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The effect of nitric oxide (NO) on the luminol-dependent 
chemiluminescence (LCL)  response  of rat polymorphonu- 
clear leukocytes (PMNLs) was analyzed by using sodium ni- 
troprusside (SNP), a NO donor, and L-arginine (L-arg),  a NO 
precursor.  A significant reduction in  the LCL intensity was 
observed in presence  of SNP (100 pmol/L) or L-arg (5 or 10 
mmol/L)  in arachidonic  acid (AA) phorbol ester (PMA) and 
formyl-methionyl-leucyi-phenylalanine stimulated PMNLs. 
However, opsonized zymosan-induced LCL was  not attenu- 
ated significantly. Reduction in hydroxyl radical and super- 
oxide generation was also  observed in SNP-  or L-arg-pre- 

ITRIC OXIDE (NO) is known to serve a variety of 
physiologic functions such as mediating endothelial- 

derived relaxation of vascular smooth muscle,’.* inhibiting 
platelet aggregation and adhe~ion,~ acting as a neuronal mes- 
senger: and acting as a cytotoxic moiety in ma~rophage.~,~ 
L-arginine (L-arg) is converted into NO and L-citrulline 
through the enzyme nitric oxide synthase (NOS). This is of 
two types, one is calcium-dependent and the other is cal- 
cium-inde~endent.~  Polymorphonuclear  leukocytes 
(PMNLs) and macrophages can synthesize NO from L-arg 
in presence of calcium-independent NOS. 

PMNLs  and  macrophage,  when  exposed  to  soluble or par- 
ticulate  stimuli, generate reactive  oxygen  specie^.^ Superoxide 
radical and NO can  react  together  to  generate peroxynitrite, 
a relatively  long-lasting  strong  oxidant,  and  hydroxyl  radi- 
c a l ~ . ’ ~  In mice  and rats, NOS  activity  in  macrophage  can be 
induced by immunologic  stimuli  and  their  cytotoxic  potential 
has  been found to be proportional  to  their  nitrite-secreting 
capacity.“.’’ However,  human  macrophage  (which  possesses 
well-developed  antitumor  and  microbicidal capacities) immu- 
nomodulator-mediated  alteration of NO  synthesis  is  contro- 
versial.’2.’3 Similarly, the role of  NO in PMNLs is also not 
well defined. Exogenous  addition of  NO to  human  neutrophils 
in vitro has been found to inhibit superoxide radical  produc- 
tion.I4 On the other hand,  Rubanyi et all5 have  reported  that 
NO  inactivates  the  superoxide  radical by scavenging  and  have 
suggested  that  NO  released from human  PMNLs  performs 
cytoprotective function. The role of NO as a microbicidal  in 
cytoplasts  derived  from  human  PMNLs  has  been  demon- 
strated by Malawista et al.’6 Involvement of NO has also been 
proposed  in  PMNLs chemotaxi~,’~.’’ aggregation,” PMNL- 
mediated tissue damage,” and  adhesion  to  endothelium.*‘ 

We have earlier demonstrated that circulating PMNLs of 
rat release NO that was potentiated after thrombosis,22 
whereas Wang et aI2’ reported that PMNLs do not release 
NO and, by adding extracellular arginine, there was  no syn- 
thesis of peroxynitrite radicals. The role of PMNL-derived 
NO in their functions is thus still not clear. 

The present investigation was therefore undertaken  to 
study the interaction of NOL-arg pathway and the reactive 
oxygen species in  rat peripheral leukocytes that release NO 
as well as superoxide radicals, to  understand more clearly 
the involvement of  NO  in thrombosis. 

N 

MATERIALS AND METHODS 

Chemicals. Arachidonic acid (AA), fenicytochrome C (Cyt C), 
superoxide dismutase (SOD), L-arg, D-arginine (D-arg), 2-deoxy- 
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treated cells. D-Arg (10 mmol/L)  pretreatment  did  not inhibit 
PMNLs’ LCL response. Furthermore, methylene blue (5 
pmol/L) and L-NO-mono methyl-L-arginine (100 or 300 pmol/ 
L) significantly attenuated the LCL response,  as induced by 
various agonists. Cyclic GMP  did  not alter the reactive oxy- 
gen species generation from  rat PMNLs. In addition, AA- 
induced release of myeloperoxidase, a marker of  azurophilic 
granules, was found to  be enhanced in L-arg- (10 mrnol/L) 
pretreated PMNLs. The results suggest that  NO inhibits free 
radical generation from  rat PMNLs. 
0 1994 by The American  Society of Hematology. 

