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Abstract.

In order to attain the requisite sensitivity for LISA - a joint space mission
of the ESA and NASA- the laser frequency noise must be suppressed below the
secondary noises such as the optical path noise, acceleration noise etc. By combining
six appropriately time-delayed data streams containing fractional Doppler shifts - a
technique called time delay interferometry (TDI) - the laser frequency noise may be
adequately suppressed. Here we investigate the problem of TDI in the general case
of unequal up-down links and also include the effect of the Earth on the spacecraft
and the optical links. We show that there are symmetries in the physics which can be
successfully used to simplify the algebra of the TDI. We finally give the example of
the first generation modified Sagnac observable in which the laser frequency noise is
suppressed because of the symmetries.

1. Introduction

LISA - Laser Interferometric Space Antenna - is a proposed mission which will use
coherent laser beams exchanged between three identical spacecraft forming a giant
(almost) equilateral triangle of side 5×106 kilometres to observe and detect low frequency
cosmic GW [1].

Laser frequency noise dominates the other secondary noises, such as optical path
noise, acceleration noise by 7 or 8 orders of magnitude, and must be removed if LISA
is to achieve the required sensitivity of h ∼ 10−22, where h is the metric perturbation
caused by a gravitational wave. In LISA, six data streams arise from the exchange of laser
beams between the three spacecraft approximately 5 million km apart. These six streams
produce redundancy in the data which can be used to suppress the laser frequency noise
by the technique called time-delay interferometry (TDI) in which the six data streams
are combined with appropriate time-delays [2]. A mathematical foundation for the TDI
problem for LISA was given in [3], by showing that the data combinations constituted
an algebraic structure; the data combinations cancelling laser frequency noise formed
the module of syzygies over the polynomial ring of time-delay operators.
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We extend the work of [3] in which we had a commutative polynomial ring over
the three time-delay operators. Because in the general case, the up-down links are
unequal and because of the flexing of the arms, we have a non-commutative ring in six
indeterminates. We show in this paper that the algebraic structure is still a module over
this non-commutative polynomial ring. Secondly, for the LISA model that we consider,
which has been optimised to reduce flexing, we have found symmetries which could be
used to simplify the algebra. We discuss these symmetries and their implications; the
symmetries can be used to construct a smaller ring - the original non-commutative ring
is quotiented by the ideal generated by commutators which capture the symmetries. For
the model of LISA we use the orbits given in [4] in which the orbits have been computed
in the Sun and Earth’s field (we have ignored the effects of Jupiter and other planets). We
show that optimising the spacecraft orbits for minimal flexing is conducive to suppressing
the laser frequency noise. For some TDI observables their modified first generation
form may prove adequate; in this context we discuss the Sagnac observable. These
computations will be useful in the development of a LISA simulators, the LISACode for
instance [5].

2. The flexing of LISA’s arms in the Sun’s and Earth’s field

The orbits of the spacecraft are chosen as follows [4]: first, we choose a set of Keplerian
orbits in the Sun’s field only which give a minimum flexing of the arms - the peak to peak
variation in armlengths is the least ∼ 48000 km, see [6]. In the second step, on these
base orbits we linearly add the perturbations due to the Earth’s gravitational field. This
choice is so, because we believe, that the optimum solution which yields the minimum
flexing of the arms in the combined field of the Sun and Earth, lies close to the optimum
solution already found in the field of the Sun only. We briefly describe the orbits below:
we choose the Sun as the origin with Cartesian coordinates {X,Y,Z} as follows: the
ecliptic plane is the X − Y plane and we consider a circular reference orbit of radius
R = 1 A. U. centred at the Sun. Let δ0 = 5α/8 where α = L0/2R and L0 ∼ 5, 000, 000
km represents the nominal distance between two spacecraft of the LISA configuration.
We choose the tilt of the plane of the LISA triangle to be δ = π/3 + δ0 which has been
shown in [6] to yield minimum flexing of the arms. We choose spacecraft 1 to be at its
lowest point (maximum negative Z) at t = 0. This means that at this point, Y = 0 and
X ≃ R(1 − e). The orbit of spacecraft 1 is an ellipse with inclination angle ∼ α with
the ecliptic, eccentricity e ∼ α/

