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Abstract. The joint NASA-ESA mission LISA relies crucially on the stability of the three
spacecraft constellation. Each of the spacecraft is in heliocentric orbits forming a stable
triangle. The principles of such a formation flight have been formulated long ago and analysis
performed, but seldom presented if ever, even to LISA scientists. We nevertheless need these
details in order to carry out theoretical studies on the optical links, simulators etc. In this
article, we present in brief, a model of the LISA constellation, which we believe will be useful

for the LISA community.

gr-qc/0410093v1 19 Oct 2004

arXiv


https://core.ac.uk/display/291502866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/gr-qc/0410093v1

Fundamentals of the LISA Stable Flight Formation 2

1. Introduction

LISA is a ESA-NASA mission for observing low frequency gravitational waves in the frequency
range from 107° Hz to 1 Hz [1]. In order for LISA to operate successfully, it is crucial that
the three spacecraft which form the hubs of the laser interferometer in space maintain nearly
constant distances between them, though their order of magnitude is 5 x 10° km. The existence
of orbits having this property was firstly reported by Bender [2] as the basis of LISA. In order
to thoroughly study the optical links and light propagation between these moving stations, we
however need a detailed model of the LISA configuration. We therefore find it useful to recall
explicitly the not so trivial principles of a stable formation flight. In this brief work, we firstly
study three Keplerian orbits around the Sun with small eccentricities and adjust the orbital
parameters so that the spacecraft form an equilateral triangle with nearly constant distances
between them. Then we find that to the first order in the parameter o = [ /2R, where [ ~ 5 x 10°
km, is the distance between two spacecraft and R = 1 A. U. ~ 1.5 x 108 km, the distances
between spacecraft are exactly constant; any variation in arm-lengths should result from higher
orders in « or from external perturbations of Jupiter and the secular effect due to the Earth’s
gravitational field. (The eccentricity e is related in a simple way to « and is proportional to «
to the first order in «.) In fact our analysis shows that such formations are possible with any
number of spacecraft provided they lie in a magic plane making an angle of 60° with the ecliptic.
We establish this general result with the help of the Hill’s or Clohessy-Wiltshire (CW) equations

B
2. The choice of orbits

2.1. The exact orbits

The exact orbits of the three spacecraft are constructed so that to the first order in the parameter
«, the distances between any two spacecraft remain constant. Below we give such a choice of
orbits. This choice is clearly not unique and other choices are possible which satisfy some criteria
of optimality such as the distances between spacecraft vary as little as possible.

We construct the orbit of the first spacecraft and then obtain the other two orbits by
rotations of 120° and 240°. The equation of an elliptical orbit in the (X —Y') plane is given by
4,

X = R(cosyp +e€), Y =RV1—eZsiny, (1)
where R is the semi-major axis of the ellipse, e the eccentricity and 1 the eccentric anomaly.

The focus is at the origin. The eccentric anomaly is related to the mean anomaly Qt by,
P+ esiny = Q, (2)
where t is the time and ) the average angular velocity. We have chosen the zero of time when

the particle is at the farthest point from the focus (this is contrary to what most books do and
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because of this choice of initial condition we have a positive sign instead of a negative sign on
the left hand side of Eq.(@) ).

We choose the barycentric frame with coordinates (X,Y, Z) as follows: The ecliptic plane is
the X —Y plane and we first consider a circular reference orbit of radius 1 A. U. centered at the
Sun. The plane of the LISA triangle makes an angle of 60° with the ecliptic plane. As we shall
see later, we deduce from the CW equations that this allows constant inter-spacecraft distances
to the first order in «. This fact dictates the choice of orbits of the spacecraft formation. We
choose spacecraft 1 to be at its highest point (maximum Z) at ¢ = 0. This means that at this
point, 1 = 0 and Y = 0. Thus to obtain the orbit of the first space-craft we must rotate the orbit
in Eq. (@) by a small angle € about the Y —axis so that the spacecraft 1 is lifted by an appropriate
distance above the X — Y plane. In order to obtain the inclination of 60°, the spacecraft must

have its Z-coordinate equal to [/2. The geometry of the configuration is shown in Figure 1. From

Figure 1. The figure shows the geometry of the orbits and of LISA. The barycentric frame is
labelled by (X,Y, Z) while the CW frame is labelled by (z,y, 2). SC1, SC2 and SC3 denote the
three spacecraft. The radius of the reference orbit is taken to be R =1 A. U. and S denotes
the Sun.

the geometry ¢ and e are obtained as,

!
tane = m , (3)
e = (1—1—%(14—%@2)1/2—1, (4)
and the orbit equations for the spacecraft 1 are given by:
X1 = R(cospy + e) cose,
Vi = RvV1— e2siny,
Z1 = R(cost; + e)sine. (5)

