position at which each of N
cities is visited on a cycle; the assignment task requires find-
ing which of K tasks is assigned to each of N processors.

The cost function and constraints differ from one appli-
cation to another. However, without loss of generality, one
can assign an integer from 1 to K to the available labels.
Therefore, the problem reduces to finding the optimal val-
ues of Vb where Vt can assume integer values from 1
through K. This requirement can be met by imposing the
constraints:

sin(irVi) — 0 i = 1 , 2 , . . . , IV (1)
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l<Vi<K (2)

A combinatorial optimisation task can now be formulated
in terms of a set of real valued variables Vh with the incor-
poration of eqns. 1 and 2. This relaxation permits one to
formulate a continuous function whose minima lie only at
a discrete set of points. This function is also the 'energy'
function of the corresponding CANN.

In contrast, Hopfield net based approaches use NK vari-
ables Vp each of which is either 0 or 1. For example, in the
TSP, Vtj = 1 if city i is visited at position/ The number of
labels K is usually equal to N. Therefore, the number of
variables, or the number of neurons, is Nz. Furthermore,
since the energy function of the Hopfield network depends
on all variables, all neurons are typically coupled to each
other. The number of interconnections is thus 0{NA). In
contrast, the number of weights in a CANN would be
O(N2). It is important to point out that, in many applica-
tions, the number of available labels is O(N2) or larger; in
such cases, the CANN would lead to greater savings in the
numbers of neurons and weights.

The state space of a Hopfield net can be visualised as a
hypercube of dimension NK, with valid states lying only at
a subset of the vertices. The CANN state space can be
thought of as a projection of the hypercube onto a lower
dimensional space; such a projection yields a lattice of
lower dimension. Note that constraints (eqns. 1 and 2)
restrict all solutions or minima to lie on an ordered integer
lattice.

2.7 Graph colouring: the Hopfield net approach
In this Section, we briefly discuss how the Hopfield net is
applied to graph colouring. In Section 2.2, we discuss the
CANN approach to facilitate a comparison.

Given a set of N nodes and their adjacencies, each node
is required to be assigned a colour so that no two adjacent
nodes are similarly coloured. Fig. la shows a graph with its
associated adjacency matrix. Fig. \b illustrates the corre-
sponding solution. The Hopfield net based approach
requires an array of N x N neurons. N colours are needed
if the nodes form a clique; for a map, the corresponding
graph is planar, and can be coloured with at most four col-
ours [12].
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Fig. 1 Graph colouring for four-nock graph
a Graph with four nodes and its adjacency matrix
b Valid colouring of the graph of a. The colours are indicated by the numbers in the
small squares adjacent to each node

Let My and Vy denote the state and output of the neuron
in row / and column j, respectively, where:

_ (1
%3 > - 0

if node i is assigned colour j
otherwise

Also, ,

'Vij = f{ul3) (4)

where / is a squashing function (e.g. the sigmoid or the
step), which has values between 0 and 1. Let:

if node i is adjacent to node j
otherwise

Then, the graph colouring problem may be formulated as
the following task:

N N

minimise Y^ Y^ V? (6)

(5)

subject to the constraints
N

'dijJ2vikVjk=0

(7)

j = 1,2,...,N (8)

Constraint (eqn. 7) requires each node to be assigned only
one colour, while eqn. 8 constrains adjacent nodes to have
different colours. Following the work in [13, 14], and by
using the theory of sequential unconstrained minimisation
techniques (SUMTs) [15, 16], the energy function for graph
colouring may be shown to be of the form:

(9)
< = 1 3 = 1

where a = 2. (Using the theory of SUMTs, it has been
shown in [13, 14] that convergence to feasible solutions is
not ensured unless a sequence of functions Ep, p = 1, 2, ...,
is minimised, in which the weights A and B are increased
with p. This leads to networks in which the weights adapt
with time. However, most neural optimisation approaches
minimise a time-invariant function.) Many researchers have
proposed energy functions similar to eqn. 9 in the literature
(e.g. Dahl [17], Moopenn et al. [18] and Thakoor et al. [19].
Takefuji and Lee [20] used the first two terms of eqn. 9
with a = 1). Note that all of these require O(N2) neurons
and O{NA) interconnections for the most general problem.