D-ribose, dextran-500, NG-monomethyl-L-arginine (L-NMMA), N- 
nitro-L-arginine methyl ester (L-NAME), luminol, hemoglobin (Hb), 
nitroblue tetrazolium (NBT), phenazine methosulfate (PMS), meth- 
ylene blue (MB), phorbol myristate-13-acetate (PMA), formyl-meth- 
ionyl-leucyl-phenylalanine (FMLP), 8-bromo cyclic-GMP (cGMP), 
thiobarbituric acid (TBA), zymosan particles, micrococcus luteus, 
and 0-dianisidine and N-( 1 -naphthyl)-ethylenediamine dihydrochlo- 
ride were purchased from Sigma Chemical CO (St Louis, MO). Leu- 
kocyte-separating medium (Organon Tenika Corp, Durham, NC)  and 
all other chemicals used in the present  study were of analytical grade 
(SRL, Bombay, India). 

Preparation of the reagents. Stock solution of FMLP (100 pmoU 
L), luminol (100 mmol/L), and PMA (1 mom) were made in di- 
methyl sulphoxide (DMSO) and were stored at  -70°C  in aliquot. 

Opsonized zymosan (OZ) was prepared by treating the  washed 
zymosan particles with fresh autologous serum (rat) for 30 minutes 
at 3 7 T ,  followed by removal of the serum by centrifugation. The 
particles were resuspended in Hanks’ Balanced Salt Solution (HBSS) 
and a stock solution of 12.5 mg/mL was stored in aliquot at -70°C. 

PMNLs isolation. Male Sprague-Dawley albino rats (130  to 150 
g) were obtained from CDRI (Lucknow, India) animal house colony. 
Rat polymorphonuclear leukocytes were prepared by the  method  of 
Boy~m. ’~  Blood  was collected in sodium citrate (0.129 mom, pH 
6.5, 9: 1) by cardiac puncture under ether anaesthesia. Platelet-rich 
plasma was removed by centrifugation at 150g for 20 minutes, and 
the buffy coat was subjected to dextran sedimentation as described 
in detail previously.** In some experiments on luminol chemilumi- 
nescence response, PMNLs further purified by leukocyte-separating 
media were also used. Cells obtained were suspended in HBSS and 
were counted. The viability  of the cells was tested by the trypan 
blue exclusion test in some experiments and  was never less than 
95%. PMNLs were stored at 4°C  until the time of experimentation, 
which never exceeded 2 to 3 hours. 
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Measurement of luminol-dependent chemiluminescence (LCL). 
Free radical generation from PMNLs, stimulated with various ago- 
nists such as AA ( 5  X lo-‘ m o a ) ,  FMLP ( l  pmol/L), OZ (1.25 
pg), and  PMA (3 X mom), was measured, at 37°C  with con- 
stant stirring at 900 rpm, using a dual-channel Lumiaggregometer 
(Model 560; Chronolog Corp, Havertown, PA). Free radical genera- 
tion has been reported as LCL units,  which have been  defined as 
maximum output (obtained from stimulated PMNLs) divided by  the 
“gain setting” of the instrument at  the time of response. Assay 
mixture ( l o o 0  pL) contained 1 to 5 X lo6 PMNLs, 10 Fmol/L 
luminol, the test substance, and  the agonist. 

Superoxide  anion  generation. 0; generation  was  monitored by  the 
SOD-inhibitable  reduction of cytochrome C.2s  PMNLs  were  incubated 
in the  presence or absence of  L-arg along  with 60 pmol/L of  Cyt C at 
37°C for 5 minutes.  Control  was  run in presence of SOD (30 U/mL). 
The  production of superoxide radicals  was  initiated by  AA (2.5 X 
morn) and  followed  for  20 to 30 minutes at 550 nm  at  37°C. 

