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Abstract

We study thermal transport in a chain of coupled atoms, which can vibrate in longitudinal as

well as transverse directions. The particles interact through anharmonic potentials upto cubic

order. The problem is treated quantum mechanically. We first calculate the phonon frequencies

self-consistently taking into account the anharmonic interactions. We show that for all the modes,

frequencies must have linear dispersion with wave-vector q for small q irrespective of their bare

dispersions. We then calculate the phonon relaxation rates Γi(q), where i is the polarization index

of the mode, in a self-consistent approximation based on second order perturbation diagrams. We

find that the relaxation rate for the longitudinal phonon, Γx(q) ∝ q3/2, while that for the transverse

phonon Γy(q) ∝ q2. The consequence of these results on the thermal conductivity κ(N) of a chain

of N particles is that κ(N) ∝ N1/2.
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I. INTRODUCTION

In low dimensional systems, the description of transport in terms of linear phenomeno-

logical laws, that works well in three dimensions, may not be possible. One example is

the Fourier law which relates the thermal current density j to the thermal gradient ∇T by

j = −κ∇T , where the κ is the thermal conductivity of the material. Theoretical investi-

gations of a number of translation invariant one-dimensional systems show that the Fourier

law is not followed in these systems [1]. The ratio of the current density to the thermal

gradient is no longer independent of the system size. Nevertheless this ratio, again called

‘thermal conductivity’, is still useful in characterizing anomalous transport.

The calculation of ‘thermal conductivity’ in these systems can be problematic. Ideally

one would like to calculate the non-equilibrium stationary state (NSS) measure of the system

and calculate the expectation values of j and ∇T using the NSS measure. This requires

the existence of local thermal equilibrium (LTE) so that a local temperature T is properly

defined. A method generally used when considering a one dimensional system with its

ends at two different temperatures T1 and T2, is to calculate directly the current j and the

quantity κ(L) = jL/(T2−T1), L being the length of the system. Another approach is to use

the Kubo-Green formula which involves the time integral of the equilibrium current-current

correlation function. The first formula does not require the existence of LTE whereas the

second does and it is not clear how the results from the two methods can be compared.

In 1-D systems with translation invariance, the ‘conductivity’, κ, shows a power-law

dependence on the size of the system; κ ∼ Lα [2]. A question that has been investigated

extensively is whether α is universal across a class of systems. The other related questions

are about the number of such universality classes and the values of α characterizing them.

Such an investigation has to take into account the difficulties posed by the considerations

in the previous paragraph. Hydrodynamic mode-coupling theory predicts two universality

classes corresponding to α = 1/2 and α = 1/3 for one-dimensional momentum conserving

systems [3, 4]. Specific models of one-dimensional lattice systems with pair-wise nonlinear

interactions between neighboring particles have been studied extensively using numerical

and analytical methods [2]. The analytical studies involve approximations at some stage,

whereas numerical studies are handicapped by the system size and the time scales that can

be achieved in computers which makes it difficult to give a definitive answer to the question
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of the universality of α. Results of these studies agree with the hydrodynamic results that

the generic value of α is 1/3; when the leading order nonlinearity is cubic α = 1/3 [5].

However, for the so-called Fermi-Pasta-Ulam chain, where the nonlinearity is quartic, there

is still no consensus; numerical simulations show different values of α [6, 7] and analytic

calculations, both classical and quantum, show α = 2/5 [8–10].

Apart from the obvious theoretical interest in these problems there has also been a lot

of experimental interest in studying heat transport at micro and nano scales [11]. Recent

experimental studies on nanowires such as Carbon nanotubes and Boron-nitride nanotubes

show a clear breakdown of the Fourier law [12–15]. In order to attempt an understanding of

realistic systems, it is essential to include all the modes of vibrations. Theoretical results,

both numerical and analytical, mentioned above have been obtained for only the longitudinal

vibrations of the chain. It is natural to investigate how the exponent α is affected by the

transverse vibrations.

Chains with both longitudinal and transverse vibrations have only been studied in the

work of Wang and Li [16]. The Wang-Li model contains two kinds of intractions; a pair-

wise interaction between the neighboring particles and another interaction that depends on

the bending of the chain. The harmonic approximation of the model yields modes whose

frequencies Ωα(q) depend on the wave-vector q in the following manner. For small q, the

longitudinal modes have Ωx(q) ∝ q whereas the transverse modes Ωy(q) ∝ q2. Wang and Li

used the mode-coupling analysis (MCA) and molecular dynamics (MD) simulations to study

this system. Their first important observation from MD simulations is that the phonon

dispersions are strongly renormalized from their bare values, particularly the transverse

phonon dispersion gets renormalized to become linear in q. For this reason they use an

effective Hamiltonian method in which the form of the Hamiltonian and its parameters

are taken from the MD simulations. For the conductivity exponent they obtain a generic

value α = 1/3, but they also observe a value of α = 2/5 in their MD simulations which is

attributed to crossover effects. When the parameter measuring the strength of transverse

vibrations is sufficiently large, they also find that α = 1/2.

In this paper, we study the quantum mechanical version of this model along the lines

of [5, 10]. In this procedure, one essentially calculates the second order self-energy of the

phonons self-consistently, which enables us to obtain the wave-vector dependent relaxation

rate Γ(q). The thermal conductivity of the chain is then obtained through the use of Kubo

3



formula. The finite size of the chain is taken into account by putting on the time integral in

the Kubo formula an upper cutoff proportional to the size of the chain [2]. This prescription

yields α = 1−1/δ, where δ governs the small-q behavior of the relaxation rate, Γ(q) ∝ qδ. For

the Wang-Li model, we find that in the second-order perturbation calculation, the relaxation

rate Γy(q) for the transverse phonon diverges as q → 0, whereas the relaxation rate Γx(q) for

the longitudinal phonons becomes constant. This makes the bare phonons invalid normal

modes. These divergences basically arise due to the q2-dispersion of the transverse modes.