√
3. This fixes the orbit of spacecraft 1. The orbits of of

spacecraft 2 and 3 are obtained by rotating the orbit of spacecraft 1 about the Z-axis by
the angles 120◦ and 240◦ respectively, their phases are adjusted so that they maintain a
distance of ∼ L0 between each other. To the first order in the eccentricity, the spacecraft
form a rigid equilateral triangle of side L0. It is only at the second order in the α (or
eccentricity) that the flexing of the arms occurs.

The Earth’s field is now included perturbatively via the CW framework [7]. The CW
frame is chosen as follows: We take the reference particle to be orbiting in a circle of
radius R with constant Keplerian angular velocity Ω. Then the transformation to the
CW frame {x, y, z} from the barycentric frame {X,Y,Z} is given by,

x = X cos Ωt+ Y sinΩt−R, y = −X cos Ωt+ Y sin Ωt, z = Z. (1)
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Consistent with the Keplerian orbits described above and to the first order in eccentricity,
for the kth spacecraft, we have the following position coordinates in the CW frame:

xk = −1

2
ρ0 cosφk, yk = ρ0 sinφk, zk = −

√
3

2
ρ0 cosφk, (2)

where ρ0 = L0/
√

3 and φk = Ωt− 2π(k − 1)/3 − φ0.
LISA follows the Earth 20◦ behind. We consider the model where the centre of the

Earth leads the origin of the CW frame by 20◦ - thus in our model, the ‘Earth’ or the
centre of force representing the Earth, follows the circular reference orbit of radius 1 A.
U. Also the Earth is at a fixed position vector r⊕ = (x⊕, y⊕, z⊕) in the CW frame. We
find that x⊕ = −R(1 − cos 20◦) ∼ −9 × 106 km, y⊕ = R sin 20◦ ∼ 5.13 × 107 km and
z⊕ = 0. We introduce the small parameter ǫ in terms of the quantity ω2

⊕ = GM⊕/d
3
⊕,

where d⊕ is the distance of the Earth from the origin of the CW frame, M⊕ ∼ 5.97×1024

kg is the mass of the Earth and G = 6.67 × 10−11 kg−1m3sec−2 Newton’s gravitational
constant. We find d⊕ ∼ 5.2× 107 km. We define ǫ = ω2

⊕/Ω
2 ≃ 7.16× 10−5 which is just

the ratio of the tidal forces due to the Earth and the Sun. The CW equations including
the Earth’s field take the form:

ẍ− 2Ωẏ − 3Ω2x+ ǫΩ2(x− x⊕) = 0 ,

ÿ + 2Ωẋ+ ǫΩ2(y − y⊕) = 0 ,

z̈ + Ω2(1 + ǫ)z = 0. (3)

Note that the compounded flexing due to the combined field of Earth and Sun is a
nonlinear problem; it is infact a three body problem. We however solve this problem
approximately. Assuming that both effects are small we may linearly add the flexing
vectors due to the Sun and Earth; the nonlinearities appear at higher orders in α and ǫ.
These would modify the flexing but we may neglect this effect because of the smallness.

We then seek perturbative solutions to Eq. (3) to the first order in ǫ. We write,
x = x0 + ǫx1, y = y0 + ǫy1, z = z0 + ǫz1 where x0, y0, z0 are solutions at the zeroth
order given by Eq.(2). With the initial conditions: x1 = y1 = z1 = ẋ1 = ẏ1 = ż1 = 0
at t = 0, we solve the equations for x1, y1 and z1. We then add the perturbation
ǫr1 = ǫ(x1, y1, z1) to the Keplerian orbit of each spacecraft to obtain the orbits in the
combined gravitational field of the Sun and Earth [4]. The time-delay required for the
TDI needs to be known to at least to 1 part in 108 - about few metres - for the laser
frequency noise to be suppressed. In order to guarantee such level of accuracy, we
numerically integrate the null geodesics followed by the laser ray. Our numerical scheme
is accurate to better than 10 metres. In figure 1 we plot the rate of change of armlengths
(flexing) for the six optical links. Including the Earth’s field the flexing still remains

∼< 6 m/sec in the first two years and increases to ∼< 8 m/sec in the third year. Earlier
estimates were ∼ 10 m/sec.