Nonenzymatic generation of superoxide radical. The test sub- 
stances were preincubated with 10 p m o K  phenazine methosulphate 
(PMS) and 25 pmol/L nitroblue tetrazolium (NBT) in phosphate 
buffer (0.1 mom, pH 7.4) for 5 minutes at room temperature. The 
reaction was started by adding 78  pmoVL  NADH  and  the absorbance 
of the reaction mixture was read at 560 nm against the blank  without 
PMS for 2 minutes at  room temperature.26 

Quantiration of malonaldehyde (MDA). Levels of  MDA were 
measured in the PMNLs ( l  X IO’ cells) with or without L-arg (IO 
mmol/L), after 1 hour of incubation at  37°C  with the inducers used 
for LCL response, as TBA-reactive material.” 

Estimation of hydroxyl radical. The estimation was performed 
by the method of Greenwald et Reaction mixture contained 10 
mmol/L deoxyribose, 0.1 mmom Fe(II1)-EDTA, 5 X IO6 cells, and 
PMNL’s agonists (equivalent concentrations used for chemilumines- 
cence). Blanks without the agonists were also run. Degradation of 
the deoxyribose was measured at 532 nm after development of color 
with  TBA  and trichloroacetic acid (TCA). 

Nitrite measurement. Nitrite content of  the suspending medium 
of the PMNLs was measured by diazo formation according to Ben- 
nett et PMNLs (1 X IO7 cells) were suspended in HBSS and 
incubated in a shaking water bath at 37°C for 60 minutes with or 
without L-arg, PMA, AA, FMLP, or OZ (in  the equivalent concentra- 
tions  used for obtaining the chemiluminescence response). Supema- 
tant  was collected after centrifugation and was kept  on ice. Superna- 
tant (500 @L) was mixed with 500 @L water and 500 pL 1% (wt/ 
vol) sulfanilic acid in 2 N HC1. After 5 minutes, 500 p L  of  1% (wt/ 
vol) aqueous N-( l-naphthyl)-ethylenediamine dihydrochloride was 
added and the absorbance was measured at 548 nm. A sodium nitrite 
standard curve was prepared with each experiment. 

Determination of myeloperoxidase and lysozyme activities. Re- 
lease of the granular enzymes was measured in  the PMNLs sus- 
pending medium with and without L-arg. Myekoperoxidase3”  and 
lysozyme” were measured according to standard procedures in the 
supematant after PMNLs were stimulated with various secreto- 
gogues and incubated for 15 minutes at  37°C. Total enzyme activity 
was measured after PMNLs were lysed by sonication (Ultrasonics, 
Farmingdale, NY). Release of the cytoplasmic enzyme lactate dehy- 
drogenase” was  used as a marker of cell viability and was not more 
than 6% in any experiment. 

Statisrical analysis. Values reported in the results are mean ? 
SE. Comparisons of the differences between the groups were per- 
formed by the Mann-Whitney-U-test. P < .05 was considered sig- 
nificant. The number of experiments performed in each set was never 
less than  three. 

RESULTS 

FMLP,  AA,  PMA, and OZ induced  hminol-dependent 
chemiluminescence  in  rat  neutrophils. Free radical genera- 

tion, as measured by luminol-dependent chemiluminescence, 
in  rat  PMNLs ( I  to 5 X lo6 cells/mL) has  been summarized 
in Table 1. The profile of FMLP- ( 1 X mol&) and AA- 
(5 X molk) induced chemiluminescence response was 
similar. An initial peak of light generation was observed 
within 23.85 2 0.9 seconds and  41.87 -C 2.3 seconds, after 
the addition of FMLP and AA, respectively (Fig 1). How- 
ever, on addition of  PMA (3 X mom) and OZ ( l  .25 
pg) to the PMNLs, luminol chemiluminescence started after 
a lag phase of 180.0 2 21.6 seconds and  29.27 2 1.3 seconds, 
and reached its maximum in 16.0 2 1.6 minutes and 2.94 
i 0.1 minutes, respectively (Fig l). PMA  in  the concentra- 
tion  used  was found to  be the most  potent inducer of free 
radical generation (Table 1). Generation of free radicals by 
AA, OZ, and FMLP was 53% ( P  < .OS),  38% ( P  < .Ol), 
and  25% ( P  < .Ol), respectively, in comparison to PMA 
(Table 1). 