The eccentric anomaly 11 is implicitly given in terms of ¢ by,

Y1 + esinyy = Q. (6)
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The orbits of the spacecraft 2 and 3 are obtained by rotating the orbit of spacecraft 1 by 27/3
and 47 /3 about the Z—axis; the phases 12, 13 however, must be adjusted so that the spacecraft

are about the distance [ from each other. The orbit equations of spacecraft k = 2,3 are:

X = X cos {%ﬁ(k - 1)] — Y sin [%ﬂ(lﬂ - 1)} ;

Y = Xisin [%(k - 1)} + Y] cos [2%(/6 - 1)} ,
Zy =7, (7)

with the caveat that the 1, is replaced by the phases i, where they are implicitly given by,

wk—l—esind}kzﬂt—(k—l)%r. (8)

These are the exact equations of the orbits of the three spacecraft. With these orbits the inter-
spacecraft distance varies upto about 100,000 km. In Figure 2 we show how the inter-spacecraft

distances vary over the course of a year. Note that there are other choices of e and € close to the

5.1 T T T T T T T T T

Armlength in units of 10° km

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time in years

Figure 2. The variation of the lengths of the arms of LISA (the breathing modes) is shown
in units of 10% km, when the exact orbits are computed. To the first order in « the lengths of
the arms remain constant and are equal to [ = 5 x 106 km.

above values for the three orbits which give smaller variations in the armlengths.

2.2. The orbits to first order in o

In this subsection we obtain the orbits to the first order in «. The tilt ¢ and the eccentricity e

are given to this order by,

tane = a, e =

7 9)
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We find that e is proportional to o and, € ~ 1.7 x 1072 and e ~ 1072, Then to this order and

now writing « in terms of e, Eqs.(@) become:
X1 = R(cos iy +e),
Y1 = Rsinvq,
Z1 = \/§eRcosw1, (10)

where the eccentric anomaly can be explicitly solved for to the first order in e in terms of the

time t:
Y1 = Qt — esin Qt. (11)

The approximate orbits of the spacecraft 2 and 3 can be obtained, as before, by rotating the orbit
of spacecraft 1 by 27/3 and 4 /3 respectively about the Z-axis as in Eq.([@). The corresponding
phases ¥ and 13 now, can be explicitly obtained in terms of ¢:

1/)k:Qt—(k—1)2§—esin [Qt—(k—l)%]. (12)
In the next section we prove that to the first order in «, the distance between any two space-craft
is [, that it is a constant and remains so at all times; the LISA constellation moves rigidly as an
equilateral triangle with its centroid tracing a circle with radius of 1 A. U. with the Sun as its
centre. To check this from the above equations is straightforward. We can compute the distance
between spacecraft 1 and 2, which at the lowest order in a proves to be 2aR, the two other
distances are equal to the preceding by symmetry. This model succeeded because we already
knew the result. In the next section, we show with the help of a more sophisticated formalism,
how this case is a special case of a much more general result and that stable formations with
infinite number of spacecraft are possible. This result is important because we then have large
number of flight formations to choose from. Depending on the required physical criteria optimal

flight formations may be selected.

3. The CW frame

Clohessy and Wiltshire [3] make a transformation to a frame - the CW frame (z,y, z) which
has its origin on the reference orbit and also rotates with angular velocity 2. The z direction
is normal and coplanar with the orbit, the y direction is tangential and comoving, and the z
direction is chosen orthogonal to the orbital plane. They write down the linearised dynamical
equations for test-particles in the neighbourhood of a reference particle (such as the Earth). Since
the frame is noninertial, Coriolis and centrifugal forces appear in addition to the tidal forces.

The CW equations for a free test particle of coordinates (z,y, z) are:
F—2Qy—3Q% = 0,
j+20i = 0, (13)
F4+0%2 = 0,
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where 2 = 27/1 year. The general solution, depending on six arbitrary parameters is:

z(t) = L sinQt — (3x0 + 2%) cos 1t + 2 (2x0 + %0) ,
(63:0 + 4%) sin Qt + 220 cos Ot — 3(2Qx0 + Jo)t + (yo — Z2) , (14)
z(t) = zpcosQt + 2 sinQt.

<

—~
~+

~

We observe that both  and y contain constant terms and y also contains a term linear in ¢. The
constant term in y is merely an offset and could be removed without loss of generality by a trivial
translation of coordinate along the same orbit. The removal of the x offset also removes the linear
term in ¢ (the runaway solution). In contrast with the y offset, the x offset corresponds to a
different orbit with a different period than that of the reference particle, namely, the origin of the
CW frame. Thus the only actual and important requirement is that of vanishing of the x offset
term. This term represents Coriolis acceleration in the y direction and comes from integrating

the y equation in the CW equations ([[3). If we require a solution with no offsets, we must have:
Yo + 2Qxg = 0,
do — %Qyo —0. (15)
With these additional constraints on the initial conditions, the bounded and centred solution is:
z(t) = %yo sin Q¢ + xq cos Qt,
y(t) = yo cos Qt — 2z sin O,
z(t) = zg cos QU + % sin Qt. (16)

