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Fundamentals of the LISA Stable Flight FormationS. V. Dhurandhar1, K. Rajesh Nayak2,3, S. Koshti1 and J-Y. Vinet2
1IUCAA, Postbag 4, Ganeshkind, Pune - 411 007, India.
2ARTEMIS, Observatoire de la Cote d'Azur,BP 4229, 06304 Ni
e, Fran
e.
3 Present Address: The University of Texas at Brownsville,80 Fort Brown, Brownsville, TX 78520, USA.Abstra
t. The joint NASA-ESA mission LISA relies 
ru
ially on the stability of the threespa
e
raft 
onstellation. Ea
h of the spa
e
raft is in helio
entri
 orbits forming a stabletriangle. The prin
iples of su
h a formation �ight have been formulated long ago and analysisperformed, but seldom presented if ever, even to LISA s
ientists. We nevertheless need thesedetails in order to 
arry out theoreti
al studies on the opti
al links, simulators et
. In thisarti
le, we present in brief, a model of the LISA 
onstellation, whi
h we believe will be usefulfor the LISA 
ommunity.
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Fundamentals of the LISA Stable Flight Formation 21. Introdu
tionLISA is a ESA-NASA mission for observing low frequen
y gravitational waves in the frequen
yrange from 10−5 Hz to 1 Hz [1℄. In order for LISA to operate su

essfully, it is 
ru
ial thatthe three spa
e
raft whi
h form the hubs of the laser interferometer in spa
e maintain nearly
onstant distan
es between them, though their order of magnitude is 5× 106 km. The existen
eof orbits having this property was �rstly reported by Bender [2℄ as the basis of LISA. In orderto thoroughly study the opti
al links and light propagation between these moving stations, wehowever need a detailed model of the LISA 
on�guration. We therefore �nd it useful to re
allexpli
itly the not so trivial prin
iples of a stable formation �ight. In this brief work, we �rstlystudy three Keplerian orbits around the Sun with small e

entri
ities and adjust the orbitalparameters so that the spa
e
raft form an equilateral triangle with nearly 
onstant distan
esbetween them. Then we �nd that to the �rst order in the parameter α = l/2R, where l ∼ 5×106km, is the distan
e between two spa
e
raft and R = 1 A. U. ∼ 1.5 × 108 km, the distan
esbetween spa
e
raft are exa
tly 
onstant; any variation in arm-lengths should result from higherorders in α or from external perturbations of Jupiter and the se
ular e�e
t due to the Earth'sgravitational �eld. (The e

entri
ity e is related in a simple way to α and is proportional to αto the �rst order in α.) In fa
t our analysis shows that su
h formations are possible with anynumber of spa
e
raft provided they lie in a magi
 plane making an angle of 60◦ with the e
lipti
.We establish this general result with the help of the Hill's or Clohessy-Wiltshire (CW) equations[3℄.2. The 
hoi
e of orbits2.1. The exa
t orbitsThe exa
t orbits of the three spa
e
raft are 
onstru
ted so that to the �rst order in the parameter
α, the distan
es between any two spa
e
raft remain 
onstant. Below we give su
h a 
hoi
e oforbits. This 
hoi
e is 
learly not unique and other 
hoi
es are possible whi
h satisfy some 
riteriaof optimality su
h as the distan
es between spa
e
raft vary as little as possible.We 
onstru
t the orbit of the �rst spa
e
raft and then obtain the other two orbits byrotations of 120◦ and 240◦. The equation of an ellipti
al orbit in the (X − Y ) plane is given by[4℄,

X = R(cosψ + e), Y = R
√

1 − e2 sinψ, (1)where R is the semi-major axis of the ellipse, e the e

entri
ity and ψ the e

entri
 anomaly.The fo
us is at the origin. The e

entri
 anomaly is related to the mean anomaly Ωt by,
ψ + e sinψ = Ωt, (2)where t is the time and Ω the average angular velo
ity. We have 
hosen the zero of time whenthe parti
le is at the farthest point from the fo
us (this is 
ontrary to what most books do and