Alteration of lurninol-dependent  chemiluminescence by 
SNP and  arginine  analogues. SNP, a nitric oxide donor, 
added to the PMNLs  in 10 to 100 pmol/L concentration, 5 
minutes before AA (5 X mom), reduced the free radi- 
cal generation in a concentration-dependent manner (Fig 2). 
Maximum inhibition (73%) was observed at the l00 @mol/ 
L concentration (Table 1). LCL response induced by FMLP 
and PMA  in presence of SNP (100 pmom) was reduced by 
59.5% ( P  < ,051) and 59.6% ( P  < .OS), respectively (Table 
1). However, response  of OZ was  not  reduced (Table I). 

To investigate the effect of endogenous NO  on the LCL 
response, the effect of NO precursor, L-arg  was evaluated 
on  AA-induced luminol chemiluminescence. As shown in 
Fig  2A, prior addition of L-arg (1 to 10 mmol/L) reduced 
the AA-induced LCL intensity in a concentration-dependent 
manner. Statistically significant inhibition of AA-induced 
respiratory burst  was observed in presence of 5 and 10 mmol/ 
L L-arg (Fig 2A).  At 0.5 mmol/L, L-arg exhibited only 8% 
reduction (data not shown). In addition, the effect of L-arg 
was also studied in experiments in which it  was  added after 
AA (Fig 3). In these experiments also, an inhibitory effect 
on the LCL could still be observed. To study the effect of 
L-arg on other inducers, it was  used  in a concentration of 
10 mmol/L. Although a significant inhibition of PMA- and 
FMLP-induced LCL was obtained, response to OZ was not 
significantly altered (Table 1). D-Arg (10 mmol/L)  was inef- 
fective in modulating the LCL induced by FMLP, OZ, PMA. 
and AA (Table 1). 

MB (5 pmoVL), a guanylate cyclase inhibitor, was prein- 
cubated with the cells for 30 minutes before the  addition of 
LCL inducers. It attenuated the free radical generation from 
rat PMNLs (Fig 4). 8-Bromo cGMP (10 pmoYL), a cell 
permeable analogue of cGMP, had  no effect on the AA- 
induced chemiluminescence, Surprisingly, NOS inhibitors, 
L-NAME (50 pmol/L; data not shown) and L-NMMA (100 
pmollL), both decreased the LCL intensity (Fig 5). A higher 
concentration of L-NMMA (300 pmolk) completely abol- 
ished the LCL response induced by various inducers (Fig 
S ) .  Furthermore, oxy-hemoglobin ( 1  pmollL), which  makes 
NO unavailable by binding to it, was also found to reduce 
the LCL response induced by AA,  FMLP,  and OZ; however, 
PMA response was not significantly inhibited (Fig 6). Addi- 
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Table 1. Effect of Different inducers on Luminol-Dependent Chemiluminescence in the Rat PMNLs and Their Modulation  by  L-Arg  and SNP 

inducers Control 
SNP 

I100 pmol/Li 110 mmol/Li 
L-Arg 

It0 mmoliL) 
D-Arg 

AA (5 x rnol/L) 560.2 ? 28.3 (n = 84) 149.9 c 20.9 (n = If)* 130.8 c 17.9 (n = 12)* 656.4 t 125.8 (n = 12) 
PMA (3  x mol/L) 1,059.1 i 208.2 (n = 20) 427.8 2 111.3 {n = 4)t 475.0 i 103.4 (n = 4)t 1,061.1 t 226.3 (n = 4) 

02 (1.25 pg) 400.7 c 31.0 (n = 40) 537.5 c 68.2 (n = 6) 337.4 i 76.3 (n = 9 )  399.9 c 65.2 (n = 6) 
FMLP (1 x lo-' molfL) 260.1 2 21.7 (n = 55) 105.5 i 37.9 (n = 7)t  110.2 5 40.6 tn = 1l ) t  364.9 t 122.3 (n = 15) 

Values  are mean i SE (n = number of experiments). 
* P < .01; t P < .05 in comparison to their respective controls. 

tion of L-Arg with these agents further attenuated the LCL 
intensity (data not shown). 