2.2 Graph colouring with a CANN
Following the discussion at the beginning of this Section,
consider an array of N neurons, whose outputs are real
numbers Vh i = 1, 2, ..., N, where Vt denotes the colour of
node i. For a valid colouring, Vt must be an integer in the
range 1 to N. The constraints for the graph colouring task
may be written as:

Vi^Vj i f ^ = l (10)

/„-.

..,N (11)

(12)

A feasible solution to eqns. 10-12 may be found by mini-
mising

V,•< Nsi . y i —
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N N

Ep =
N

+ E
sen set of values of Bpb Cpi, Dpi, and Fpi. Note that there are
several local minima, but only one global minimum. Fig. 4
shows a two-dimensional projection of the surface. Note
that the local minima lie on a regular lattice. For illustra-
tion, V\ and V2 have been permitted to lie between 1 and
10.

(13)

where 5^,, Cpi, and D ,̂ are scalars. Note that the first term
of eqn. 13 maximises the difference between the colours of
adjacent nodes.

By expressing the constraints, particularly eqn. 10, in dif-
ferent ways, several alternatives to eqn. 13 can be formu-
lated. One can employ different objective functions for
minimising the number of colours, such as:

(14)

which would tend to minimise the values of colour labels
assigned.

At this point, we note that, in graph colouring, as in any
other combinatorial optimisation problem, all we really
need is to have a consistent labelling; the actual values of
the labels are not important, because one can sort the labels
and assign any set of integers to them. In graph colouring,
we require that the number of distinct labels be minimised,
and we therefore choose the objective function:

J
which is a minimum if all nonadjacent nodes have the same
colour.

From eqns. 10-15 and following [13, 14], we note that
the graph colouring problem can be solved by minimising
an energy function of the form:

TV N N

TV

j
(16)

Energy functions such as eqn. 16 represent the 'energy
function' of a corresponding neural network. We discuss
the corresponding network in Section 3.

Fig. 2 Graph with two nocks adjacent to each other

Consider the example of Fig. 2, which shows a graph
with two nodes connected to each other. Two colours are
needed to colour this graph. Let Vx and V2 denote the col-
ours of the two nodes. Fig. 3 shows the energy function
(eqn. 16) for the corresponding neural network, for a cho-

10

Fig. 3 Energy surface (eqn. 16)

Fig. 4 Projection of energy surface on the VI—V2 plane for the example of
Fig. 2
B p i = 10 , Cpi = D p l = ^ , . = 1 , 1 = 1 , 2 , ..., N

The minima of eqn. 16 correspond to solutions of the
graph colouring problem. These can be determined by
using any nonlinear optimisation technique. Applicable
techniques include gradient descent, simulated annealing
[21] and chaotic annealing [22], among others. Regardless
of the procedure employed, our formulation leads to sub-
stantial savings in computing time since the number of var-
iables is reduced by O(N) in comparison with Hopfield net
based approaches, such as eqn. 9.

3 New architecture for combinatorial optimisation:
the compact analogue neural network

Our focus in this paper is not on the minimisation of the
energy functions derived in Section 2.1. Instead, it is dem-
onstrated that the CANN can be realised in an elegant way
in hardware. Since the realisation will slightly differ from
one application to another, we focus on graph colouring
even though the architecture can be adopted to solve other
tasks.

As pointed out in Section 2, the actual label values in a
combinatorial optimisation application are inconsequential.
We relax the requirement for V{ to be an integer, and let it
assume any value within a given range. Fig. 5 shows the
schematic of a neuron in a CANN. It consists of a modi-
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fied phase locked loop (PLL), comprising a loop filter, a
voltage controlled oscillator (VCO), and several phase
detectors (PDs). The frequency of the ith VCO, fh repre-
sents the output of the rth neuron (i.e. Vt; where fmin < ft <

Jmax)'