This necessitates a self-consistent study of the phonon dispersion for this system [17–20].

Such studies have been done on several systems, including one-dimensional systems as test

cases for the procedure [21–23]. Here we follow the method of Götze and Michel [18] which

provides a nice connection between the Mori-Zwanzig mode coupling technique and the

perturbation theory. We show that this procedure indeed renormalizes self-consistently the

transverse phonon dispersion to be linear, in qualitative agreement with the numerical results

of MD simulations [16]. We further note that the result on the renormalized frequencies is

independent of the bare frequencies, but does depend on the fact that the cubic interaction

vanishes linearly with q. Since the vanishing of the interaction with any of its wave-vector

arguments is a consequence of the translation invariance, this result should be generic to

translation invariant one-dimensional systems.

We then perform a self-consistent analysis for the relaxation rates of the renormalized

modes using the second order perturbation diagrams. This procedure leads to integral

equations from which small-q dependence of the relaxation rates Γα(q) can be extracted. The

main results of this analysis are: Γx(q) ∝ q3/2 and Γy(q) ∝ q2. Gratifyingly, this behavior

matches the results derived by Wang and Li for the classical system using the mode-coupling

analysis, which arrives at the results through a seemingly different mechanism. Finally we

use these results for understanding the behavior of conductivity with the system length L.

This paper is organized in the following manner. In Sec. II, we present the model

and a calculation of the relaxation rates of the bare phonons. As mentioned above, this

calculation shows that the modes are not well defined. Accordingly in Sec. III, we present a

self-consistent calculation for the frequencies of the modes, which shows that both the modes

should disperse linearly at small wave-vectors. In Sec. IV, we calculate the relaxation rates of

the renormalized phonons using second order perturbation theory. In section V, we formulate

equations for the relaxation rates using the self-consistent second order perturbation theory
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and obtain their behavior at small wave-vectors. In Sec. VI, we turn to the calculation of

thermal conductivity using the finite size procedure mentioned above. We close the paper

with a summary and discussion of our results in Sec. VII.

II. WANG AND LI’S MODEL

This model consists of a chain of equal mass point particles with two kinds of interac-

tions. First is a pairwise interaction between nearest-neighbor particles which depends only

on the absolute value of the distance between the particles and the second is a three particle

interaction between neighbors that takes into account the bending of the chain. There are

two transverse directions, but due to the axial symmetry of the chain the two directions

are entirely equivalent. Accordingly for understanding the qualitative role of the transverse

vibrations on the relaxation of modes and transport, it suffices to consider just one trans-

verse mode. In terms of the position r ≡ (x, y) and momentum p = (px, py) vectors, the

Hamiltonian is written as

H =
∑

l

[p2(l)

2
+

1

2
Kr (|r(l + 1)− r(l)| − a)2 +Kθ cos(θ(l))

]

, (1)

where a is the lattice constant, cos(θ(l)) = −n(l− 1) · n(l) and n(l) is the unit vector along

r(l + 1) − r(l). The mass of the particles has been set to unity. This is a complicated

many body problem. One assumes that a few lower-order terms in the Taylor expansion

of the nonlinear potential is enough to give the generic physical picture. Also the low-

temperature transport properties of the system are expected to be described by the low-

energy modes of the system. So we set up the problem in terms of phonon modes. Denoting

the deviation from equilibrium position of the particles by φ we have r(l) = (la+φx(l), φy(l))

and p(l) = (πx(l), πy(l)). Fourier transform along the length of the chain is defined by

f(k) =
1√
N

N
∑

l=1

e−i2πklf(l), (2)

where N is the number of particles in the chain. The Hamiltonian, considering nonlinearities

up to cubic terms only, can be written as [16]

H =
1

2

∑

ki

π†
i (k)πi(k) +

1

2!

∑

ki

V2(k1i1, k2i2)φ
†
i1
(k1)φ

†
i2
(k2)

+
1

3!
√
N

∑

ki

V3(k1i1, k2i2, k3i3)φ
†
i1
(k1)φ

†
i2
(k2)φ

†
i3
(k3), (3)
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where the summation indices in bold letters indicate that the summation is over all the

polarization indices i1, i2, .. which takes values from {x, y} and over all the wave-vectors

k1, k2, .., a notation we will follow hereafter. V ’s are symmetric under exchange of pairs

kmim ↔ knin. Translation invariance imposes two conditions on V ; they vanish when any

of the wave-vectors is set to zero and Vn(k1i1, .., knin) ∝ ∆(k1 + .. + kn), where ∆(k) is

unity when k is a reciprocal lattice vector and zero otherwise. Explicit forms for the V ’s are

obtained by expanding the potential term in Eq. (1) in Taylor series and taking the Fourier

transforms. The harmonic terms are given by [16]

V2(k1i1, k2i2) = δk1+k2δi1,i2Ω
2
i1
(k1),

Ωx(k) = 2Ωx| sin(ka/2)|, Ωy(k) = 4Ωy sin
2(ka/2),

Ω2
x = Kr, Ω2

y = Kθ/a
2. (4)

Note that the frequency of the longitudinal mode vanishes linearly with the wave-vector

whereas for the transverse mode it vanishes quadratically. Henceforth we choose units in

which a = 1. The reflection symmetry in the transverse direction permits only two kinds

of cubic terms to be nonzero, these being V3(k1x, k2y, k3y) and V3(k1x, k2x, k3x). Both

these interactions are proportional to sin(k1/2) sin(k2/2) sin(k3/3). These forms are generic

when the potentials are taken to be functions of absolute values of relative displacements

(|ri+1 − ri|)[16].
For the Fermi-Pasta-Ulam chain [10] in which only the longitudinal vibrations are con-

sidered, the perturbation analysis is done around the bare phonon modes as they are well

defined. But in this model we shall see that the bare phonon modes are not well defined, as

the relaxation rates of the two kinds of phonons are not zero even for zero wave-vector mode.