ESfect of NO-modulating agents on nonenzymatic genera- 
tion of superoxide radical. Effect of Hb ( l  pmoVL), L- 
NAME (100 pmolk), L-NMMA (300 pmol/L), L- and D- 
arg (10 mmol/L), MB (5 pmol/L), and SNP (10 and 100 
pmoVL)  was studied on the nonenzymatic generation of free 
radicals. Hb ( 1  pmol/L) reduced the free radical generation 
by 35.8% 2 5.5% ( P  < .01) and SNP (10 pmol/L) inhibited 

100 - 

300 - 

'5001 

AA 

Fig l .  Stimulation-dependent chemiluminescence of  activated 
neutrophils. PMNLs (1 t o  5 x 10' cells) were  kept  at 37°C in HBSS 
(pH 7.4) containing 10 mmol/L glucose, 100 pmol/L luminol, 1 mmol/ 
L CaC12 and MgCl.. Concentrations of  the  stimulants used were FMLP 
(1 pmol/L), AA (5 x mol/L), 02 (1.25 pg),  and PMA (3 x 10" 
mol/L). Scale of LCL units in the upper  panel is same for both FMLP 
and OZ. However, as indicated in the  lower panel,  scales for AA- and 
PMA-induced LCL responses are different. 

it by 50.9% t 10.5% (P  < .02). Other agents had  no signifi- 
cant effect. 

Effect of L-arg on superoxide anion generation. L-arg 
(1, 5,  and I O  mmol/L) inhibited the free radical generation 
from PMNLs in a concentration-dependent manner  when 
added before AA (Fig 7). It also inhibited the superoxide 
radical production from the cells by 13%  when added after 
AA at a 10 mmol/L concentration. 

Modulation of the hydroxyl radical generation by L-arg. 
PMNLs were preincubated with L-arg (10 mmolk) for 5 
minutes to determine its effect on OH- production. In  pres- 
ence of L a g ,  the hydroxyl radical generation by AA, PMA, 
FMLP, and OZ, was significantly decreased (Fig 8). 

A 6ooi 
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3 
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c 

B 7001  

1.0 5.0 10.0 
L-Arg(mM1 

** 
l 

Fig 2. Inhibition of AA-induced LCL in rat PMNLs by L-arg (AI and 
SNP (B). Experimental  conditions  were same as described legends 
of Fig 1 except for  the preincubation of cells  for 5 minutes  with  arg 
or SNP at dinerent concentration. *P < .05; **P< .01 in comparison 
to  their respective controls ID). 
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Fig 3. Effect of L-arg (l0 mmollL)  on LCL response added to  the 
cells after AA addition. L-arg reduced the LCL intensity. 
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Fig 4. Alterations in the  rat PMNL-dependent LCL in MB (5 pmol l  
L for 30 minutes  at 37°C) pretreated PMNLs. Scale representing the 
LCL units in the upper panel is same for FMLP and OZ. whereas it is 
different in the  lower panel  for AA and PMA. 
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Fig 5. Reduction in the LCL intensity  of  activated PMNLs pre- 
treated with L-NMMA (100 and 300 pmollL) for 1 hour  at 37°C.  LCL 
units scale is  common  for 02 and AA. 

Alteration in the release of M P 0  and  lysozyme in presence 
of L-arg. L-arg ( l  and 10 mmol/L) itself  did  not affect the 
enzyme release from rat PMNLs (Fig 9). However, in  pres- 
ence of AA, L-arg-pretreated cells released lysozyme, pres- 
ent in the specific as well as azurophilic granules and  MPO, 
a marker of azurophilic granules (Fig 9). No change in  LDH 
activity in the supernatant was observed after AA and  L-arg 
treatment (data not shown). 