3. Algebraic approach to TDI: polynomial equations and the module of

syzygies

For stationary LISA in flat spacetime, there are only three delay operators corresponding
to the three armlengths and the time-delay operators commute. However, in a more
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Figure 1. The rate of change of armlengths for the six links is shown in units of m/sec
for φ0 = 0. This rate of change is less than 6 m/sec upto the second year and increases
to a maximum of about 8 m/sec in the third year.

realistic LISA model the arms flex and the up-down links are unequal which gives six
non-commuting time-delay operators - the second generation TDI.

We follow the notation and conventions of [8] and [3] which are the simplest for our
purpose. The six links are denoted by U i, V i, i = 1, 2, 3. The time-delay operator for
the link U2 from S/C 1 to S/C 2 or 1 −→ 2 is denoted by x in [8] and so on in a cyclic
fashion. The delay operators in the other sense are denoted by l,m, n; the link −V 1

from 2 −→ 1 by l and similarly the links V 2, V 3 are defined through cyclic permutation.
Figure 2 depicts the optical links as described.

Ln Lz

Lx

Ll

Ly

Lm

n1

n3

n2

SC1

SC2

SC3

Figure 2. A schematic diagram of LISA’s optical links.
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Let Ci(t) = ∆νi(t)/ν0 represent the laser frequency noise in S/C i. Let j be the delay
operator corresponding to the variable armlength Lj(t), i.e. jCi(t) = Ci(t − Lj(t)).
Then we have, U1 = C1 − zC3, V

1 = lC2 − C1. The other links in terms of Ci(t) are
obtained by cyclic permutations. Also in the U i, V i we have not included contributions
from the secondary noises, gravitational wave signal etc. since here our aim is to deal
with laser frequency noise only. Any observable X is written as: X = piV

i +qiU
i, where

pi, qi, i = 1, 2, 3 are polynomials in the variables x, y, z, l,m, n. Thus X is specified
by giving the six tuple polynomial vector (pi, qi). Writing out the (Vi, Ui) in terms of
the laser noises Ci(t), and in order that the laser frequency noise cancel for arbitrary
functions Ci(t), the polynomials (pi, qi) must satisfy the equations:

p1 − q1 + q2x− p3n = 0,

p2 − q2 + q3y − p1l = 0,

p3 − q3 + q1z − p2m = 0. (4)

The solutions to these equations as realised in earlier works are important, because they
consist of polynomials with lowest possible degrees and thus are simple [2].

Since these are linear equations they define a homomorphism of modules as follows:
Eliminating p1 and p2 from the three equations (4) while respecting the order of the
variables we get:

ψ(x, y, z, l,m, n) ≡ p3(1 − nlm) + q1(z − lm) + q2(xl − 1)m+ q3(ym− 1) = 0 . (5)

Consider the polynomial ring Q(x, y, z, l,m, n) ≡ K, in general non-commutative, of
polynomials in the six variables x, y, z, l,m, n and coefficients in the rational field Q. The
operators x, y, z, l,m, n play the role of indeterminates. Eq. (5) defines a homomorphism
ϕ : K4 −→ K where any polynomial vector (p3, q1, q2, q3) ∈ K4 is mapped to the
polynomial ψ(x, y, z, l,m, n) ∈ K. The set of noise free TDI combinations is just the
kernel of this homomorphism ϕ−1(0) ⊂ K4 which is a submodule of K4. This is called
the first module of syzygies over the polynomial ring K. This homomorphism can be
extended to K6 via the elimination equations for p1 and p2. Thus one obtains a module
of noisefree TDI observables M ⊂ K6 which is isomorphic to ϕ−1(0).