This requires that one works with the renormalized phonons as discussed below. We begin

by calculating the relaxation rates of the bare phonons. For this purpose we first define the

bare phonon operators

ai(k) =

√

Ωi(k)

2

(

φi(k) + i
πi(k)

Ωi(k)

)

, (5)

in terms of which the quadratic part of the Hamiltonian becomes diagonal. The Hamiltonian

can be written as

H =
∑

ki

Ωi(k)a
†
i(k)ai(k) +

1

3!
√
N

∑

ki

Ṽ3(k1i1, k2i2, k3i3)Ui1(k1)Ui2(k2)Ui3(k3), (6)
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FIG. 1: Diagrams for the second order contribution to the self-energy Σ
(2)
j (q). The bare phonon

Green’s functions D
(0)
x (k) for the longitudinal phonons and D

(0)
y (k) for the transverse phonons are

represented respectively by the solid lines and the dashed lines. The diagrams (a) and (b) are two

contributions for the longitudinal phonons, while the diagram (c) gives the sole contribution for

the transverse phonons.

where we have defined Ui(k) = ai(k) + a†i (−k) and Ṽ3(k1i1, k2i2, k3i3) =

V3(k1i1, k2i2, k3i3)/
√

Ωi1(k1)Ωi2(k2)Ωi3(k3).

For a system with two phonon polarizations, in general one defines the sin-

gle particle Green’s functions as the time-ordered expectation values Gi,j(q, τ) =

−
〈

Tτ

[

ai(q, τ)a
†
j(q, 0)

]〉

, where the time dependence of operators is given by O(τ) =

eτHOe−τH , τ being the imaginary time. The angular brackets correspond to thermal aver-

ages defined by 〈O〉 = Tr[e−βHO]/Tr[e−βH]. The G’s are thus 2x2 matrices in polarization

indices, but in the present case, the reflection symmetry in the transverse direction al-

lows only the diagonal components to be nonzero. In the following we just write them

as Gi(q, τ). The perturbation series for Gj can be summed into the form G−1
j (q, iωn) =

iωn −Ωj(q)−Σj(q, iωn), where ωn’s denote the usual Matsubara frequencies and Σj(q, iωn)

is the self-energy. The relaxation rate is defined as Γj(q, ω) = −ℑΣj(q, iωn → ω + i0+),

and the on-shell relaxation rate is denoted by Γj(q) ≡ Γj(q,Ωj(q)). We first evaluate the

relaxation rate up to second-order in the perturbation series. The second-order diagrams for

Σx that contribute to the relaxation rate are given in Figs. 1 (a) and (b). Their contribution

is

Σ(2)
x (q, τ) = − 1

2N

∑

k1,k2,i

|Ṽ3(−qx, k1i, k2i)|2D(0)
i (k1, τ)D

(0)
i (k2, τ), (7)
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where D
(0)
i (q, τ) is the following unperturbed Green’s function.

D
(0)
i (q, τ) = G

(0)
i (q, τ) +G

(0)
i (−q,−τ) = −

∑

s∈{+,−}

e−sΩi(q)τns(Ωi(q)), (8)

where n−(Ω) = n(Ω) is the Bose factor and n+(Ω) = 1 + n(Ω). The relaxation rate is given

by

Γ(2)
x (q) =

π

2N
(1− e−βΩx(q))

∑

k1,k2,s1,s2,i

|Ṽ3(−qx, k1i, k2i)|2ns1(Ωi(k1))ns2(Ωi(k2))

×δ(Ωx(q)− s1Ωi(k1)− s2Ωi(k2)). (9)

The sum is simplified by two conditions: the ∆-function contained in the potential V3 and

the δ-function. Therefore, we can write

Γ(2)
x (q) =

1

4
(1− e−βΩx(q))

∫

dk
∑

s1s2 i

|Ṽ3(−q x, k i, q − k i)|2ns1(Ωi(k))ns2(Ωi(q − k))

×δ(Ωx(q)− s1Ωi(k)− s2Ωi(q − k))

=
1

4
(1− e−βΩx(q))

∑

s1,s2,i,k∗

|Ṽ3(−qx, k∗ i, q − k∗ i)|2
|Ji(q, k∗, s1, s2)|

ns1(Ωi(k
∗))ns2(Ωi(q − k∗)),(10)

where k∗ ≡ k∗(q, s1, s2, i) is the solution of fi(q, k, s1, s2) := Ωx(q)−s1Ωi(k)−s2Ωi(q−k) = 0

and the Jacobian Ji(q, k
∗, s1, s2) = (∂/∂k)fi(q, k, s1, s2)|k=k∗. If the sum on the RHS of

Eq. (10) is finite we expect Γ
(2)
x (q → 0) ∝ Ω2

x(q), as |Ṽ3(−q x, k i, q− k i)|2 ∝ Ωx(q). We first

note that the term corresponding to i = x (Fig. 1(a)) which involves only the longitudinal

modes gives zero contribution as the condition f = 0 can have only trivial solutions at which

the self-energy itself becomes zero [5].