Effect of different inducers on nitrite  release from PMNLs. 
The level of nitrite in the supernatant released from  rat 
PMNLs after AA,  PMA, FMLP, and OZ treatment is  shown 
in Fig 10. Surprisingly, in SOD-treated control PMNLs, the 
level of nitrite was  less  than  in the untreated cells (1,032 t 
105 nmol/L/107 cells), suggesting interaction of 0; and  NO. 
However, in presence of free radical inducers, it  was  not 
different than  their respective controls. Nitrite content in 
AA-treated cells was  more  in comparison to control. Further, 
after FMLP, PMA, and OZ addition, nitrite contents in the 
supernatant were not  significantly altered (Fig 10). Nitrite 
contents in L-arg-pretreated cells after the addition of  the 
inducers was found to be further enhanced (Fig 10). 

Effect of the inducers on MDA levels. MDA  was esti- 
mated  in PMNLs (1 X lo7 cells/&)  preincubated  with L- 
arg ( 1  O mmol/L) for 5 minutes before the addition of AA 
(5 X mom), PMA (3 X IO" mom), OZ (12.5 pp), 
or FMLP (1 X IO-' mom). OZ and FMLP had  no effect 
on the MDA levels. However, AA and PMA significantly 
increased MDA content of the PMNLs (Fig 11). In the pres- 
ence of L-arg, PMA-induced elevation in  MDA  was not 
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Fig 6. Attenuation in the LCL response of stimulated PMNLs in 
presence of Hb (1 pmol/L for 30 minutes for 37°C). Inhibition by Hb 
was more prominent against AA- and  FMLP-induced  LCL  response. 

altered, whereas AA-induced increase was further potenti- 
ated ( P  < .05, Fig 11). In another series of experiments, 
PMNLs were pretreated with indomethacin (5 pmol/L for 5 
to 10 minutes) before the addition of L-arg. AA was added 
after 5 minutes and MDA content in these cells was mea- 
sured and found to be 359 ? 6 nmol/L (n = 3). Interestingly, 
L-arg-induced potentiation of MDA was prevented in indo- 
methacin-pretreated cells. 

DISCUSSION 

The results of the present study provide evidence that NO 
is an important regulator of rat PMNLs functions. L-arg, a 
precursor of NO, and SNP, a donor of NO, have been found 
to inhibit the luminol-dependent chemiluminescence induced 
by  AA, FMLP, and PMA.  In addition, AA-induced superox- 
ide anion generation was attenuated in the presence of L-arg. 
Furthermore, a decrease in the hydroxyl radical production 
induced by AA, PMA, OZ, and FMLP in the presence of 
arginine was also observed. 

( 2 . 5 ~  10 M) 
A A  A 

4 min 

Fig 7. Effect of L-arg  on the rate of Cyt C reduction by the rat 
PMNLs (1 x 10' cells).  The effect of dinerent concentrations of L-arg 
on the reduction of Cyt C has bwn  determined at 550 nm in presence 
of AA (2.5 x 10" mol/LI activated cells. (a)  Control; (b) in presence 
of 1 mmol/L arg; (c) 5 mmol/L arg; (dl 10 mmol/L arg. 

A variety of stimuli were used to induce luminol-depen- 
dent chemiluminescence. FMLP-mediated response is recep- 
tor-mediated, whereas OZ is a phagocytic ligand. AA and 
PMA cause membrane perturbation via increase in  the intra- 
cellular ca+' or protein kinase C activity. LCL responses 

5 (II 00 L * 
I T  

r l *  

A A  PMA 

' i T  

1 - 7  

0 2  FMLP 

Fig 8. Effect of L-arg pretreatment on the degradation of deoxyri- 
bose by PMNLs after stimulation with FMLP, OZ. AA, and  PMA. * P  
< .05, **P < .01 in comparison to their respective  controls. 
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Fig 9. Effect  of L-arg (l and 10 mmollL) on the granular enzyme 
release (MP0 and lysozyme) from AA-stimulated rat PMNLs In = 2). 

