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Fundamentals of the LISA Stable Flight FormationS. V. Dhurandhar1, K. Rajesh Nayak2,3, S. Koshti1 and J-Y. Vinet2
1IUCAA, Postbag 4, Ganeshkind, Pune - 411 007, India.
2ARTEMIS, Observatoire de la Cote d'Azur,BP 4229, 06304 Nie, Frane.
3 Present Address: The University of Texas at Brownsville,80 Fort Brown, Brownsville, TX 78520, USA.Abstrat. The joint NASA-ESA mission LISA relies ruially on the stability of the threespaeraft onstellation. Eah of the spaeraft is in helioentri orbits forming a stabletriangle. The priniples of suh a formation �ight have been formulated long ago and analysisperformed, but seldom presented if ever, even to LISA sientists. We nevertheless need thesedetails in order to arry out theoretial studies on the optial links, simulators et. In thisartile, we present in brief, a model of the LISA onstellation, whih we believe will be usefulfor the LISA ommunity.
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Fundamentals of the LISA Stable Flight Formation 21. IntrodutionLISA is a ESA-NASA mission for observing low frequeny gravitational waves in the frequenyrange from 10−5 Hz to 1 Hz [1℄. In order for LISA to operate suessfully, it is ruial thatthe three spaeraft whih form the hubs of the laser interferometer in spae maintain nearlyonstant distanes between them, though their order of magnitude is 5× 106 km. The existeneof orbits having this property was �rstly reported by Bender [2℄ as the basis of LISA. In orderto thoroughly study the optial links and light propagation between these moving stations, wehowever need a detailed model of the LISA on�guration. We therefore �nd it useful to reallexpliitly the not so trivial priniples of a stable formation �ight. In this brief work, we �rstlystudy three Keplerian orbits around the Sun with small eentriities and adjust the orbitalparameters so that the spaeraft form an equilateral triangle with nearly onstant distanesbetween them. Then we �nd that to the �rst order in the parameter α = l/2R, where l ∼ 5×106km, is the distane between two spaeraft and R = 1 A. U. ∼ 1.5 × 108 km, the distanesbetween spaeraft are exatly onstant; any variation in arm-lengths should result from higherorders in α or from external perturbations of Jupiter and the seular e�et due to the Earth'sgravitational �eld. (The eentriity e is related in a simple way to α and is proportional to αto the �rst order in α.) In fat our analysis shows that suh formations are possible with anynumber of spaeraft provided they lie in a magi plane making an angle of 60◦ with the elipti.We establish this general result with the help of the Hill's or Clohessy-Wiltshire (CW) equations[3℄.2. The hoie of orbits2.1. The exat orbitsThe exat orbits of the three spaeraft are onstruted so that to the �rst order in the parameter
α, the distanes between any two spaeraft remain onstant. Below we give suh a hoie oforbits. This hoie is learly not unique and other hoies are possible whih satisfy some riteriaof optimality suh as the distanes between spaeraft vary as little as possible.We onstrut the orbit of the �rst spaeraft and then obtain the other two orbits byrotations of 120◦ and 240◦. The equation of an elliptial orbit in the (X − Y ) plane is given by[4℄,

X = R(cosψ + e), Y = R
√

1 − e2 sinψ, (1)where R is the semi-major axis of the ellipse, e the eentriity and ψ the eentri anomaly.The fous is at the origin. The eentri anomaly is related to the mean anomaly Ωt by,
ψ + e sinψ = Ωt, (2)where t is the time and Ω the average angular veloity. We have hosen the zero of time whenthe partile is at the farthest point from the fous (this is ontrary to what most books do and



Fundamentals of the LISA Stable Flight Formation 3beause of this hoie of initial ondition we have a positive sign instead of a negative sign onthe left hand side of Eq.(2) ).We hoose the baryentri frame with oordinates (X,Y, Z) as follows: The elipti plane isthe X −Y plane and we �rst onsider a irular referene orbit of radius 1 A. U. entered at theSun. The plane of the LISA triangle makes an angle of 60◦ with the elipti plane. As we shallsee later, we dedue from the CW equations that this allows onstant inter-spaeraft distanesto the �rst order in α. This fat ditates the hoie of orbits of the spaeraft formation. Wehoose spaeraft 1 to be at its highest point (maximum Z) at t = 0. This means that at thispoint, ψ = 0 and Y = 0. Thus to obtain the orbit of the �rst spae-raft we must rotate the orbitin Eq. (1) by a small angle ǫ about the Y−axis so that the spaeraft 1 is lifted by an appropriatedistane above the X − Y plane. In order to obtain the inlination of 60◦, the spaeraft musthave its Z-oordinate equal to l/2. The geometry of the on�guration is shown in Figure 1. From
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Figure 1. The �gure shows the geometry of the orbits and of LISA. The baryentri frame islabelled by (X, Y, Z) while the CW frame is labelled by (x, y, z). SC1, SC2 and SC3 denote thethree spaeraft. The radius of the referene orbit is taken to be R = 1 A. U. and S denotesthe Sun.the geometry ǫ and e are obtained as,
tan ǫ =