The second term corresponding to i = y (Fig. 1(b)) needs to be examined for singular

behavior. The source for singularities are the Jacobian J and the number factors which for

low frequencies have the form n(Ω → 0) ∼ (βΩ)−1. For this term we have transverse mode

frequencies which vanish quadratically with the wave-vector and hence are more singular.

Considering s1 = + = s2 term, the small-q solution is obtained to be k∗(q) ∼
√

|q| and the

Jacobian J(q, k∗) ∼
√

|q|. This yields a contribution to Γx(q) which diverges for small q at

finite temperatures and we have the leading behavior Γx(q → 0) ∼ |q|−1/2.

The second-order diagram for Σy is given in Fig. 1(c). The yields the relaxation rate as

Γy(q) =
1

2

(

1− e−βΩy(q)
)

∫

dk
∑

s1s2

|Ṽ (−qy, kx, q − k y)|2ns1(Ωx(k))ns2(Ωy(q − k))

×δ(Ωy(q)− s1Ωx(k)− s2Ωy(q − k)). (11)

8



Proceeding as in the analysis of Eq. (10), we see that the term corresponding to s1 = +, s2 =

− is finite for q → 0.

III. RENORMALIZATION OF PHONONS

The above analysis shows that the bare phonon modes are not stable under scattering

and thus are not good zeroth order approximations in the perturbation theory. Therefore

we follow the mode-coupling method as formulated by Götze and Michel [18] to study how

the bare phonon dispersions get affected by the nonlinearities. For completeness we first

present a brief outline of the mode-coupling method [18]. The procedure requires evaluation

of scalar products defined in the space of the dynamical operators (denoted by O1, O2, ..) as

follows.

(O1, O2) = − ≪ O†
1;O2 ≫z=0,

≪ O1;O2 ≫z = ±
∫

dtΘ(±t)eizt 〈[O1(t), O2(0)]〉 , ℑz ≷ 0, (12)

where O(t) = eiHtO ≡ eiHtOe−iHt. For us the key quantity is the static suscepti-

bility D−1
ij (q) = (φi(q), φj(q)). It is easily seen that in the harmonic approximation

Dij(q) = Ω2
i (q)δij. The renormalized frequencies are the eigenvalues of the matrix D(q)

for the nonlinear problem. It follows from the definition and the space reflection symme-

try of the Hamiltonian that D(q) is a real symmetric matrix which is an even function of

q. Therefore, D is diagonalizable with a complete and orthonormal set of eigenvectors eα

obeying
∑

j

Dij(q)e
α
j (q) = ω2

α(q)e
α
i (q), (13)

where the eigenvalues obey ωα(q) = ωα(−q) due to time-reversal symmetry.

In order to develop equations for these scalar products, we utilize the identity,

(O1,HO2) = 〈[O†
1, O2]〉 which follows from Eq. (12). The LHS of this equation

can be calculated using HO = [H,O]. For further calculations we define Ai(q) =

1
2

∑

ki
V (qi,−k1i1,−k2i2)φi1(k1)φi2(k2). Taking (i) O1 = φ(q), O2 = π(q) and (ii) O1 =

A(q), O2 = π(q) respectively, we get the following equations which are exact.

Dij(q) = V (−qi, qj) +
∑

k

(Ai(q), φk(q))Dkj(q), (14)

∑

k

(Ai(q), φk(q))V (−qk, ql) = −(Ai(q), Al(q)). (15)

9



We write these equations in the matrix form, suppressing the q-dependence, as

D = V[V+ (A,A)]−1V, (16)

where (A,A)ij(q) = (Ai(q), Aj(q)) = − ≪ Ai(q);Aj(q) ≫z=0 and Vij(q) = V2(−qi, qj). To

get a closure for this set of equations, we need to make some approximations. We do this in

a self-consistent manner by expressing the higher order correlation functions (Ai(q), Aj(q))

in terms of D matrices. The expression for (A,A) is is given by

≪ Ai(q);Aj(q) ≫z =
1

4

∑

ki

V3(−qi,−k1i1,−k2i2)V3(qj,−k3i3,−k4i4)

× ≪ φi1(k1)φi2(k2);φi3(k3)φi4(k4) ≫z . (17)

The expectation contained in the above equation is evaluated using an effective quadratic

Hamiltonian given by

H0 =
1

2

∑

ki

π†
i (k)πi(k) +

1

2

∑

ki

φ†
i1
(k)Di1i2(k)φi2(k),

=
∑

k,α

[

ωα(k)b
†
α(k)bα(k) +

1

2

]

, (18)

where the operators bα(k) are the bosonic operators defined in the usual manner as

bα(k) =
∑

j

eαj (k)
[

√

2ωα(k)φj(k) + i
√

2/ωα(k)πj(k)
]

. (19)

Here the frequencies ωα(k) and the polarization vector eαi (k) are defined in Eq. (13), and

are to be determined self-consistently.

Under this approximation using Eq.( 12) we get

(Ai(q), Aj(q)) = 2
∑

1,2

Gij(q, 1, 2)

{

1 + n(1) + n(2)

ω(1) + ω(2)
+

n(1)− n(2)

ω(2)− ω(1)

}

Gij(q, 1, 2) =
∑

ki

V3(−qi,−k1i1,−k2i2)V3(qj, k1i3, k2i4)

8ω(1)ω(2)
eα1

i1
(k1)e

α2

i2
(k2)e

α1

i3
(k1)e

α2

i4
(k2), (20)

where we have used the compact notation 1 ≡ (k1, α1). Further ω(1) = ωα1
(k1) and n(1) =

n(ω(1)). Eqs. (16) and (20) together provide us the self-consistent equations for determining

the renormalized frequencies ωα(q). In order to obtain their solution, we first iterate them.