Fig. 5 Model Oj(a neuron in a CANN
V], K2, ..., Vy denote inputs to neuron i from other neurons;
sponding weights. Vj is the output of neuron /

i ... tv^ are the corre-

In general, the jth PD receives two inputs: the signal ft

from neuron / itself, and signal fj from neuron/ The phase
error is weighted by a weight wy, and the weighted errors
from all the PDs are summed to form the net input to the
loop filter. An external input /, can also be input to the
adder. The loop filter is usually chosen to be a first-order
low pass filter, whose output is generally rectified so that
the VCO does not receive negative inputs. However, this is
not necessary if the VCO free running frequency is kept
sufficiently high. The weights associated with the PDs
depend on the specific application being considered. They
may also be functions of the neuron outputs for certain
combinatorial optimisation problems.

wf(i)

Fig. 6 Circuit for neuron in a CANN
a Circuit for the ith neuron in a CANN for the graph colouring problem. Node / is
adjacent to k other nodes
h Detail of weighting function circuit

The CANN for graph colouring consists of N PLLs; if
nodes / and j are adjacent, each of the corresponding PLLs
has a phase detector with^ and/J as inputs; the associated
weights are negative. External inputs /, are absent. If two
nodes are not adjacent, the corresponding phase detectors
are absent; we return to this aspect in the sequel. Fig. 6

shows a schematic illustrating the circuit for the rth node.
The weighting function assigns a weight equal to (-1/&) to
each connection. In a normal PLL, feedback is designed to
make the PLL frequency lock to the input. In the CANN
for graph colouring, the sign of the feedback is reversed, so
that the frequencies diverge, or the difference is maximised.
Observe the analogy with the first term of eqn. 13. If the N
nodes form a clique, the frequencies should ideally be given
ty fmin + Wnax -fmin)HN\, '" = 1, 2, ..., N.

The circuit is very simple to construct and experiment
with. The major advantage is that the hardware complexity
is substantially reduced, since only N neurons with O(N2)
interconnections are required, making it possible to realise
larger systems in a given chip area or with a limited hard-
ware resource.

Figs. 7 and 8 depict the results obtained in the laboratory
for some simple three- and four-node examples. The VCO
of each PLL was configured to operate between lOHz (fmjn)
and 1 kHz (fmax). In each case, the circuit was switched on
from rest and allowed to settle into an equilibrium state.
Optimal solutions were obtained for all three node exam-
ples; however, the CANN implementations converged to
the optimal solution for only a few four-node examples.
This issue is discussed in Section 4.

Problem Solution

country 1 = 1000 Hz country 2= 1000 Hz
country 3= 1000 Hz

country 1 = 1000 Hz country 2= 10 Hz
country 3= 1000 Hz

country 1 = 1000 Hz country 2= 10 Hz
country 3= 495 Hz

country 1= 1000 Hz country 2= 10 Hz
country 3= 1000 Hz

Fig. 7 Solutions obtained for three-node problems by using a CANN
The circuits were made on a breadboard with discrete components and commer-
cially available PLL ICs

Problem

1

3

2

4

1 2 3 4

Solution

country 1 = 1000 Hz country 2 = 1000 Hz
country 3 = 1000 Hz country 4 = 1000 Hz

country 1 = 1000 Hz country 2 = 10 Hz
country 3 = 1000 Hz country 4 = 1000 Hz

country 1 = 1000 Hz country 2 = 600 Hz
country 3 = 400 Hz country 4 = 10 Hz

country 1 = 1000 Hz country 2 = 10 Hz
country 3 = 1000 Hz country 4 = 10 Hz

country 1 = 10 Hz country 2 = 600 Hz
country 3 = 300 Hz country 4 = 1000 Hz

F i q . 8 Solutions obtained for a four-node (country) graph (map) colouring
problem by using a CANN
The circuits were realised on a breadboard

4 Modelling the hardware

While a linear PLL model is typically used in the literature
for analysis, the VCO characteristic is a squashing function
(i.e. it saturates for very low and very high inputs). This
naturally limits the practical values of Vb making con-
straints such as eqn. 12 unnecessary. Fig. 9 shows the
experimentally obtained characteristic for the VCO on a
PLL chip. The curve was approximated by the function:
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fix) = 25 + 1350
exp[1.3- (3.4 -x)]

360
(17)

1 + exp[0.7 • (3.55 - x)]

where f[x) is the output frequency of the VCO for an input
x. The tristate phase detector in the PLL is modelled as a
finite state machine. Simulations were conducted in MAT-
LAB and by programming in the 'C language. For 'C
code, the differential equations were simulated by using a
forward Euler approximation with a time step of 10 micro-
seconds.