In case of non-commuting operators the problem is far more complex than the
commutative case. If we follow on the lines of the commutative case, the first step
would be to find a Gröbner basis for the ideal generated by the coefficients appearing in
Eq. (5), namely, the set of polynomials {1−nlm, z− lm, (xl−1)m, ym−1}. Here we do
not even know whether the Gröbner basis for this ideal would be finite - the algorithm
for finding the basis may not terminate. However, here we show that simplifications
are possible because of the inherent symmetries in the problem and so the ring K can
be quotiented by a certain ideal, simplifying the algebraic problem. One then needs
to deal with a ‘smaller’ ring which is perhaps simpler. We now estimate the level of
non-commutativity of these operators in the context of our LISA model.

4. The role of symmetries and the construction of the quotient ring

The level of non-commutativity can be found by computing commutators which occur
in several of the well known TDI observables like the Michelson, Sagnac etc. We find
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that given our model of LISA, we require to go only upto the first order in L̇; we find for
our model L̈ ∼ 10−6 metres/sec2 and thus even if one considers say 6 successive optical
paths, that is, about ∆t ∼ 100 seconds of light travel time, ∆t2L̈ ∼ 10−2 metres. This is
well below few metres and thus can be neglected in the residual laser noise computation.
Moreover, L̇2 terms (and higher order) can be dropped since they are of the order of

∼< 10−15 (they come with a factor 1/c2) which is much smaller than 1 part in 108. The
calculations which follow neglect these terms.

Applying the operators twice in succession and dropping higher order terms as
explained above,

k2k1C = C(t− Lk1
(t− Lk2

) − Lk2
) ,

≈ C(t− Lk1
− Lk2

) + Lk2
L̇k1

Ċ(t− Lk1
− Lk2

) . (6)

The above formula can be easily generalised by induction to n operators. In several
of the TDI observables, commutators play a major role. In the Sagnac observable, for
example, the following commutator occurs:

lmnxyz − xyzlmn = (Ll + Lm + Ln)(L̇x + L̇y + L̇z)

−(Lx + Ly + Lz)(L̇l + L̇m + L̇n) , (7)

where it is understood that the LHS acts on C while the RHS multiplies Ċ at an
appropriately delayed time. Note that the term in C cancels out on the RHS. Further,
we observe the following approximate symmetries in our model:

L̇x ≈ L̇l, L̇y ≈ L̇m, L̇z ≈ L̇n , (8)

In our model, |L̇x − L̇l| ∼< 0.8 m/sec and the sum |(L̇x + L̇y + L̇z)− (L̇l + L̇m + L̇n)| ∼< 1
m/sec upto the first three years in our model. Thus the commutators:

[x, l] ≈ 0, [y,m] ≈ 0, [z, n] ≈ 0, [xyz, lmn] ≈ 0 . (9)

The near vanishing of the above commutators implies that a vast simplification in the
algebra is possible. In particular the pairs (x, l), (y,m), (z, n) approximately commute.

Apart from the above approximate symmetries there are other ‘exact’ symmetries
(after dropping terms in L̇2 and L̈ and higher order) which lead to vanishing
commutators. Consider the commutator [x1x2...xn, y1y2...yn] where n ≥ 2 and xk or ym

represents any one of the delay operators x, y, z, l,m, n. Upto the order of approximation
we are working in:

[x1x2...xn, y1y2...yn] =

n∑

k=1

Lxk

n∑

m=1

L̇ym
−

n∑

m=1

Lym

n∑

k=1

L̇xk
. (10)

From this equation it immediately follows that if the operators y1, y2, ..., yn are a
permutation of the operators x1, x2, ..., xn, and then the commutator,

[x1x2...xn, y1y2...yn] = 0 . (11)
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We describe below how these vanishing commutators can be used to simplify the algebra.
The commutators can be used to construct an ideal U ⊂ K. We first construct the

ideal U generated by the commutators such as those given in Eq. (9) and Eq. (11),
that is, the hybrid and the exact ones. Then we quotient the ring K by U , thereby
constructing a smaller ring K/U ≡ K̄. Further, we can translate the equations given
in Eq. (4) to ones over K̄ as follows: Each polynomial p̄ ∈ K̄ is an equivalence class
of polynomials p + U ⊂ K. The solution set of such polynomial vectors, which we now
denote by (p̄i, q̄i) ∈ K̄6 still form a module over K̄. A future goal would be to construct
this module or obtain the generators of this module.