Starting with a diagonal Dij(q) = δijω
2
i (q) in the RHS of Eq.( 20), we have eαi = δiα and we

10



see that only the diagonal terms survive. So this procedure gives a diagonal D back if our

starting D is diagonal. Putting this information in Eq. (16) reduces it to

Dαα(q) =
ω4
α(q)

ω2
α(q) + (Aα(q), Aα(q))

,

(A,A)xx(q) =
1

4

∑

ki

|V3(qx, k1i, k2i)|2
ωi(k1)ωi(k2)

{

1 + n(ωi(k1)) + n(ωi(k2))

ωi(k1) + ωi(k2)
+

n(ωi(k1))− n(ωi(k2))

ωi(k2)− ωi(k1)

}

,

(A,A)yy(q) =
1

2

∑

k

|V3(qy, k1x, k2y)|2
ωx(k1)ωy(k2)

{

1 + n(ωx(k1)) + n(ωy(k2))

ωx(k1) + ωy(k2)
+

n(ωx(k1))− n(ωy(k2))

ωy(k2)− ωx(k1)
.

}

.

(21)

In order to analyze the low wave-vector (q → 0) behavior of D(q), we simplify the equations

by noting that

V3(qi, 1, 2) ∝ ∆(q + k1 + k2) sin(q) sin(k1) sin(k2)
q→0−−→ ∆(q + k1 + k2)q sin

2(k1),

n(ωα(k1))− n(ωα(−k1− q))

ωα(−k1 − q)− ωα(k1)

q→0−−→ − ∂

∂ω
n(ωα(k1)). (22)

We first consider (A,A)xx(q), whose expression contains two terms corresponding to scat-

tering by longitudinal (i = x) and transverse (i = y) modes respectively. We may first

suppose that the renormalized frequencies have the same q-dependence as the bare fre-

quencies, ω(q) ∝ Ω(q). Then the use of Eq. (22) in Eq. (21) shows that, as q → 0, the

longitudinal contribution to (A,A)xx(q) behaves as q
2 whereas the transverse part gives rise

to a divergence basically due to q2-dependence of the transverse frequencies in the denomi-

nator. Similarly the expression for (A,A)yy(q) also involves transverse mode frequencies in

the denominator, which again give rise to a singular dependence on q.

If on the other hand we assume ωα(q → 0) ∝ q, all the integrals converge and we get

Dαα(q → 0) ∝ q2. Thus we have a self-consistent solution for Dαα(q) in the q → 0 limit,

which is also diagonal. This is exactly what is seen in the MD simulations of the classical

system with the Wang-Li interaction [16]. From this analysis it is clear that the linear

solution obtained here is independent of the form of bare frequencies. Thus the linear q-

dependence of the frequencies in one dimension seems to be a generic result. For further

analysis we take a specific form for renormalized phonon frequencies, namely,

ωi(q) ≡ ωiω(q), ω(q) = 2| sin(q/2)|, ωy = ηωx, (23)

which agrees with the self-consistent solution in the q → 0 limit.
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IV. RELAXATION RATE OF RENORMALIZED PHONONS

We now study an effective Hamiltonian given by Eq. (6) and Eq. (5) in which Ω(q) is

replaced by ω(q). The second-order relaxation rate for the renormalized modes are as before,

Γ(2)
x (q) =

1

4
(1− e−βωx(q))

∫

dk
∑

is1s2

|Ṽ3(−q x, k i, q − k i)|2ns1(ωi(k))ns2(ωi(q − k))

×δ(ωx(q)− s1ωi(k)− s2ωi(q − k)) (24)

Γ(2)
y (q) =

1

2

(

1− e−βωy(q)
)

∫

dk
∑

s1s2

|Ṽ3(−q y, k x, q − k y)|2ns1(ωx(k))ns2(ωy(q − k))

×δ(ωy(q)− s1ωx(k)− s2ωy(q − k)), (25)

Ṽ3(k1i1, k2i2, k3i3) = V (k1i1, k2i2, k3i3)/
√

ωi1(k1)ωi2(k2)ωi3(k3) (26)

First we estimate the low-q form of Γ
(2)
y (q). This proceeds exactly as the analysis of Eq. (10).

We have

Γ(2)
y (q) =

1

2
(1− e−βωy(q))

∑

s1,s2,k∗

|Ṽ3(−qy, k∗ x, q − k∗ y)|2
|J(q, k∗, s1, s2)|

ns1(ωx(k
∗))ns2(ωy(q − k∗)), (27)

where k∗ are the solutions of f ≡ ωy(q) − s1ωx(k) − s2ωy(q − k) = 0 and the Jacobian is

given by J = ∂f/∂k|k=k∗ . Since both ωx,y(q → 0) ∼ q the factors of q in the denominator

that arise due to number factors are canceled by the |Ṽ |2 term. Therefore if the Jacobian

J(k∗) does not go to zero at some k∗, we get Γ
(2)
y (q → 0) ∝ ω2

y(q).

There are four cases for the energy-momentum conservation conditions due to four

possible values of s1 and s2. These have to be analyzed separately. We choose the

Brillouin zone [0, 2π]. For s1 = + = s2, the energy conservation condition becomes

ω(q) − ω(k)/η − ω(q − k) = 0. When η = 1 there are two solutions k = 0 and k = q.

But these correspond to no scattering and have to be excluded from the perturbation terms.