(Fig 1 )  obtained in this study are in accordance with the 
reported  values.33 

L-arg  and  SNP both  significantly  attenuated  the  AA-, 
FMLP-,  and  PMA-induced  LCL intensity. Rubanyi et all5 
have reported scavenging of the  superoxide  radicals  gener- 
ated  by  FMLP in presence of NO  from human PMNLs. 
Later,  Clancy  et all4 also  demonstrated in human PMNLs 
that NO inhibited NADPH  oxidase,  the  enzyme responsible 
for  superoxide  generation,  and  the inhibition was at  the 
plasma membrane level, which  could  only  be achieved  when 
the  cells  were  incubated with NO,  before  the addition of 
FMLP. In the present  investigation  with  rat PMNLs,  in  the 
presence of  NO,  significant  inhibition of AA-, FMLP-, and 
€”A-induced LCL  response  was observed. We  have studied 
the  effect of NO on rat PMNLs by using SNP, which aug- 
ments  the extracellular concentration of NO,  and by using 
L-arg,  a  precursor  of NO, which elevates intracellular con- 
centration of NO.  Thus, extracellular as well  as  intracellular 
concentrations of NO  were raised, to  elucidate  the  physio- 
logic  significance of NO effects on  PMNLs function. Maxi- 
mal inhibition of NO  was on AA-induced  free radical  genera- 
tion,  and AA is also  known  to  be released from  PMNLs 
after  activation. Therefore, most of the studies  were per- 

T 

C A A  PMA OZ FMLP 

Fig 10. Histogram representing changes in  the  nitrite content fol- 
1 Nitrite level in arginine-pretreated cells after 

agonist stimulation. Values are mean 2 SE. 

- 1 T 

C A A  PMA 0 2  FMCP 

Fig 11. Alterations in  the  MDA levels (nanomoles/107 cells) after 
activation of PMNLs with various stimuli with (m) and without (0) 
L-arg pretreatment. *P < .05 and **P < .02 in comparison to  the 
control. 

formed with AA as PMNLs’ inducer for  free radical  genera- 
tion. SNP as  well  as  L-arg were  found  to inhibit  the AA- 
induced  response in a concentration-dependent  manner  (Fig 
2). The possibility of involvement of cGMP in this  response 
was investigated by using MB, a guanylate  cyclase inhibitor. 
Surprisingly,  MB at the concentration known  to inhibit  the 
guanylate cyclase,  exerted  sigmficant  inhibition on the AA-, 
PMA-, OZ-, and  FMLP-induced luminol-dependent chemi- 
luminescence.  Therefore,  cGMP  permeable analogue  was 
used;”  however, LCL response  remained  unaltered. Simi- 
larly,  NOS inhibitors, L-NMMA  and  L-NAME, were also 
found  to significantly suppress  the  luminol-dependent 
chemiluminescence. The effect of these  agents on  the nonen- 
zymatic superoxide anion  generation demonstrated that only 
Hb had inhibitory effect, which could  be  explained  on  the 
basis of the thiol groups. It was, therefore, concluded that 
the  decrease in the  LCL by L-NMMA,  L-NAME,  and  MB 
was  not due  to  the  scavenging of active  oxygen metabolites. 
It is known that NOS uses only L-arg. The  involvement of 
NO in arginine pathway was confirmed by using  D-arg, an 
enantiomer of L-arg. The inhibitory  effect of L-arg on  LCL 
(Table 1 and  Fig 2) was found to  be enantiospecific (Table 
1)  and therefore  mediated by NO. In addition, elevation in 
nitrite content in L-arg-pretreated cells  also  supports the 
role of NO. 