Fundamentals of the LISA Stable Flight Formation 3be
ause of this 
hoi
e of initial 
ondition we have a positive sign instead of a negative sign onthe left hand side of Eq.(2) ).We 
hoose the bary
entri
 frame with 
oordinates (X,Y, Z) as follows: The e
lipti
 plane isthe X −Y plane and we �rst 
onsider a 
ir
ular referen
e orbit of radius 1 A. U. 
entered at theSun. The plane of the LISA triangle makes an angle of 60◦ with the e
lipti
 plane. As we shallsee later, we dedu
e from the CW equations that this allows 
onstant inter-spa
e
raft distan
esto the �rst order in α. This fa
t di
tates the 
hoi
e of orbits of the spa
e
raft formation. We
hoose spa
e
raft 1 to be at its highest point (maximum Z) at t = 0. This means that at thispoint, ψ = 0 and Y = 0. Thus to obtain the orbit of the �rst spa
e-
raft we must rotate the orbitin Eq. (1) by a small angle ǫ about the Y−axis so that the spa
e
raft 1 is lifted by an appropriatedistan
e above the X − Y plane. In order to obtain the in
lination of 60◦, the spa
e
raft musthave its Z-
oordinate equal to l/2. The geometry of the 
on�guration is shown in Figure 1. From
60
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Figure 1. The �gure shows the geometry of the orbits and of LISA. The bary
entri
 frame islabelled by (X, Y, Z) while the CW frame is labelled by (x, y, z). SC1, SC2 and SC3 denote thethree spa
e
raft. The radius of the referen
e orbit is taken to be R = 1 A. U. and S denotesthe Sun.the geometry ǫ and e are obtained as,
tan ǫ =

α

1 + α/
√

3
, (3)

e =

(

1 +
2√
3
α+

4

3
α2

)1/2

− 1 , (4)and the orbit equations for the spa
e
raft 1 are given by:
X1 = R(cosψ1 + e) cos ǫ,

Y1 = R
√

1 − e2 sinψ1,

Z1 = R(cosψ1 + e) sin ǫ. (5)The e

entri
 anomaly ψ1 is impli
itly given in terms of t by,
ψ1 + e sinψ1 = Ωt. (6)



Fundamentals of the LISA Stable Flight Formation 4The orbits of the spa
e
raft 2 and 3 are obtained by rotating the orbit of spa
e
raft 1 by 2π/3and 4π/3 about the Z−axis; the phases ψ2, ψ3 however, must be adjusted so that the spa
e
raftare about the distan
e l from ea
h other. The orbit equations of spa
e
raft k = 2, 3 are:
Xk = X1 cos

[

2π

3
(k − 1)

]

− Y1 sin

[

2π

3
(k − 1)

]

,

Yk = X1 sin

[

2π

3
(k − 1)

]

+ Y1 cos

[

2π

3
(k − 1)

]

,

Zk = Z1 , (7)with the 
aveat that the ψ1 is repla
ed by the phases ψk where they are impli
itly given by,
ψk + e sinψk = Ωt− (k − 1)

2π

3
. (8)These are the exa
t equations of the orbits of the three spa
e
raft. With these orbits the inter-spa
e
raft distan
e varies upto about 100,000 km. In Figure 2 we show how the inter-spa
e
raftdistan
es vary over the 
ourse of a year. Note that there are other 
hoi
es of e and ǫ 
lose to the

 4.98

 5

 5.02

 5.04

 5.06

 5.08

 5.1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
rm

le
ng

th
 in

 u
ni

ts
 o

f 1
06  k

m

Time in years

L23
L31
L12

Figure 2. The variation of the lengths of the arms of LISA (the breathing modes) is shownin units of 106 km, when the exa
t orbits are 
omputed. To the �rst order in α the lengths ofthe arms remain 
onstant and are equal to l = 5× 106 km.above values for the three orbits whi
h give smaller variations in the armlengths.2.2. The orbits to �rst order in αIn this subse
tion we obtain the orbits to the �rst order in α. The tilt ǫ and the e

entri
ity eare given to this order by,
tan ǫ = α, e =

α√
3
. (9)



Fundamentals of the LISA Stable Flight Formation 5We �nd that e is proportional to α and, ǫ ∼ 1.7 × 10−2 and e ∼ 10−2. Then to this order andnow writing α in terms of e, Eqs.(5) be
ome:
X1 = R(cosψ1 + e),

Y1 = R sinψ1,

Z1 =
√

3eR cosψ1, (10)where the e

entri
 anomaly 
an be expli
itly solved for to the �rst order in e in terms of thetime t:
ψ1 = Ωt− e sin Ωt. (11)The approximate orbits of the spa
e
raft 2 and 3 
an be obtained, as before, by rotating the orbitof spa
e
raft 1 by 2π/3 and 4π/3 respe
tively about the Z-axis as in Eq.(7). The 
orrespondingphases ψ2 and ψ3 now, 
an be expli
itly obtained in terms of t:
ψk = Ωt− (k − 1)

2π

3
− e sin

[

Ωt− (k − 1)
2π

3

]