Thus as noted earlier the relaxation rate within this approximation is zero [5]. When η > 1

nontrivial solutions are possible. Fig. 2(a) shows plots of ω(q) and ω(k)/η + ω(q − k) with

respect to q for a representative set of values for k and η. This figure shows that, when

η > 1, k is a solution for the energy conservation condition ω(q) = ω(k)/η + ω(q − k) when

the value of q corresponds to one of the intersections of the two graphs. For small-q we

get a solution k ∼ q with a finite value for the Jacobian of the argument of the δ-function.

Therefore we see that the contribution to Γ
(2)
y (q → 0) from this case is proportional to q2 if

η > 1 and zero otherwise.
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FIG. 2: Figures demonstrate how the energy conservation condition in Eq. (25) can be satisfied.

The figure on the left shows ω(q) and ω(k)/η + ω(q − k) in the same graph for k = 0.5, η = 1.5

and the figure on the right shows ω(q) and ω(k)/η − ω(q − k) for k = 0.5, η = 0.5. Dotted vertical

lines mark the values of k which is the solution for q values corresponding to the intersections of

the two graphs.

For s1 = +, s2 = −, the δ-function condition is ω(q) = ω(k)/η − ω(q − k). Fig. 2(b)

shows LHS and RHS of this condition on the same graph. We see that for η < 1 we have

a nontrivial solution and in the small-q limit we find a solution k ∼ q where the Jacobian

also is finite. Therefore, for this case, the contribution to Γ
(2)
y (q → 0) is proportional to q2

for η < 1 and zero otherwise.

Next we take s1 = −, s2 = +. The energy conservation is given by ω(q) = ω(q − k) −
ω(k)/η. We have a nontrivial solution for η > 1 which for q → 0 is k ∼ q. Again we find the

contribution to Γ
(2)
y (q → 0) is like q2 for η > 1 and zero otherwise. The fourth case s1 = s2

has only trivial solutions. Therefore, we have

Γ(2)
y (q → 0) ∼ q2 if η 6= 1. (28)

Now we consider the relaxation rate Γ
(2)
x . It has contributions coming from both trans-

verse and longitudinal modes corresponding to i = y and i = x in Eq.( 24). The i = y

term again involves interaction between two y-phonons and one x-phonon as in the case

for Γ
(2)
y and its low wave-vetor behavior can be calculated in a similar way. As in the cal-

culation of Γ
(2)
y , for η 6= 1, there are nontrivial solutions satisfying the δ-function except

13



for s1 = s2 = −1. Thus the corresponding contribution to Γ
(2)
x (q → 0) is proportional to

q2. The i = x term involves three x-phonons and the contribution to the relaxation rate is

zero because the δ-function condition sin(q/2)− s1 sin(k/2) − s2 sin((q − k)/2) = 0 has no

nontrivial solution. Therefore

Γ(2)
x (q → 0) ∼ q2 if η 6= 1. (29)

Thus, the renormalized phonon modes at low wave-vectors are slow decaying and well-

defined to perform the perturbation analysis.

V. SELF-CONSISTENT RELAXATION RATE

The phonon relaxation rates of a chain with cubic nonlinearity but with only the longi-

tudinal vibrations was studied earlier by us [5]. For this case, as mentioned in the above

paragraph, the relaxation rate is zero in the second order as the two conservation conditions

for energy and wave-vector cannot be satisfied simultaneously. To overcome this difficulty we

performed a self-consistent approximation which consists in replacing bare phonon Green’s

functions in the second-order diagram (Fig.1(a)) by full Green’s functions. This relaxes the

strict energy conservation condition and allows for nonzero solutions for the relaxation rate

through a solution of an integral equation. Our aim in this section is to perform a similar

analysis for the present case. For this purpose, one uses the spectral representation of the

Green’s function,

Di(q, τ) = −
∑

s∈{+,−}

∫

dǫ

2π
Bi(k, ǫ)ns(ǫ)e

−sǫτ , (30)

with the spectral function is given by

Bi(k, ǫ) =
2Γi(k, ǫ)

(ǫ− ω̃i(k, ǫ))2 + Γ2
i (k, ǫ)

, (31)

where ω̃i(k, ǫ) = ωi(k) − ΣR
i (q, ǫ) and ΣR

i (q, ǫ) = ℜΣi(q, iωn → ǫ + i0+). If we now replace

D(0)(q, τ) by Di(q, τ) in Eq. (7), the corresponding equations for relaxation rate, Eqs. (24)

14



and (25), are replaced by a set of self-consistent equations for Γx and Γy. We get

Γx(q) =
1

2N
(1− e−βωx(q))

∑

k,s,i

|V3(−qx, k1i, k2i)|2
∫

dǫ

4π
Bi(s1k1, ǫ)ns1(ǫ)

×Bi(s2k2, s2ωx(q)− s1s2ǫ)ns2(s2ωx(q)− s1s2ǫ),

Γy(q) =
1

N
(1− e−βωy(q))

∑

k,s

|V3(−qy, k1x, k2y)|2
∫

dǫ

4π
Bx(s1k1, ǫ)ns1(ǫ)

×By(s2k2, s2ωy(q)− s1s2ǫ)ns2(s2ωy(q)− s1s2ǫ). (32)

We follow Ref [5] in the analysis of these equations. We note that for small q, the relax-

ation rate Γi(q) is very small and the spectral function Bi(q, ǫ) can be approximated by

a narrow peak at ǫ = ω̃i(q, ωi(q)) =: ω̃i(q). Also, ω̃i(q → 0) ∝ ωi(q). Further we may

replace Bi(p, ǫ)f(ǫ) ≈ Bi(p, ǫ)f(ω̃i(p)) where f(ǫ) is a smooth function of ǫ. We use this

approximation for the number factors n(ǫ) in Eq. (32). We also replace ω̃i(q, ǫ) ≈ ω̃i(q) and