α

1 + α/
√

3
, (3)

e =

(

1 +
2√
3
α+

4

3
α2

)1/2

− 1 , (4)and the orbit equations for the spaeraft 1 are given by:
X1 = R(cosψ1 + e) cos ǫ,

Y1 = R
√

1 − e2 sinψ1,

Z1 = R(cosψ1 + e) sin ǫ. (5)The eentri anomaly ψ1 is impliitly given in terms of t by,
ψ1 + e sinψ1 = Ωt. (6)



Fundamentals of the LISA Stable Flight Formation 4The orbits of the spaeraft 2 and 3 are obtained by rotating the orbit of spaeraft 1 by 2π/3and 4π/3 about the Z−axis; the phases ψ2, ψ3 however, must be adjusted so that the spaeraftare about the distane l from eah other. The orbit equations of spaeraft k = 2, 3 are:
Xk = X1 cos

[

2π

3
(k − 1)

]

− Y1 sin

[

2π

3
(k − 1)

]

,

Yk = X1 sin

[

2π

3
(k − 1)

]

+ Y1 cos

[

2π

3
(k − 1)

]

,

Zk = Z1 , (7)with the aveat that the ψ1 is replaed by the phases ψk where they are impliitly given by,
ψk + e sinψk = Ωt− (k − 1)

2π

3
. (8)These are the exat equations of the orbits of the three spaeraft. With these orbits the inter-spaeraft distane varies upto about 100,000 km. In Figure 2 we show how the inter-spaeraftdistanes vary over the ourse of a year. Note that there are other hoies of e and ǫ lose to the

 4.98

 5

 5.02

 5.04

 5.06

 5.08

 5.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
rm

le
ng

th
 in

 u
ni

ts
 o

f 1
06  k

m

Time in years

L23
L31
L12

Figure 2. The variation of the lengths of the arms of LISA (the breathing modes) is shownin units of 106 km, when the exat orbits are omputed. To the �rst order in α the lengths ofthe arms remain onstant and are equal to l = 5× 106 km.above values for the three orbits whih give smaller variations in the armlengths.2.2. The orbits to �rst order in αIn this subsetion we obtain the orbits to the �rst order in α. The tilt ǫ and the eentriity eare given to this order by,
tan ǫ = α, e =

α√
3
. (9)



Fundamentals of the LISA Stable Flight Formation 5We �nd that e is proportional to α and, ǫ ∼ 1.7 × 10−2 and e ∼ 10−2. Then to this order andnow writing α in terms of e, Eqs.(5) beome:
X1 = R(cosψ1 + e),

Y1 = R sinψ1,

Z1 =
√

3eR cosψ1, (10)where the eentri anomaly an be expliitly solved for to the �rst order in e in terms of thetime t:
ψ1 = Ωt− e sin Ωt. (11)The approximate orbits of the spaeraft 2 and 3 an be obtained, as before, by rotating the orbitof spaeraft 1 by 2π/3 and 4π/3 respetively about the Z-axis as in Eq.(7). The orrespondingphases ψ2 and ψ3 now, an be expliitly obtained in terms of t:
ψk = Ωt− (k − 1)

2π

3
− e sin

[

Ωt− (k − 1)
2π

3

]

. (12)In the next setion we prove that to the �rst order in α, the distane between any two spae-raftis l, that it is a onstant and remains so at all times; the LISA onstellation moves rigidly as anequilateral triangle with its entroid traing a irle with radius of 1 A. U. with the Sun as itsentre. To hek this from the above equations is straightforward. We an ompute the distanebetween spaeraft 1 and 2, whih at the lowest order in α proves to be 2αR, the two otherdistanes are equal to the preeding by symmetry. This model sueeded beause we alreadyknew the result. In the next setion, we show with the help of a more sophistiated formalism,how this ase is a speial ase of a muh more general result and that stable formations within�nite number of spaeraft are possible. This result is important beause we then have largenumber of �ight formations to hoose from. Depending on the required physial riteria optimal�ight formations may be seleted.3. The CW frameClohessy and Wiltshire [3℄ make a transformation to a frame - the CW frame (x, y, z) whihhas its origin on the referene orbit and also rotates with angular veloity Ω. The x diretionis normal and oplanar with the orbit, the y diretion is tangential and omoving, and the zdiretion is hosen orthogonal to the orbital plane. They write down the linearised dynamialequations for test-partiles in the neighbourhood of a referene partile (suh as the Earth). Sinethe frame is noninertial, Coriolis and entrifugal fores appear in addition to the tidal fores.The CW equations for a free test partile of oordinates (x, y, z) are:














ẍ− 2Ωẏ − 3Ω2x = 0 ,

ÿ + 2Ωẋ = 0 ,

z̈ + Ω2z = 0 ,

(13)



Fundamentals of the LISA Stable Flight Formation 6where Ω ≡ 2π/1 year. The general solution, depending on six arbitrary parameters is:














x(t) = ẋ0

Ω
sinΩt−

(

3x0 + 2ẏ0

Ω

)

cosΩt+ 2
(

2x0 + ẏ0

Ω

)

,

y(t) =
(

6x0 + 4ẏ0

Ω

)

sin Ωt+ 2ẋ0

Ω
cosΩt− 3(2Ωx0 + ẏ0)t+

(

y0 − 2ẋ0

Ω

)

,

z(t) = z0 cosΩt+ ż0

Ω
sinΩt .

(14)We observe that both x and y ontain onstant terms and y also ontains a term linear in t. Theonstant term in y is merely an o�set and ould be removed without loss of generality by a trivialtranslation of oordinate along the same orbit. The removal of the x o�set also removes the linearterm in t (the runaway solution). In ontrast with the y o�set, the x o�set orresponds to adi�erent orbit with a di�erent period than that of the referene partile, namely, the origin of theCW frame. Thus the only atual and important requirement is that of vanishing of the x o�setterm. This term represents Coriolis aeleration in the y diretion and omes from integratingthe y equation in the CW equations (13). If we require a solution with no o�sets, we must have:
ẏ0 + 2Ωx0 = 0,

ẋ0 −
1

2
Ωy0 = 0. (15)With these additional onstraints on the initial onditions, the bounded and entred solution is:

x(t) =
1

2
y0 sin Ωt+ x0 cosΩt,

y(t) = y0 cosΩt− 2x0 sin Ωt,

z(t) = z0 cosΩt+
ż0
Ω

sin Ωt. (16)If moreover we require the distane of the partile from the origin to be onstant, equal to d,say, we get the following equation:
(

1

4
y2

0 + 4x2

0 +
ż2
0

Ω2

)

sin2 Ωt+ (x2

0 + y2

0 + z2

0) cos2 Ωt+

(

2z0ż0
Ω

− 3x0y0

)

sinΩt cosΩt = d2. (17)After identifying the terms of frequenies 0 and 2Ω (sin and os), we obtain the two equations:
z2

0 −
ż2
0

Ω2
= 3

(

x2

0 −
1

4
y2

0

)

,

2z0ż0
Ω

= 3x0y0 . (18)Adding the �rst to i times the seond yields the omplex ondition:
(

z0 + i
ż0
Ω

)2

= 3
(

x0 + i
y0
2

)2

, (19)from whih we obtain,
z0 = µ

√
3x0 ,

ż0
Ω

=
1

2
µ
√

3y0, (20)



Fundamentals of the LISA Stable Flight Formation 7where µ = ±1. The solutions satisfying the requirements of (i) no o�set and (ii) �xed distaneto origin are �nally of the form,














x(t) = 1

2
ρ0 cos(Ωt− φ0)

y(t) = −ρ0 sin(Ωt− φ0)

z(t) = µρ0

√
3

2
cos(Ωt− φ0),

(21)where
ρ0 =

√

4x2
0

+ y2
0
, tanφ0 =

y0
2x0

. (22)The initial onditions are now expressed in terms of (ρ0, φ0) instead of (x0, y0). We all thesolutions satisfying the above requirements as stable. The results that we obtained by takingKeplerian orbits to the �rst order in α, are the same as those obtained by using the preedingCW equations. In the CW frame the equations of the orbits simplify and it is easy to verify theresult. The transformation is only in the (x, y) plane; the z oordinate is undisturbed. Sine wehave hosen the referene orbit to be the irle entred at the Sun and radius of R = 1 A. U.,the CW frame (x, y, z) is related to our baryentri (X,Y, Z) frame by:
x = (X −R cosΩt) cosΩt+ (Y −R sin Ωt) sin Ωt,

y = − (X −R cosΩt) sin Ωt+ (Y −R sin Ωt) cosΩt,

z = Z. (23)The orbit equations for the three spaeraft derived in the last setion, now simplify and anagain be written in a ompat form:
xk = eR cos