. (12)In the next se
tion we prove that to the �rst order in α, the distan
e between any two spa
e-
raftis l, that it is a 
onstant and remains so at all times; the LISA 
onstellation moves rigidly as anequilateral triangle with its 
entroid tra
ing a 
ir
le with radius of 1 A. U. with the Sun as its
entre. To 
he
k this from the above equations is straightforward. We 
an 
ompute the distan
ebetween spa
e
raft 1 and 2, whi
h at the lowest order in α proves to be 2αR, the two otherdistan
es are equal to the pre
eding by symmetry. This model su

eeded be
ause we alreadyknew the result. In the next se
tion, we show with the help of a more sophisti
ated formalism,how this 
ase is a spe
ial 
ase of a mu
h more general result and that stable formations within�nite number of spa
e
raft are possible. This result is important be
ause we then have largenumber of �ight formations to 
hoose from. Depending on the required physi
al 
riteria optimal�ight formations may be sele
ted.3. The CW frameClohessy and Wiltshire [3℄ make a transformation to a frame - the CW frame (x, y, z) whi
hhas its origin on the referen
e orbit and also rotates with angular velo
ity Ω. The x dire
tionis normal and 
oplanar with the orbit, the y dire
tion is tangential and 
omoving, and the zdire
tion is 
hosen orthogonal to the orbital plane. They write down the linearised dynami
alequations for test-parti
les in the neighbourhood of a referen
e parti
le (su
h as the Earth). Sin
ethe frame is noninertial, Coriolis and 
entrifugal for
es appear in addition to the tidal for
es.The CW equations for a free test parti
le of 
oordinates (x, y, z) are:














ẍ− 2Ωẏ − 3Ω2x = 0 ,

ÿ + 2Ωẋ = 0 ,

z̈ + Ω2z = 0 ,

(13)



Fundamentals of the LISA Stable Flight Formation 6where Ω ≡ 2π/1 year. The general solution, depending on six arbitrary parameters is:














x(t) = ẋ0

Ω
sinΩt−

(

3x0 + 2ẏ0

Ω

)

cosΩt+ 2
(

2x0 + ẏ0

Ω

)

,

y(t) =
(

6x0 + 4ẏ0

Ω

)

sin Ωt+ 2ẋ0

Ω
cosΩt− 3(2Ωx0 + ẏ0)t+

(

y0 − 2ẋ0

Ω

)

,

z(t) = z0 cosΩt+ ż0

Ω
sinΩt .

(14)We observe that both x and y 
ontain 
onstant terms and y also 
ontains a term linear in t. The
onstant term in y is merely an o�set and 
ould be removed without loss of generality by a trivialtranslation of 
oordinate along the same orbit. The removal of the x o�set also removes the linearterm in t (the runaway solution). In 
ontrast with the y o�set, the x o�set 
orresponds to adi�erent orbit with a di�erent period than that of the referen
e parti
le, namely, the origin of theCW frame. Thus the only a
tual and important requirement is that of vanishing of the x o�setterm. This term represents Coriolis a

eleration in the y dire
tion and 
omes from integratingthe y equation in the CW equations (13). If we require a solution with no o�sets, we must have:
ẏ0 + 2Ωx0 = 0,

ẋ0 −
1

2
Ωy0 = 0. (15)With these additional 
onstraints on the initial 
onditions, the bounded and 
entred solution is:

x(t) =
1

2
y0 sin Ωt+ x0 cosΩt,

y(t) = y0 cosΩt− 2x0 sin Ωt,

z(t) = z0 cosΩt+
ż0
Ω

sin Ωt. (16)If moreover we require the distan
e of the parti
le from the origin to be 
onstant, equal to d,say, we get the following equation:
(

1

4
y2

0 + 4x2

0 +
ż2
0

Ω2

)

sin2 Ωt+ (x2

0 + y2

0 + z2

0) cos2 Ωt+

(

2z0ż0
Ω

− 3x0y0

)

sinΩt cosΩt = d2. (17)After identifying the terms of frequen
ies 0 and 2Ω (sin and 
os), we obtain the two equations:
z2

0 −
ż2
0

Ω2
= 3

(

x2

0 −
1

4
y2

0

)

,

2z0ż0
Ω

= 3x0y0 . (18)Adding the �rst to i times the se
ond yields the 
omplex 
ondition:
(

z0 + i
ż0
Ω

)2

= 3
(

x0 + i
y0
2

)2

, (19)from whi
h we obtain,
z0 = µ

√
3x0 ,

ż0
Ω

=
1

2
µ
√

3y0, (20)