Γi(q, ǫ) ≈ Γi(q) in the expression for Bi(q, ǫ) to be used in Eq. (32). After these approxima-

tions, only the spectral functions depend on ǫ in Eq. (32) and the integral can be performed

using

∫

dǫ

π

Γ1

(ǫ− a)2 + Γ2
1

Γ2

(ǫ− b)2 + Γ2
2

=
(Γ1 + Γ2)[(a− b)2 + (Γ1 − Γ2)

2]

((a− b)2 + Γ2
1 + Γ2

2)
2 − 4Γ2

1Γ
2
2

. (33)

We note that ω̃i(q) = ω̃i(−q) because it depends on q through ω(q) which is even in q and

through V3 factors which enters the perturbation terms as even function of q only. Then,

Γi(q) = Γi(−q) and n(q) ≡ n(ω̃(q)) = n(−q). We can write Γx(q) = ΓA
x (q) + ΓB

x (q), with

ΓA
x (q) =

1

2N
(1− e−βωx(q))

∑

ki

n(ωi(k))
{

n(ωi(q + k))|V3(−qx,−ki,−q − k i))|2

×S++ (qx, ki, q + k i) + eβωx(q)n(ωi(q − k))|V3(−qx, ki, q − k i)|2

×S−− (qx, ki, q − k i)
}

, (34)

ΓB
x (q) =

1

N
(1− e−βωx(q))

∑

ki

|V3(−qx,−ki, q + k i)|2n(ωi(k))[1 + n(ωi(q + k))]

×S+−(qx, ki, q + k i), (35)

where

Ss2s3(k1i1, k2i2, k3i3) =
(Γi2(k2) + Γi3(k3))[χ

2
s1s2(k1i1, k2i2, k3i3) + (Γi2(k2)− Γi3(k3))

2]

[χ2
s1s2(k1i1, k2i2, k3i3) + Γ2

i2
(k2) + Γ2

i3
(k3)]2 − 4Γ2

i2
(k2)Γ

2
i3
(k3)

.(36)
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Here we have introduced the definition: χs1s2(k1i1, k2i2, k3i3) = ωi1(k1)+s2ωi2(k2)+s3ωi3(k3).

Similarly, for the transverse modes we get

Γy(q) =
1

N
(1− e−βωy(q))

∑

k

{

n(ωx(k))n(ωy(q + k))|V3(−qy,−kx, q + k y)|2S++(qy, kx, q + k y)

+eβωy(q)n(ωx(k))n(ωy(q − k))|V3(−qy, kx, q − k y)|2S−−(qy, kx, q − k y)

+n(ωx(k))[1 + n(ωy(q + k))]|V3(−qy,−kx, q + k y)|2S+−(qy, kx, q + k y)

+[1 + n(ωx(k))]n(ωy(q − k))|V3(−qy, kx, q − k y)|2S−+(qy, kx, q − k y)
}

. (37)

Equations (34), (35) and (37) have to solved self-consistently to obtain the small wave-

vector behavior of the relaxation rates. We show that these equations have a solution

Γx(q → 0) ∼ q3/2, Γy(q → 0) ∼ q2. (38)

The key feature that enables the solution of these equations is that for small q, each of the

equations can be written in the following schematic form

Γi(q → 0) ∝ βω2
i (q)

∫

dk F (k, q). (39)

Here one factor of ωi(q) comes from the prefactor, which is basically a detailed balance factor

and the other from the factor of |V3|2. The integrand F (k, q) is not known as it as it depends

on Γi(k)’s. Our strategy is to examine these integrands in Eqs. (34), (35), (37) at q = 0, by

first assuming that Γi(k) ∝ k2. If the integral turns out to be finite, clearly Γi(q) ∝ q2 is

a self-consistent solution. If on the other hand the integral diverges, it presumably behaves

for small q as q−x. So we assume that Γ(k) ∼ kδ with δ < 2, and examine the integral for

small q. A solution is achieved if a self-consistent value for δ can be obtained. In examining

the singularities of the integrand in Eq. (39), a further simplification comes from noting

that the Bose factors n(k) give rise to factors 1/ωi(k) for small frequencies, but these are

canceled by the similar factors in interaction term |V |2. So all the singular behavior of the

integrands come from the S-factors introduced in Eq. (36).

First, let us consider Eq. (37), the equation for Γy(q). At q = 0, the S-factors could

give rise to singularities at k = 0 if we set Γ(k) ∝ k2. For η 6= 1, in all the four terms

in Eq. 37, χ(0, kx, ky) ∼ k for small k; for example, in the third term, χ+−(0, kx, ky) =

2(1 − η) sin(k/2). Using Eq. (38) one finds that Ss1s2(0, kx, ky) ∼ k2k2/k4 = k0 for small

k. Since the integral is finite at q = 0, Γy(q → 0) ∼ q2. We next consider Γx(q) which has
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been split into two terms ΓA
x (q) and ΓB

x (q) in Eqs. (34) and (35). The analysis of ΓA
x (q)

proceeds in a similar way as χ(0, ki, ki) ∼ k as k → 0 in both the terms of Eq. (34) and we

get ΓA
x (q) → 0) ∼ q2.

Something different happens in Eq. (35) for ΓB
x (q). It has again two terms for i = x, y. The

term i = x involves only the longitudinal mode, and this situation is identical to the FPU-α

problem discussed in Ref. [5]. We note that χ+−(q, kx, q + k x) ∼ q[1 − cos(k/2)] ∝ qk2 as

q, k → 0. Using Eq. (38), for small q and k, we get S+−(qx, kx, q+k x) ∝ [Γx(q)+Γx(q+k)]−1.