1000

Fig. 9 Experimental and modelled characteristics of the VCO on the PLL
chip used in the experiments

simulated
measured

1000 Hz 10 Hz H I 495 Hz

^ 1000 Hz H 330 Hz

E 660 Hz §§ 150 Hz

10 Hz IfflU 495 Hz

10 Hz

290 Hz

660 Hz

750 Hz

1000 Hz

1000 Hz j | 330 Hz

660 Hz [jjjj] 110 Hz

I 10Hz U 495 Hz

Fig. 10 Simulation results using a CANN for some ten-node graph colouring
problems

increased noise level

•1
sub-optimal solution optimal solution

Fig. 11 Increased noise levels help push the system out of local minima

Fig. 10 shows solutions for some ten node examples. In
the simulations, a small amount of uniformly distributed
noise with amplitudes in the microvolt range was added.
Noise is inherent in the actual hardware and plays an
important role in convergence. In the simulated examples,

suboptimal solutions were found in some cases. When the
noise level is increased to a larger value, we observe that
the system escapes from local minima and converges to the
global optimum. Fig. 11 illustrates a simple example for
which this occurred.

The reason for suboptimal solutions being found is that,
while the objective function eqn. 13 maximises the colour
difference between adjacent nodes (pairs for which dy = 1),
or equivalently, the difference in frequencies between cou-
pled neurons, there is no term which ensures that nodes
which are not adjacent try to use the same colour. As dis-
cussed in Section 2 this may be achieved by replacing
eqn. 13 with eqn. 16.

The modified energy function (eqn. 16) also implies that
a positive coupling is introduced between PLLs corre-
sponding to non-adjacent nodes (for whom dy = 0). Fig. 12
shows a set of examples where a small positive coupling
was introduced. Note that the solutions obtained are opti-
mal. It is known that PLLs which are mutually coupled
with positive weights show chaotic behaviour around lock
[23]. However, this aspect requires further investigation in
the context of the CANN and its discussion has therefore
been deferred.

1000 Hz 10 Hz

I 1000 Hz ^ 330 Hz I 660 Hz 013 10 Hz

Fig. 12 Simulation results with a CANN for some ten-node graph colouring
problems
A small positive coupling has been introduced between PLL corresponding to non-
adjacent nodes

Table 1: Convergence times for some four- and ten-node
examples

Number
of nodes

4

10

Example

1

2

3

4

5

1

2

3

4

Convergence time

RC=10"5

13.56ms

14.6ms

13.55ms

6.26 ms

14.5ms

13.2 ms

3.19ms

12.9ms

12.9ms

RC=10"3

25.81 ms

33.85ms

28.87 ms

17ms

38.1ms

25.6ms

17.8ms

23.1ms

30.8 ms

Table 1 shows the convergence time for a set of four-
and ten-node colouring problems. The table shows how
convergence time varies with the time constant of the RC
circuit (the low pass filter). Observe that the convergence
time is almost independent of the problem size, but
depends primarily on the complexity of a specific instance.
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A change of two orders of magnitude in the RC time con-
stant roughly doubles the convergence time (i.e. conver-
gence time varies logarithmically with the RC time
constant).

5 Conclusions

A novel approach for solving combinatorial optimisation
tasks, termed as the compact analogue neural network or
CANN, has been proposed in this paper and its application
demonstrated for the graph colouring problem. An energy
function has been derived for the application. A CANN
with only N neurons and O(N2) interconnections is
required for solving the most complex graph colouring
problem with N nodes, while other reported approaches
require N2 neurons and O(A^) interconnections. A scheme
for realising the CANN in hardware form has been dis-
cussed, which uses an array of modified PLLs whose fre-
quencies represent the node colours. The CANN is highly
amenable to VLSI implementation. A detailed analysis of
the CANN, its convergence properties and related aspects
will be presented elsewhere. It is worth mentioning that
encoding in terms of duty cycle or phase can also be used
with the same architecture.
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