[

Ωt− (k − 1)
2π

3

]

,

yk = − 2eR sin

[

Ωt− (k − 1)
2π

3

]

,

zk =
√

3eR cos

[

Ωt− (k − 1)
2π

3

]

, (24)where k = 1, 2, 3 labels the three spae-raft. One immediately reognizes the form of Eqs.(21)for the speial ase of µ = 1 with the initial onditions ρ0 = 2eR and φ0 = 2π(k − 1)/3. Thesymmetry is now obvious. It is straightforward to verify that the distane between any twospaeraft is l. Thus the LISA spaeraft onstellation rigidly moves as an equilateral triangleof side l in this approximation.In fat, it is possible to establish a general result: In the CW frame there are just two planeswhih make angles of ±π/3 with the (x-y) plane, in whih test partiles obeying CW equations andthe stability onditions (as de�ned above), perform rigid rotations about the origin with angularveloity −Ω.To see this, onsider a test partile at arbitrary (ρ0, φ0) whose orbit is parametrized byEqs.(21). Consider the frame whih is obtained from the CW frame (x, y, z), by �rst rotatingabout the y-axis by µπ/3 to obtain the intermediate frame (x′, y′, z′) and then rotating this



Fundamentals of the LISA Stable Flight Formation 8frame about the z′-axis by −Ωt. The �rst rotation transforms the partile trajetories to lie inthe (x′, y′) plane. The seond rotation by −Ωt about the z′-axis makes the partile in this newframe (x′′, y′′, z′′) stationary! Thus we have in the double-primed oordinates:
x′′(t) = ρ0 cosφ0, y′′(t) = ρ0 sinφ0 , (25)showing that the partile is at rest in the new rotating frame. There is thus a one to one mappingfrom the set of all stable (as de�ned above) solutions of the CW equations to the two planeswhose normals ~n are inlined at 30◦ or 150◦ with respet to the x diretion and rotating at theangular veloity −Ω, the rotation axis being ~n. The LISA plane orresponds to the hoie of

150◦, and it is now lear that any partile at rest in this plane, remains at rest in it, so thatany number of spaeraft in this plane would remain at onstant relative distanes, at least inthe CW approximation, equivalent to a �rst order alulation in the eentriities. This furtherimplies that so far as `rigid' �ight formations are desired, equilateral triangle is not the onlyhoie. Arbitrary formations with any number of spaeraft are possible as long as they obeythe CW equations and satisfy the stability requirements as detailed above.4. ConlusionWe have expliitly onstruted three helioentri spaeraft orbits whih to the �rst order ineentriities maintain equal distanes between them whih is taken to be 5 million km. Wehave shown with the help of a more sophistiated formalism - the CW equations - that thereare two planes in the CW frame, in whih partiles obeying the CW equations and satisfyingstability requirements, namely, no o�sets (and hene no runaway behaviour) and maintainingequal distane from the origin, maintain their relative distanes in the CW approximation whihis equivalent to a �rst order alulation in the eentriities. This has the impliation thatformations not neessarily triangular and with any number of spaeraft are possible as long asthey obey the stability onstraints and lie in any one of these planes; their relative distanes willbe maintained within the CW approximation. This result opens up new possibilities of spaeraftonstellations with various geometrial on�gurations and any number of spaeraft whih wouldbe useful to future spae missions.AknowledgmentsSD would like to thank IFCPAR for travel support and the Observatoire de la C�te D'Azur, Nie,Frane for loal hospitality, where substantial part of this work was arried out. SK would liketo aknowledge DST, India for the WOS-A. All the authors would like to thank E. Chassande-Mottin for detailed disussions.



Fundamentals of the LISA Stable Flight Formation 9[1℄ "LISA: A Cornerstone Mission for the Observation of Gravitational Waves", System and Tehnology StudyReport, 2000.[2℄ M.A. Vinent and P.L. Bender, Pro. Astrodynamis Speialist Conferene (Kalispell USA) (Univelt, SanDiego, 1987) 1346.[3℄ W. H. Clohessy and R. S. Wiltshire, Journal of Aerospae Sienes, 653 - 658 (1960);D. A. Vallado, Foundations of Astrodynamis and Appliations, 2nd edition 2001, Miroosm PressKluwer;also in S. Nerem, http://ar.olorado.edu/asen5050/leture12.pdf(2003).[4℄ R. M. L. Baker and M. W. Makemson, An introdution to Astrodynamis, Aademi Press, 1960.
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