At q = 0, the corresponding integral is divergent. But the small q divergence of the integral

can be obtained by noting that the major contribution to the integral comes from small

k and small q + k region. Denoting the corresponding contribution to ΓB
x by Γ1, we get,

following [5],

Γ1(q) ∝ q2
∫ 2π

0

dk

Γ1(q + k) + Γ1(k)
. (40)

As is easily checked, Eq. (40) is solved by taking Γ1(k) ∝ k3/2. For the i = y term

χ+−(qx, ky, q + k y) ∼ q[1 − η cos(k/2)] for small q and k. The leading order behavior

of S in this limit is obtained using Γx(q → 0) ∼ q2. We see that S+−(qx, ky, ky) is not

singular at k = 0 for finite q, S+−(qx, 0y, qy) ∼ q2q2/q4 ∼ q0. Thus the limit q → 0 of this

sequence is finite and the corresponding contribution to ΓB
x (q → 0) is proportional to q2.

We can now go back to the earlier equations and check if by setting Γx(k) ∝ k3/2. the earlier

results for Γy(q) and ΓA
x (q) are affected. The examination of the integrals shows that they

remain finite. Therefore to the leading order, Γx(q → 0) ∼ q3/2 +O(q2) and Γy(q → 0) ∼ q2

establishing the solution given by Eq. (38).

VI. THERMAL CONDUCTIVITY

In this Section, we calculate the thermal conductivity of the system using the Kubo-Green

formula. Defining the thermal Green’s function for the total current operator J as,

W (τ) = − 1

N
〈Tτ [J(τ)J(0)]〉 , (41)

the Kubo-Green formula for thermal conductivity can be written as [24]

κ = − 1

T
lim
ω→0

lim
N→∞

ℑW (iωn → ω + iδ)

ω
(42)
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where ωn are the Matsubara frequencies. The current operator, up to leading order, is given

by

J = −
∑

k,α

jα(k)b
†
α(k)bα(k) (43)

where jα(k) = vα(k)Ωα(k), vα(k) = (∂/∂k)ωα(k). Further, we neglect the cross-correlation

between the x- and y- components of the current. Under the approximation used in [10] that

vertex corrections to the two particle Green’s function Eq. (41) has the same wave-vector

dependence as j(k) for small k, one arrives at the kinetic theory formula for conductivity,

κ =
∑

α

∫

dq

2π
v2α(q)τα(q)Cα(q), (44)

where τα(q) = Γ−1
α (q) is the relaxation time of single particle Green’s function and Cα(q) =

1
T
(− d

dω
n(ω))ω=ωα(q)ω

2
α(q) is proportional to the mode specific heat. We note that C(q) is

well behaved for small q and any possible divergence can come from τ(q) only.

The formula given by Eq. (44) is for an infinite chain and this quantity is divergent

because τα(q) has a non integrable singularity at q = 0. To obtain the conductivity κ(N) for

large but finite size chain of N particles, we follow the prescription used by other workers in

the area [2]. In this procedure one rewrites Eq. (44) as a time integral in the following way.

κ =
∑

α

∫ ∞

0

dtKα(t), Kα(t) =

∫

dq

2π
v2α(q)Cα(q)e

−Γα(q)t (45)

Since Γα(q → 0) ∼ qδα , we get Kα(t → ∞) ∼ t−1/δα . One argues that when the boundaries

of the system are connected to thermal baths, the correlation K(t) dies after a time scale

of order N due to interaction with the baths, i.e. the typical time it takes for the modes to

travel across the chain. Using in the time integral in Eq. (45) such a cutoff yields

κ(N) ∼ O(N1−1/δx) +O(N1−1/δy) ∼ O(N1/3) +O(N1/2) ∼ N1/2. (46)

It is to be noticed that the leading order divergence arise from the term corresponding to the

y-modes. If the conduction was normal, conductivity would be finite and the contribution

from these modes would be negligible compared to the contribution from the x-modes when

the strength of the interaction giving rise to transverse oscillations, Kθ, is small. But here

the conductivity itself is a divergent quantity and its divergence is determined by the slower

relaxation of the transverse modes compared to the longitudinal modes.
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VII. SUMMARY

We have studied thermal transport in a chain of coupled particles in which particles can

have longitudinal as well as transverse vibrations. Particles interact via anharmonic poten-

tials proposed by Wang and Li [16]. For this model, the mode frequencies in the harmonic

approximation have the following dispersions at small wave-vectors: for the longitudinal

mode Ωx(q) ∝ q; for the transverse mode Ωy(q) ∝ q2, where q denotes the wave-vector.

We first show that due to quadratic dispersion of the transverse mode, the relaxation rates

for both the modes become too large to leave them as meaningful quasi-particles. So we

calculate their renormalized frequencies taking into account the anharmonic interactions in

a self-consistent approximation. We find that this procedure yields the linear dispersion for

both kinds of modes irrespective of their bare forms. We then perform a calculation of the

relaxation rates for the renormalized phonon in a self-consistent approximation based on

the second-order perturbation diagrams. This calculation yields that for the longitudinal

phonons, the relaxation rate Γx(q) ∝ q3/2, while for the transverse mode Γy(q) ∝ q2. We

then use these results to calculate the thermal conductivity κ(N) of a chain of N particles.

The finite size is incorporated by using a cutoff of the order of N in the time integral over

current-current correlation function that occurs in the Kubo formula for the conductivity.

This yields a contribution to κ(N) from longitudinal phonons to be O(N1/3), that from

transverse phonons to be O(N1/2). The latter contribution dominates giving κ(N) ∝ N1/2

for large N.
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