Fundamentals of the LISA Stable Flight Formation 7where µ = ±1. The solutions satisfying the requirements of (i) no o�set and (ii) �xed distan
eto origin are �nally of the form,














x(t) = 1

2
ρ0 cos(Ωt− φ0)

y(t) = −ρ0 sin(Ωt− φ0)

z(t) = µρ0

√
3

2
cos(Ωt− φ0),

(21)where
ρ0 =

√

4x2
0

+ y2
0
, tanφ0 =

y0
2x0

. (22)The initial 
onditions are now expressed in terms of (ρ0, φ0) instead of (x0, y0). We 
all thesolutions satisfying the above requirements as stable. The results that we obtained by takingKeplerian orbits to the �rst order in α, are the same as those obtained by using the pre
edingCW equations. In the CW frame the equations of the orbits simplify and it is easy to verify theresult. The transformation is only in the (x, y) plane; the z 
oordinate is undisturbed. Sin
e wehave 
hosen the referen
e orbit to be the 
ir
le 
entred at the Sun and radius of R = 1 A. U.,the CW frame (x, y, z) is related to our bary
entri
 (X,Y, Z) frame by:
x = (X −R cosΩt) cosΩt+ (Y −R sin Ωt) sin Ωt,

y = − (X −R cosΩt) sin Ωt+ (Y −R sin Ωt) cosΩt,

z = Z. (23)The orbit equations for the three spa
e
raft derived in the last se
tion, now simplify and 
anagain be written in a 
ompa
t form:
xk = eR cos

[

Ωt− (k − 1)
2π

3

]

,

yk = − 2eR sin

[

Ωt− (k − 1)
2π

3

]

,

zk =
√

3eR cos

[

Ωt− (k − 1)
2π

3

]

, (24)where k = 1, 2, 3 labels the three spa
e-
raft. One immediately re
ognizes the form of Eqs.(21)for the spe
ial 
ase of µ = 1 with the initial 
onditions ρ0 = 2eR and φ0 = 2π(k − 1)/3. Thesymmetry is now obvious. It is straightforward to verify that the distan
e between any twospa
e
raft is l. Thus the LISA spa
e
raft 
onstellation rigidly moves as an equilateral triangleof side l in this approximation.In fa
t, it is possible to establish a general result: In the CW frame there are just two planeswhi
h make angles of ±π/3 with the (x-y) plane, in whi
h test parti
les obeying CW equations andthe stability 
onditions (as de�ned above), perform rigid rotations about the origin with angularvelo
ity −Ω.To see this, 
onsider a test parti
le at arbitrary (ρ0, φ0) whose orbit is parametrized byEqs.(21). Consider the frame whi
h is obtained from the CW frame (x, y, z), by �rst rotatingabout the y-axis by µπ/3 to obtain the intermediate frame (x′, y′, z′) and then rotating this



Fundamentals of the LISA Stable Flight Formation 8frame about the z′-axis by −Ωt. The �rst rotation transforms the parti
le traje
tories to lie inthe (x′, y′) plane. The se
ond rotation by −Ωt about the z′-axis makes the parti
le in this newframe (x′′, y′′, z′′) stationary! Thus we have in the double-primed 
oordinates:
x′′(t) = ρ0 cosφ0, y′′(t) = ρ0 sinφ0 , (25)showing that the parti
le is at rest in the new rotating frame. There is thus a one to one mappingfrom the set of all stable (as de�ned above) solutions of the CW equations to the two planeswhose normals ~n are in
lined at 30◦ or 150◦ with respe
t to the x dire
tion and rotating at theangular velo
ity −Ω, the rotation axis being ~n. The LISA plane 
orresponds to the 
hoi
e of

150◦, and it is now 
lear that any parti
le at rest in this plane, remains at rest in it, so thatany number of spa
e
raft in this plane would remain at 
onstant relative distan
es, at least inthe CW approximation, equivalent to a �rst order 
al
ulation in the e

entri
ities. This furtherimplies that so far as `rigid' �ight formations are desired, equilateral triangle is not the only
hoi
e. Arbitrary formations with any number of spa
e
raft are possible as long as they obeythe CW equations and satisfy the stability requirements as detailed above.4. Con
lusionWe have expli
itly 
onstru
ted three helio
entri
 spa
e
raft orbits whi
h to the �rst order ine

entri
ities maintain equal distan
es between them whi
h is taken to be 5 million km. Wehave shown with the help of a more sophisti
ated formalism - the CW equations - that thereare two planes in the CW frame, in whi
h parti
les obeying the CW equations and satisfyingstability requirements, namely, no o�sets (and hen
e no runaway behaviour) and maintainingequal distan
e from the origin, maintain their relative distan
es in the CW approximation whi
his equivalent to a �rst order 
al
ulation in the e

entri
ities. This has the impli
ation thatformations not ne
essarily triangular and with any number of spa
e
raft are possible as long asthey obey the stability 
onstraints and lie in any one of these planes; their relative distan
es willbe maintained within the CW approximation. This result opens up new possibilities of spa
e
raft
onstellations with various geometri
al 
on�gurations and any number of spa
e
raft whi
h wouldbe useful to future spa
e missions.A
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