It has been  reported  that NO  and  superoxide anions  can 
generate peroxynitrite and hydroxyl  radicals and possibly 
mediate  the cytotoxic  effect  of in macrophage. Syn- 
thesis of peroxynitrite has been demonstrated by many  inves- 
tigators.”” In an earlier study, we  have reported  that,  after 
thromboembolism,  there is  an  increase  in the  release of NO 
from the  neutrophils.” The present  study  is  an  extension of 
that  study with the objective of evaluating  the nature of NO 
and  to  explore  the possibility  of  it acting as cytotoxic  or 
cytoprotective moiety. The interaction of hydrogen  peroxide 
and  NO  to generate LCL has  been dem~nstrated.~‘.”  From 
this  report  it was  expected that PMNLs, which release both 
NO and H 2 0 Z r  may give  LCL and,  in this way, LCL  could 
be an  important  tool to study  the  modulation of NO in rat 
PMNLs by its precursor L-arg and SNP, which release NO. 
However, in the presence of L-arg  or  SNP there was no 
increase i n  the LCL, suggesting  that no  toxic species,  such 
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as peroxynitrite or hydroxyl radicals, are formed. It appears 
that NO inhibits NADPH oxidase activity.I4 Therefore, 
involvement of NO by use of NOS inhibitors, L-NMMA 
and L-NAME, was explored. However, these inhibitors 
themselves inhibited the LCL, which indicated the non- 
specificity in their action, as reported by other investiga- 
tors.'8-40 Archer and Hamp14' have reported even the synthe- 
sis of  NO from L-NMMA in isolated arterial rings. Our 
results also suggest the nonspecificity of their action and 
caution for selecting this intervention to demonstrate the 
involvement of  NO  in physiologic responses. It is  known 
that NOS uses only L-arg. The involvement of NO in argi- 
nine  pathway was confirmed because of the lack  of activity 
by an enantiomer of L-arg. Similarly, MB was also found 
to reduce the chemiluminescence. MB has been reported to 
have some nonspecific whereas cGMP has no effect 
on LCL, suggesting that the effect is  not mediated by cGMP. 
Specificity of these responses was found to be related to NO/ 
L-arg, because D-arg was ineffective and similar response 
was obtained with SNP. As reported by Wang et a1,2'  we 
have found that 0.5 mmol/L L-arg had no effect on the LCL. 
This was probably due to  low concentration used  by them, 
as has also been seen in our experiment. Higher concentra- 
tions of L-arg that were not  used earlier, if added, were 
found to reduce the LCL intensity, hydroxyl radical, and 
superoxide anion generation. 

The results of these experiments suggest that, apart from 
inhibiting the NADPH oxidase activity, NO also acts as 
scavenger of active oxygen species. It has also been demon- 
strated by Clancy et all4 that preincubation of PMNLs with 
NO inhibits the superoxide radical generation by preventing 
the activation of the enzyme. Once the NADPH oxidase is 
assembled together by the inducers before NO addition, NO 
had  no effect. On the other hand, in our experiments, we 
could still observe the reduction in LCL when the S N P  or L- 
arg  was added after the inducers, suggesting the scavenging 
activity of NO. Results obtained with AA and L-arg on 
superoxide radical generation after Cyt C reduction are simi- 
lar  to the reported observations of Rubanyi et all5 in human 
PMNLs with FMLP. NO and its toxic mediators can mediate 
the lipid per~xidation~~; hence, to further investigate this 
possibility of any toxic effect of  NO on  PMNLs, lipid peroxi- 
dation product MDA was estimated after AA, PMA, FMLP, 
and OZ treatment in the cells pretreated with L-arg. Surpris- 
ingly, only PMA and AA increased the synthesis of MDA. 
However, in indomethacin-pretreated cells, the elevation in 
MDA contents after L-arg treatment was prevented, sug- 
gesting the regulation of NOS by cyclooxygenase-derived 
products. There are some reports in the literature on modula- 
tion of NOS activity by  AA  metabolite^^.^^ and this remains 
to be seen in  PMNLs. 

LCL response is known to be largely dependent on active 
oxygen species and  MPO. Therefore, we also evaluated the 
effect of L-arg  on the release of MPO, a marker of azurophi- 
lic granules. Surprisingly, no inhibitory effect on the release 
of MP0 and lysozyme was obtained. Rather, the release was 
potentiated from PMNLs preincubated with L-arg. This is 
in agreement with  the report of Wyatt et al.& 

Our results indicate that inhibition of the release of reac- 

tive oxygen intermediates by NO is at enzyme level and it 
also involves the scavenging of these toxic species. We did 
not observe synthesis of other toxic species such as peroxyni- 
trite or hydroxyl radicals in L-arg- or SNP-pretreated cells, 
unlike rat and mouse macrophage, in which NO was reported 
to be cytotoxic and synthesis of peroxynitrite was demon- 
strated by using lumino1.8,23 

From the results obtained, it can be concluded that rat 
PMNLs can  be  used to predict the effect of  NO on  human 
PMNLs, because in both species response of PMNLs to NO 
is inhibitory to free radicals and, therefore, may  play an 
important role in postthrombotic recovery. 
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