The simplification in the ring K can be seen as follows: Consider just two of the
operators x and l and consider the possible polynomials or monomials (polynomials with
just one term) in them in K and K̄ for different degrees. We have xl = lx + xl − lx =
lx+ [x, l] = lx in K̄ (we have dropped the overbars to avoid clutter). So we gain by the
fact that the number of monomials in K̄ are reduced, we can identify lx with xl as just
a single monomial. The higher the degree of the monomials, the greater is the number
of identifications and more is the simplification in the algebra.

5. Residual laser frequency noise in the Sagnac observable

By the time LISA flies the expectations are for the laser frequency noise estimate to

reduce to say ∆̃ν ∼ 10Hz/
√

Hz [9]. If we divide this number by the laser frequency
ν0 ∼ 3 × 1014 Hz, we obtain the noise estimate in the fractional Doppler shift C with
the power spectral density (PSD), SC(f) = 〈|C̃(f)|2〉 ∼ 10−27 Hz−1, where C̃(f) is the
Fourier transform of C(t).

The modified Sagnac first generation TDI observable α is given by the six tuple
polynomial vector α = (κ, κl, κlm, η, ηzy, ηz), where κ = 1− zyx and η = 1− lmn. The
flexing leads to the residual term ∆C = [zyx, lmn]C1 = ∆tĊ1 where by Eq. (7):

∆t(t) =
1

c2
[(Lx + Ly + Lz)(L̇l + L̇m + L̇n) − (Ll + Lm + Ln)(L̇x + L̇y + L̇z)] , (12)

Then the PSD of ∆C is S∆C(f ; t) = 4π2∆t(t)2f2SC(f). This noise must be compared
with the secondary noise [1] which is given by Sα(f) = 4 sin2(3πfL0){[8 sin2 3πfL0 +
16 sin2 πfL0]Sacc + 6Sopt}, where Sacc = 2.5 × 10−48(f/1Hz)−2Hz−1 and Sopt = 1.8 ×
10−37(f/1Hz)2Hz−1. In the Figure 3 we plot Sα(f) and S∆C(f ; t) at three epochs an
year apart. For more details see [4].

We see that, clearly the residual laser frequency noise is few orders of magnitude
below the secondary noises. Analogous result was demonstrated in [10]. Since the other
Sagnac variables β and γ are obtained by cyclic permutations of the spacecraft, the
residual laser noise is similarly suppressed in them. Note that the only polynomial that
occurs in ∆C is the commutator [zyx, lmn] which is in U and so α satisfies the three
equations (4) approximately, therefore is an element of the module we are seeking.

6. Concluding remarks

We have described in this paper the algebraic approach to the problem of TDI in the
general case of the LISA model in which the up and down links are unequal and the
arms flex. This gives rise to a polynomial ring in six variables which in general do not
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Figure 3. The ‘top’ curve shows the PSD Sα(f) of the secondary noises. The straight
lines are the PSDs of the residual noise at three epochs chosen an year apart. Clearly
the residual laser noise is seen to be adequately below the secondary noises.

commute. However, we emphasise that symmetries exist in the physics and show how
they could be exploited to simplify the algebra -the symmetries essentially simplify the
ring. It may be possible to extend the Gröbner basis methods which worked so well in
the commutative case.

We have computed the residual laser frequency noise in one of the important TDI
variables, namely, the Sagnac. The residual noise is satisfactorily suppressed because of
the optimised orbits and the symmetries. Thus by optimising LISA’s orbits it may be
possible to suppress the laser frequency noise in other of TDI observables as well [4].
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