If moreover we require the distance of the particle from the origin to be constant, equal to d,

say, we get the following equation:

1 32
(Zy?) + 423 + %) sin? Qt + (23 + y2 + 22) cos® Qt +
9. 5
( zSO;O - 3x0y0> sin Qt cos Ot = d?. (17)

After identifying the terms of frequencies 0 and 22 (sin and cos), we obtain the two equations:

22 1
- ah=3(ah-08)

22’02'50

0 = 3ZoYo - (18)
Adding the first to ¢ times the second yields the complex condition:
N 5
(s0+igy) =3 (am+itp)", (19)

from which we obtain,

Z 1
0 = [L\/g,flj() ) 50 = 5/“/52/07 (20)
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where © = +1. The solutions satisfying the requirements of (i) no offset and (ii) fixed distance
to origin are finally of the form,
#(t) = L pocos( — o)
y(t) = —posin(Qt — ¢o) (21)
2(t) = ppoy cos(Q — o),

0
po = \J4xf+ys, tangy = 2y_ (22)
o

The initial conditions are now expressed in terms of (po, ¢o) instead of (xo,yo). We call the

where

solutions satisfying the above requirements as stable. The results that we obtained by taking
Keplerian orbits to the first order in «, are the same as those obtained by using the preceding
CW equations. In the CW frame the equations of the orbits simplify and it is easy to verify the
result. The transformation is only in the (x,y) plane; the z coordinate is undisturbed. Since we
have chosen the reference orbit to be the circle centred at the Sun and radius of R =1 A. U,,

the CW frame (z,y, ) is related to our barycentric (X,Y, Z) frame by:
x = (X — RcosQt) cos Qt + (Y — Rsin Qt) sin O,
y= — (X — RcosQt)sin Qt + (Y — Rsin Qt) cos Q,
z=2. (23)

The orbit equations for the three spacecraft derived in the last section, now simplify and can

again be written in a compact form:

2
xp, = eRcos [Qt —(k— 1)%] ,

Y = — 2eRsin [Qt — (k- 1)%] ,

zr = V3eR cos {Qt — (k- 1)2?71 , (24)
where k = 1,2,3 labels the three space-craft. One immediately recognizes the form of Eqs.(ZII)
for the special case of p = 1 with the initial conditions py = 2eR and ¢9 = 27(k — 1)/3. The
symmetry is now obvious. It is straightforward to verify that the distance between any two
spacecraft is [. Thus the LISA spacecraft constellation rigidly moves as an equilateral triangle
of side [ in this approximation.

In fact, it is possible to establish a general result: In the CW frame there are just two planes
which make angles of £7/3 with the (z-y) plane, in which test particles obeying CW equations and
the stability conditions (as defined above), perform rigid rotations about the origin with angular
velocity —$2.

To see this, consider a test particle at arbitrary (po, ¢o) whose orbit is parametrized by
Eqs.@1I). Consider the frame which is obtained from the CW frame (z,y, z), by first rotating
about the y-axis by pm/3 to obtain the intermediate frame (2/,y’,2’) and then rotating this
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frame about the z’-axis by —€Q¢t. The first rotation transforms the particle trajectories to lie in
the (z',y’) plane. The second rotation by —Q¢ about the z’-axis makes the particle in this new

frame (z”,y"”, 2") stationary! Thus we have in the double-primed coordinates:

2’ (t) = pocosdo, y'(t) = posindy, (25)
showing that the particle is at rest in the new rotating frame. There is thus a one to one mapping
from the set of all stable (as defined above) solutions of the CW equations to the two planes
whose normals 77 are inclined at 30° or 150° with respect to the x direction and rotating at the
angular velocity —€), the rotation axis being 7. The LISA plane corresponds to the choice of
150°, and it is now clear that any particle at rest in this plane, remains at rest in it, so that
any number of spacecraft in this plane would remain at constant relative distances, at least in
the CW approximation, equivalent to a first order calculation in the eccentricities. This further
implies that so far as ‘rigid’ flight formations are desired, equilateral triangle is not the only
choice. Arbitrary formations with any number of spacecraft are possible as long as they obey

the CW equations and satisfy the stability requirements as detailed above.

4. Conclusion

We have explicitly constructed three heliocentric spacecraft orbits which to the first order in
eccentricities maintain equal distances between them which is taken to be 5 million km. We
have shown with the help of a more sophisticated formalism - the CW equations - that there
are two planes in the CW frame, in which particles obeying the CW equations and satisfying
stability requirements, namely, no offsets (and hence no runaway behaviour) and maintaining
equal distance from the origin, maintain their relative distances in the CW approximation which
is equivalent to a first order calculation in the eccentricities. This has the implication that
formations not necessarily triangular and with any number of spacecraft are possible as long as
they obey the stability constraints and lie in any one of these planes; their relative distances will
be maintained within the CW approximation. This result opens up new possibilities of spacecraft
constellations with various geometrical configurations and any number of spacecraft which would

be useful to future space missions.
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